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Abstract. This paper presents the method for estimating the parameters of a two parameter learning
curve (LC). Different values of parameters and different sample sizes are used for this estimation.
Based on the experimental data an adequate mathematically grounded LC model is proposed for
a manual assembly process of automotive wiring harness. The model enables us to determine the
LC parameters αε (slope coefficient) and the learning rate stabilization point xc, i.e. to completely
restore LC and predict the production process. The propositions that ground the model application
correctness are proved. The model adequacy is estimated, based on concrete production process
monitoring data. The criterion that determines production process without stabilized learning rate
is proposed.

Keywords: learning curve, data fitting, parameter estimating, mathematical modeling, manual
assembly process.

1 Introduction

Learning curves (LC) are mathematical models used to estimate efficiencies gained when
an activity is repeated. LC have already been considered for quite a long time, but their
application is urgent up till now, as far as many enterprises are striving to apply the
LC to determine their production process time, but they face various problems [1] most
important of which are errors due to the wrong LC application.

When applying the LC model in practice there are three basic things that defined the
accuracy of the applied model:
1. Adequacy to the specific character of production under consideration;
2. Rather exact method of LC parameters restoration;
3. Sufficient quantity of the production made according to which the producing time is

predicted.
At present, very many LC models are applied that are widely reviewed in [2] and other

papers. In this work, the LC model for learning phase modeling of the production process
was used that meets the following requirements:
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1) it is simple (minimal number of parameters);
2) it well approximates the whole length of LC;
3) it is able to define the stabilization point of the learning rate;
4) monitoring of producing process for the necessary data for restoring parameters of

the model is rather cheep.
Several learning curve models have been proposed, but only two Wright‘s [3] and

Crawford‘s [4, 5] models are in widespread use. By Wright‘s model the log-linear equa-
tion is the simplest and more common equation and is valid for a wide variety of processes

yW (x) = βx−αW ,

where yW is the average time of all units produced up to the xth unit, the parameter αW
is a slope coefficient, β is the number of direct labor time required to produce the first
unit. Crawford‘s model is as follows [4, 5]:

yc(x) = βx−αc , (1)

where x is the unit number, yc is the number of direct labor time required to produce the
xth unit, the parameter αc (αc > 0) is a slope coefficient, β is the number of direct labor
time to produce required to produce of the first unit.

Some authors also use the Plateau model [5–8]:

yp(x) = βx−αp + γ,

where x, yp, αp, and β are the same as in (1), γ (γ > 0) is the constant that describes when
the steady-state is reached after the learning is concluded or when machinery limitations
block workers improvement. Baloff [6] studied this plateauing phenomenon and found it
to be extensively present in machine intensive manufacturing.

This work investigates the LC application to the manual assembly process of automo-
tive wiring harness. Production data for Crawford‘s model have been collected. Observing
the production process, certain tendencies of assembly time dynamics have been noticed:
1) assembly time mostly decreases for the first products;
2) assembly time of produced in large amounts and constantly is stable and does not

decrease.
The stability is described in the paper by the learning rate (parameter ε) that is determined
by the steady-state time Tc.

By means of experiments (monitoring of the manual assembly process) LC was ob-
tained as one or several random samples. Note that such a way, by fixing each complete
cycle is most frequently used in the investigation in LC parameters restoration [9, 10].
However, it is also most expensive since it requires more expenditure for monitoring the
production process: scanning equipment, its management and administration, because
one group of researchers can tackle only one experiment at a time.

If learning curves are obtained experimentally by only one sample

xi, yi, xi < xi+1, i = 1, 2, . . . , n,
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then the statistical methods, such as the least squares method maximum likelihood method
and others, are not suitable here. Though a statistical method for the case with one random
sample available is offered in the paper [11], in this research a deterministic method of
the empirical function that approximates LC, based on the obtained monitoring data will
be used, i.e. of one random sample.

Basing on the tendencies observed in most experiments done, a premise that in a as-
sembly process there exists a Plateau phase in the sense of assembly rate stabilization
is made, i.e. the assembly time is decreasing to a certain limit Tc until the steady-state
assembly time is reached.

The aim of this work is to propose, to an adequate, mathematically grounded LC
model, that meets the above mentioned requirements on the basis of experimental data,
and which will enable us to define the LC parameters αε and steady-state point xc, i.e. to
restore LC completely and predict the assembly process.

2 Product and its assembly time

As typical manual assembly process wiring harness production will be studied. Since
wiring harness performs electrical circuit function, its manufacturing is pure assembly
process: manual, semi automatic, automatic, depending on production volume [12].

According to wiring harness definition [13], the main wiring harness components
are terminated cables and wires (circuits), housings and connectors as other wrapping
and protecting material (tapes, cable ties, hoses and tubes). These components constitute
wiring harness layout with main trunk, branches, break-outs, legs (see Fig. 1). When
protective materials such as hoses are used, additional components like adapters and
manifolds are added. The main wiring harness manufacturing steps [14]:

1. Wire preparation, when wires are being cut ant terminals mounted.
2. Installation, cables and branches are being placed on assembly board according the

certain layout.
3. Securing, cables and wires are wrapped together; protective hoses are pulled on

branches and legs.
4. Attachment, cables and wires with mounted terminals are being assembled into hous-

ings, connectors, splices and etc.

The first step representing wiring preparation is mostly automatic process and next
three steps are assembly of the wiring harness performed by operator on the assembly jig.
In this research only manual assembly operations are studied, so only last tree steps will
be considered.

During the assembly of wiring harness, all components must be installed and assem-
bled into the final product. To determine assembly time of the assembly the total assembly
time could be measured and also time of each operation could be measured.

Each component of the wiring harness has specific mounting operation or several op-
erations and each operation has certain processing time i.e. to pick and place component,
pull the hose, assemble terminal into housing, wrap the cable tie and etc. Even different
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Fig. 1. The main wiring harness components and terminology [13].

wiring harness have different number of different components, the basic operation time of
specific mounting procedure will be the same, for all. This basic operation time represents
necessary – steady state operation time, which is reached, after operator has finished the
learning phase.

There two groups of component assembly operations, simple and complex. Simple
operation represents single process and depends only on number of components used i.e.
the assembly of terminal, fixing of cable tie. The complex assembly operation depends on
number of components and number of sub-operations or component length. For instance,
to pull the hose, constant assembly time is needed, and variable assembly time depending
on the length of the hose is needed as well. Analogical situation is with the sub operations:
the number of wires in the splice, the number of wires in the branch and etc.

After regression analysis [14], linear relationship between number of sub-operations/
length and assembly time was determined:

T vop = tconst + taddsop = tconst + taddlop,

T sop = tconst,

where tconst is constant operation, tadd is additional time for sub-operation or for addi-
tional meter, sop is number of sub-operations, lop is length of component.

To determine the total assembly time of the product the sum of the operating time
need to be calculated. So in general the vector of all operations with certain operation
times is defined:

D =
(
t1 t2 t3 . . . tm

)
,

where ti is operation time of the particular operation, m is total number of all possible
operations. ti is determined as a time measured during time study of each operation.
During time study, every operation was thoroughly evaluated, not only on single, but
on several different products and different type of components and performed up to the
several hundred times, to warrant that pure steady state operational time is reached.
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Each different wiring harness product will have different numbers and quantities
of operations. This information is easily collected from product structure. So for every
product operation quantity vector is determined:

W =
(
a1 a2 a3 . . . am

)
,

where ai is the quantity of i operation. If particular unit does not have the certain operation
the quantity is obviously 0. When fully defined vectors D and W are given, the total
assembly time is calculated as a scalar product:

Tc = DW. (2)

After (2) is applied, the total assembly time of selected wiring harness product is deter-
mined. Since Tc is the sum of the steady state operation times, Tc as well represent the
steady state assembly time of the wiring harness.

3 Learning curve model

Let one experiment is done and data

{xi, yi}, xi < xi+1, i = 1, 2, . . . , n,

be obtained. We shall use only “cheep” data, i.e.

x0 = xq, y0 = yq, 1 6 q 6 n, (3)

and the steady state time Tc = y(xc, α), when the time of later operations “almost” does
not change (y(x, α) ≈ const, when x > xc). Parameters xc and α are unknown. The
word “almost” is treated here as a decrease in absolute value of a derivative ∂y(x, α)/∂x
up to an adequately chosen value ε > 0. We proof below that the parameter α = αε is
a unique solution of the equation ∣∣∣∣∂y∂x

∣∣∣∣∣∣∣∣
x=xc(Tc,α)

= ε, (4)

and xc(Tc, αε) = x0(y0/Tc)
1/αε is an abscissa of the unique intersection point of LC

y(x, αε) = y0(x/x0)−αε crossing the point (x0, y0) and the line y = Tc. Thus if we find
αε and xc(Tc, αε), we can completely restore LC:

Y (x, x0, y0, αε) =

{
y0( xx0

)−αε , when 0 < x < xc(Tc, αε),

Tc, when x > xc(Tc, αε).
(5)

Proposition 1. If x0 > 1, y0 > 0, α > 0, 0 < Tc < y0, then a bundle of curves
(according of α)

y(x, α) = y0

(
x

x0

)−α
(6)
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have only one common point (x0, y0), and each curve of the bundle crosses the line
y = Tc only at one point, the abscissa of which is

xc(Tc, α) = x0

(
y0
Tc

)1/α
> 0, (7)

Proof. The bundle of curves (6) has only one common point (x0, y0), because y(x0, α) =
y0(x0/x0)−α = y0, for all α > 0. Besides, this point is unique, because in case
at least one more point appears, then (x01, y01) 6= (x0, y0) ⇒ y0(x0/x0, α)−α0 =
y01(x01/x01)−α10 ⇒ y0 = y01.

We show that (7) is a unique solution of the equation y(x, α)− Ts = 0. We have

y(xc(Tc, α), α)− Ts = y0

(
x0(y0/Tc)

1/α

x0

)−α
− Tc = Tc − Tc = 0.

There exists solution (7) and it is unique if y(1, α) > Tc, since a derivative of
y(x, α)(∂y/∂x) = −α(y0/x)(x/x0)−α < 0, i.e. y(x, α) is strictly monotonously de-
creasing (SMD) and limx→+0 y(x, α) = y0, limx→+∞ y(x, α) = 0.

Proposition 2. If x0 > 1, y0 > 0, α > 0, 0 < Tc < y0, then equation (4) has a unique
solution α(ε) > 0 for any ε > 0, besides the function α(ε) is strictly monotonously
increasing (SMI).

Proof. The absolute value of ∂y/∂x at points x = xc(Tc, α), is equal to

fα(α) ≡
∣∣∣∣∂y∂x

∣∣∣∣∣∣∣∣
x=xc(α)

= α
y0
x0

(
Tc
y0

)(1+α)/α
= α

Tc
x0

(
Tc
y0

)1/α
> 0,

therefore, equation (4) becomes

α
Tc
x0

(
Tc
y0

)1/α

= ε or
Tc
x0ε

=
1

α
exp

{
1

α
ln

(
y0
Tc

)}
(8)

and after multiplying both sides of equation (8) by c = ln(y0/Tc) > 0 we have

cd(ε) =

(
c

α

)
exp

{
c

α

}
, (9)

where d(ε) = Tc/(x0ε). From (9) it follows that the function W (cd(ε)) = c/α is
Lambert‘s function [15, 16] and

α(ε) =
c

W (cd(ε))
=

ln(y0/Tc)

W [(Tc/x0ε) ln(y0/Tc)]
. (10)

From the properties of Lambert‘s function [17] and (10) it follows that the function
α(ε) is single-valued, positive, SMI, and α(0) = 0, because cd(ε) > 0 is SMD. This
proves the Proposition 2.
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Proposition 3. If x0 > 1, y0 > 0, α > 0, 0 < Tc < y0, then the function xc(Tc, α(ε)) is
SMD and concave.

Proof. It follows from Proposition 1 that xc(Tc, α(ε)) > 0, therefore, derivatives of
implicit function xc(Tc, ε) are of constant sign:

∂xc
∂ε

= xc(Tc, ε)
α′(ε)

α2(ε)
ln

(
Tc
y0

)
< 0

and
∂2xc
∂ε2

=
(
α′ε(ε)

)2 ∂2xc
∂α2

+
∂xc
∂α

α′′ε (ε) > 0.

Thus after finding αε (there is no analytical solution), we completely restore LC (5)
and the learning rate stabilization point xc(Tc, αε), using only two experimental data
(x0, y0) and Tc.

4 Results and discussion

With a view to verify the adequacy of the method proposed 11 respective measurements
have been performed in which only x(k)q , y(k)q (see (1)) and T (k)

c have been selected from

x
(k)
i , y

(k)
i k = 1, 2, . . . , 11, i = 1, 2, . . . , nk, 1 6 q 6 nk, (11)

here k is the number of experiment, nk is the number of the kth experiment data. In
line with this parameters, the parameters α(k)

ε and x(k)c have been calculated. According
to manufacturer recommendations ε = 0.0016T

(k)
c is selected in all the calculations.

A comparison of the LC Y (x, x
(k)
q , y

(k)
q , α

(k)
ε ) obtained values with the complete experi-

mental data (11). Function (12) was chosen as adequacy criterion (average percent relative
error)

∆(k)(ε) =
100

nj

nk∑
i=1

∣∣∣∣y(k)i − Y (x
(k)
i , x

(k)
q , y

(k)
q , α

(k)
ε )

y
(k)
i

∣∣∣∣, k = 1, 2, . . . , 11. (12)

In Table 1, the data of the first experiment are presented. The calculation results are given
in Fig. 2, and, for all experiments, in Table 3. Fig. 3 shows the experimental data in
log-log scale.

Table 1

i x
(1)
i y

(1)
i [h] i x

(1)
i y

(1)
i [h]

1 2 6.880 8 268 2.178
2 44 3.078 9 301 2.233
3 100 2.423 10 349 2.114
4 163 2.047 11 396 2.101
5 172 2.128 12 428 2.136
6 204 2.224 13 460 2.140
7 236 2.212

Table 2

k ε
(k)
m ϕ

(k)
m [deg] k ε

(k)
m ϕ

(k)
m [deg]

1 0.0036 −0.2063 7 0.0233 −1.3348
2 0.0013 −0.7445 8 0.0082 −0.4698
3 0.0014 −0.0080 9 0.0120 −0.6875
4 0.0048 −0.2750 10 0.0033 −0.1891
5 0.0001 0.0057 11 0.0079 −0.4526
6 0.0009 −0.0516
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Table 3

k Data

q x
(k)
q y

(k)
q T

(k)
c [h] nk 102 ε(k) α

(k)
ε x

(k)
c ∆(k) [%]

1 2 44 3.078 2.200 13 0.308 0.2440 174 3.11
2 1 20 2.545 0.755 10 0.124 0.4601 280 5.97
3 3 3 1.230 0.900 42 0.148 0.1028 70 0.79
4 3 13 3.448 2.980 8 0.489 0.0966 58 3.40
5 2 80 1.177 0.800 21 0.131 0.3712 226 10.65
6 1 90 0.731 0.550 18 0.090 0.3404 207 1.66
7 1 10 17.061 11.000 11 1.804 0.1823 111 2.28
8 1 17 11.847 6.650 17 1.091 0.2591 157 3.96
9 3 59 14.977 6.765 20 1.109 0.4900 298 4.81

10 1 2 6.880 2.100 13 0.344 0.2692 164 2.48
11 1 19 19.630 6.750 20 1.107 0.4131 251 6.46

Fig. 2. Learning curve based on the proposed model
(line) and a graph of the data set from Table 3, k = 1.

Fig. 3. Graph of the data set from Table 3, k = 1
(log-log scale).

Fig. 4. Dependency of the average relative error on ε
for the data set from Table 3, k = 1.

Fig. 5. Learning curve based on the proposed model
(line) and a graph for the data set from Table 3, k = 3
(circles). Point of the stabilized learning rate xc.
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The numerical experiments have shown that function (12) is unimodal (Fig. 4) and has
a minimum approximate to proposed εp = 0.0016Tc, i.e. ε(k)m = arg minε ∆(k)(ε) ≈ εp.
The values of ε(k)m are illustrated in Table 2. Function (5) is smooth everywhere except for
the point x(k)c at which it has break of the derivative equal to ε(k)m , which is entirely defined
the angle ϕ(k)

m = − arctan(ε
(k)
m ) (if ϕ(k)

m = 0, then function (5) is smooth everywhere).
The values of angle ϕ(k)

m in degrees are presented in Table 2.
Note that the proposed method can be applied to predict still not stabilized learning

processes. That is illustrated in Fig. 5. The condition maxi x
(k)
i < x

(k)
c can be treated

here as a criterion of unsettlement and predict the steady-state point as x(k)c . The cal-
culation has shown that there is a steady-state of the learning rate in the experiments
k = 1, 5, 6, 8, 9, 10, 11; while in the rest of them stabilization is just predicted (see Table 3
and Fig. 5).

5 Conclusions

In this article an adequate mathematically grounded LC method is proposed for a manual
assembly process of automotive wiring harness. All the propositions that ground the
method application correctness are proved. 11 experiments were performed and several
calculation results confirm premise of plateauing phenomena, i.e. that the assembly time
is decreasing to a certain steady-state limit Tc. Having only one measured data point
(x0, y0) and stabilized time Tc, learning slope αε and point of the stabilized learning rate
xc can be unequivocally recovered. This enables to predict stabilization point in future
even the current production data has not shown stabilization yet. Moreover, this research
proposed the method to fit LC model beyond statistical methods with sufficiently accu-
racy; small relative error values after the comparison with concrete production process
monitoring data proves adequacy of the model. Such data fitting might be preferable in
the manufacturing fields where production data is costly and only limited data could be
provided for the analysis.

Currently presented method enables to predict sequential production development. In
order to predict the initial learning phase from known stabilized time Tc LC parameters
are needed to be known as well. Therefore, further research should be focused on LC
parameter estimation methodology.
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