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Abstract. This paper investigates the observer-based robust adaptive control problem for a class of
stochastic Hamiltonian systems. The systems under consideration relate to parameter uncertainties,
unknown state time-delay and input delay. The purpose is to design a delay-dependent observer-
based adaptive control law such that for all admissible uncertainties, as well as stochasticity, the
closed-loop error system is robustly asymptotically stable in the mean square. Several sufficient
conditions are presented to ensure the rationality and validity of the proposed control laws and
observers, which are derived based on Lyapunov functional method. Numerical simulations spell
out to illustrate the effectiveness of the proposed theories.

Keywords: stochastic Hamiltonian systems, adaptive control, time delay, robustly asymptotically
stable.

1 Introduction

Known as a significant class of nonlinear systems, port-controlled Hamiltonian system
(PCH), which is proposed by [1], has good structure with clearly physical meaning.
A benefit of PCH system is the Hamilton function in PCH system can be taken as the
sum of potential energy (excluding gravitational potential energy) and kinetic energy in
physical systems. So it often is viewed as a proper candidate of Lyapunov function for
many physical systems. On account of this advantage, the Hamilton function approach
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has caused broad attention in the field of nonlinear controller design, as well as in practi-
cal control problems (see, e.g., [2–4] and the references therein). Recently, the authors
obtain some results on time delay Hamiltonian systems (see, e.g., [5–8]). In [5], the
stabilization problem of Hamiltonian systems with state time delay and input saturation is
investigated. Sufficient conditions are derived by using Lyapunov–Krasovskii functional
theorem to guarantee the systems as well as the resulted closed-loop systems by output
feedback asymptotically stable when input saturation effectively occurs. The problem of
L2-disturbance attenuation for time delay port-controlled Hamiltonian systems is studied
in [7] and [8]. The case that there are time-invariant uncertainties belonging to some con-
vex bounded polytypic domain is also considered in [7]. Reference [9] studies the finite-
time stability and finite-time H∞ control design for a class of time delay Hamiltonian
systems via Razumikhin approach. The Hamilton function considered in [9] belongs to
the power functions and the exponents of the Hamilton function have specific form. While,
there are few works on the analysis and synthesis for stochastic Hamiltonian systems with
time-delay.

For all we know, stochasticity and time delays are usually sources of instability and
encountered in many practical systems, including communication systems, engineering
systems and process control systems, etc. This is why considerable attentions have been
received on the study of stochastic time-delay systems [10–13]. Similar to the analyt-
ical methods of general time-delay systems’ theories, the analysis and synthesizes of
stochastic systems with time-delay and uncertainties are based on the time domain ap-
proaches of the Lyapunov stability theories as well. Nevertheless, the disadvantages by
applying the Itô differential formula are the appearances of gravitation and the Hessian
terms. Furthermore, the system states’ derivatives have no definitions on account of the
stochastic disturbance (Wiener process). Hence, it is impossible to analyze the stochastic
systems by directly choosing Lyapunov functional or function described as which in
delay systems. For nonlinear systems, stochastic and delay factors further augment the
difficulties of the analysis and synthesis. There is no general controller establishment and
observer design method in nonlinear systems. Based on the backstepping method, [14]
introduces a systematic design procedure for a memoryless adaptive output-feedback
control law. [15] proposes a new stability criterion and a design procedure of observer-
based controller for the stochastic nonlinear system with limited communication by using
the Lyapunov functional approach. In [16], an adaptive backstepping controller in vector
form is designed for a class of stochastic Hamiltonian control systems with unknown
drift and diffusion functions. The closed-loop system under the controller has a unique
solution that is globally bounded in probability. By using the structural properties of the
systems, [17] provides an observer design method called Augment Plus Feedback for PCH
systems and two observers are obtained. To the authors’ best knowledge, the problem of
control design for stochastic nonlinear Hamiltonian systems with time delay has not been
discussed yet, which motivates us for the present study.

This paper deals with the observer-based robust adaptive controller design for a class
of nonlinear Hamiltonian systems with stochasticity, parameter uncertainties, unknown
state varying time-delay and input delay. The uncertainties considered in this paper are
some small parameter perturbations. Two cases we considered in this paper: the structure
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of the systems can not be duplicated and the structure of the systems can be dupli-
cated. We obtain some sufficient conditions for which the uncertain stochastic time-delay
Hamiltonian system is robustly asymptotically stable in mean square for all admissible
uncertainties and stochasticity. The conditions are acquired by applying Itô differential
formula, Young inequality [18] and some properties of norm and trace. The results pro-
posed in this paper, in fact, together with Hamiltonian realization [19] have presented
a new approach to the observer-based controller design of stochastic time-delay nonlinear
systems. The control problem of a large class of stochastic time-delay nonlinear systems
with uncertainties can be worked out through the Hamiltonian system framework. An
application of this method is illustrated by two numerical examples in Section 4, which
validate our results obtained in this paper.

The paper is organized as follows. Section 2 presents the problem formulation and
some preliminaries. The main results are presented in Section 3. Section 4 illustrates the
proposed results by two numerical examples, which are followed by the conclusion in
Section 5.

Notations. R is the set of real numbers; Rn denotes the n-dimensional Euclidean space
and Rn×m is the real matrices with dimension n×m; ‖ · ‖ stands for either the Euclidean
vector norm or the induced matrix 2-norm. The notation X > Y (respectively, X > Y ),
where X and Y are symmetric matrices, means that the matrix X − Y is positive semi-
definite (respectively, positive definite). tr[X] denotes the trace for square matrix X;
λmax(P ) (λmin(P )) denotes the maximum (minimum) of eigenvalue of a real symmetric
matrix P . Cn,τ = C([−τ, 0],Rn) denotes the Banach space of continuous functions
mapping the interval [−τ, 0] into Rn. CbF0

([−τ, 0];Rn) denotes the family of all F0-
measurable bounded C([−τ, 0];Rn)-valued random variables φ = {φ(t): t ∈ [−τ, 0]};
Ci denotes the set of all functions with continuous ith partial derivatives; C2,1(Rn ×
[−τ,∞);R+) stands for the family of all non-negative functions V (x, t) on Rn×[−τ,∞),
which are C2 in x and C1 in t; C2,1 is the family of all functions, which are C2 in the
first argument and C1 in the second argument. Throughout the paper the superscript ‘T’
stands for matrix transposition. What is more, for the sake of simplicity, throughout the
paper, we denote ∂H/∂x by∇H .

2 Problem formulation

Consider a class of stochastic time-delay Hamiltonian systems with unknown parameter
perturbations represented by

dx(t) =
[
J(x, p)−R(x, p)

]
∇H

(
x, x

(
t− τ(t)

)
, p
)

dt

+ g1(x)u
(
t, t− τ(t)

)
dt+ g2(x) dw(t),

y(t) = gT1 (x)∇H(x, 0),

x(t) = φ(t), t ∈ [−h, 0],

(1)

where x(t) ∈ Rn is the state vector, u(t, t − τ(t)) ∈ Rq is the system control input;
τ(t) ∈ Cn,τ is the time-delay; y(t) ∈ Rq is the system control output; w(t) ∈ Rr
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is a zero-mean Wiener process, which satisfies E{dw(t)} = 0, E{dw(t)2} = dt, where
E is the expectation operator; p ∈ Rl stands for the parameter perturbation of the Hamil-
tonian systems; ∇H(x, x(t − τ(t)), p) ∈ Rn×1 is the gradient of the Hamilton func-
tion H(x, x(t − τ(t)), p) : Rn × Rl → R, which satisfies H(x, x(t − τ(t)), p) > 0,
H(0, 0, 0) = 0, ∇H(0, 0, 0) = 0, ∇H(x, x(t − τ(t)), 0) 6= 0 (x 6= 0); J(x, p) ∈ Rn×n
is skew-symmetric matrix, that is, J(x, p) = −JT(x, p); R(x, p) ∈ Rn×n is positive
semi-definite matrix; g1(x) ∈ Rn×q and g2(x) ∈ Rn×r are gain matrices of appropriate
dimensions, g1(x) has full column rank and g2(0) = 0. In addition, J(x, p), R(x, p),
g1(x) and g2(x) are locally Lipschitz continuous functions on x.

Remark 1. ∇H(0, 0, 0) = 0, g2(0) = 0 and ∇H(x, x(t − τ(t)), 0) 6= 0 (x 6= 0)
guarantee that x = 0 is an isolated equilibrium point of system (1). These conditions are
not conservative, since if the equilibrium point of system (1) is not at the origin, we can
change isolated equilibrium point to origin by applying coordinate transformations.

The delay τ(t) in (1) is a time-varying continuous function, which satisfies

0 6 τ(t) 6 h <∞ and τ̇(t) 6 h̄ < 1,

where h and h̄ are known positive scalars.
p in system (1) is small parameter perturbation, which maintains the dissipativeness

of the structure matrix. The perturbations usually bring a direct effect on the states, but
an indirect effect on the output of the system. Thus, the output can be chosen indepen-
dent on p. Obviously, all the functions in system (1) related to p can be decomposed as
follows:

∇H(x, xτ , p) = ∇H(x, xτ , 0) + ∆H(x, xτ , p),

J(x, p) = J(x, 0) + ∆J(x, p),

R(x, p) = R(x, 0) + ∆R(x, p),

where ∆H(x, xτ , 0) = 0; ∆J(x, 0) = ∆R(x, 0) = 0; ‖∆J(x, p) − ∆R(x, p)‖ 6 m,
m is a known bounded constant; xτ := x(t − τ(t)). For the sake of simplicity of
expressions, in the rest of the paper, we will always denote x(t − τ(t)) by xτ . What
is more, H(x, 0) := H(x, x(t − τ(t)), 0)|τ(t)=0 and ∇H(x, 0) := ∇H(x, x(t − τ(t)),
0)|τ(t)=0.

Assumption 1. There exists an appropriate dimensioned function matrix ψ(x, xτ ) such
that

2
[
J(x, p)−R(x, p)

]
∆H(x, xτ , p) = g1(x)ψT(x, xτ )θ, (2)

where θ is a constant parameter vector subjecting to p.

Remark 2. Assumption 1 is the matched condition, an usual assumption in the adaptive
control of Hamiltonian systems. Commonly ψ(x, xτ ) and θ can be easy found such that
(2) holds (see [20]).
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Under Assumption 1, system (1) can be rewritten as

dx(t) =
[
J(x, p)−R(x, p)

]
∇H(x, xτ , 0) dt+

1

2
g1(x)ψT(x, xτ )θ dt

+ g1(x)u
(
t, t− τ(t)

)
dt+ g2(x) dw(t),

y = gT1 (x)∇H(x, 0),

x(t) = φ(t), t ∈ [−h, 0].

(3)

Suppose that the states of system (1) are not fully measured and the structure of (3) can
not be duplicated, we can design an adaptive observer of the following form to estimate
the states of system (3):

dx̂(t) =
[
J(x̂, 0)−R(x̂, 0)

]
∇H(x̂, x̂τ , 0) dt+

1

2
g1(x̂)ψT(x, xτ )θ̂ dt

+ g1(x̂)u
(
t, t− τ(t)

)
dt+KT(x̂)

[
y − gT1 (x̂)∇H(x̂, 0)

]
dt

+ g2(x̂) dw(t),

˙̂
θ = Γψ(x, xτ )gT1 (x)∇H(x, 0),

x̂(t) = φ̂(t), t ∈ [−h, 0],

(4)

where x̂ ∈ Rn is the estimation of the state vector, x̂τ := x̂(t − τ(t)) ∈ Rn is the time-
delay observe state, K(x) is nonzero function matrix, θ̂ is the estimate vector of θ, Γ > 0
is a constant adaptive gain matrix.

Definition 1. The uncertain stochastic time-delay Hamiltonian system (3) (system (4))
is said to be robustly asymptotically stable in mean square, if there exists a controller
u(t, t− τ(t)) such that

lim
t→∞

E
{∥∥x(t)

∥∥2} = 0
(

lim
t→∞

E
{∥∥x̂(t)

∥∥2} = 0
)
,

where x(t) and x̂(t) are the solutions of system (3) and (4) at time t under the initial
condition x(t) = φ(t) and x̂(t) = φ̂(t), respectively.

The observer-based robust adaptive control design problem of the uncertain stochas-
tic time-delay Hamiltonian system (1) can be formulated as follows: find an adaptive
controller

u = α(x, xτ , x̂τ , θ̂),
˙̂
θ = β(x, x̂, x̂τ , θ̂)

such that system (4) is a global asymptotically observer of system (3) and the error dynam-
ics remain mean square asymptotically stable for any admissible uncertain parameters. To
this end, some assumptions should be imposed on system (1).

Assumption 2. The Hamilton function H(x, xτ , 0) satisfies:

(A1) H(x, xτ , 0) ∈ C2;
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(A2) H(x, 0) > α‖x‖2;

(A3) ∇TH(x, 0)∇H(x, 0) > β‖x‖2,

where α, β are all known positive scalars.

Remark 3. Assumption 2 not only guarantees the existence of ∇H(x, 0) and
Hess(H(x, 0)) but also guarantees that H(x, 0) and ∇H(x, 0) are bounded below in
terms of x. We shall note that the assumption is not very conservative to Hamilton func-
tions and the majority of Hamilton functions in Hamiltonian systems can easily satisfy
these conditions.

We conclude this section by recalling some auxiliary results to be used in this paper.

Lemma 1. (See [18, Young inequality].) If there exists a positive constant ε, two constants
a > 1, b > 1, which satisfy (a− 1)(b− 1) = 1, there holds

xTy 6
εa

a
‖x‖a +

1

bεb
‖y‖b ∀(x, y) ∈ Rn.

Lemma 2. For any given matrices A ∈ Rn×r and B ∈ Rn×r, it follows that

tr
(
ATB

)
6

1

2

[
tr
(
ATA

)
+ tr

(
BTB

)]
.

Proof. This proof can be achieved by using the properties of matrix’s trace.

Lemma 3. (See [14].) For system

dx(t) = f
(
x(t), x

(
t− τ(t)

))
dt+ g

(
x(t), x

(
t− τ(t)

))
dw(t) ∀t > 0,

assume that f(x, y) and g(x, y) are locally Lipschitz in (x, y). If there exists a function
V (x, t) ∈ C2,1(Rn × [−τ,∞);R+) such that, for some constant K > 0 and any t > 0,

LV 6 K
(
1 + V

(
x(t), t

)
+ V

(
x
(
t− τ(t)

)
, t− τ(t)

))
,

lim
|x|→∞

inf
t>0

V (x, t) =∞,

then, there exists a unique solution on [−h,∞) for any initial data x(t): t ∈ [−h, 0].

Lemma 4. (See [21].) Let V (x, t) ∈ C2,1(Rn × R+) and τ1, τ2 be bounded stopping
times such that 0 6 τ1 6 τ2 a.s. If V (x, t) and LV (x, t) are bounded on t ∈ [τ1, τ2] a.s.,
then

E
{
V
(
x(τ2), τ2

)
− V

(
x(τ1), τ1

)}
= E

{ τ2∫
τ1

LV (x, t) dt

}
.
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3 Main results

We investigate the observer-based robust adaptive control design for system (3) with
varying time-delay, thus the results developed following will be dependent of the size
of delay. The following result gives a robust adaptive observer and controller structure for
system (3).

Theorem 1. Consider system (3) and Assumptions 1 and 2 are satisfied. If there exist
positive define matrices Q1, Q2, Q3 and a nonzero function matrix K(x) such that

(1− h̄)Q1 >
(∥∥J(x, 0)−R(x, 0)

∥∥+m
)2
I, (5)

(1− h̄)Q2 >
∥∥J(x, 0)−R(x, 0)

∥∥2I, (6)

Q3 > S(x)

[
1

2
(λ+ 1)µI + 2Q1 + I

]T
ST(x), (7)

and

P (x) = −2KT(x)gT1 (x)− 2g1(x)K(x) +
1

2
(λ+ 1)µI +Q2 + I + g1(x)Q3g

T
1 (x)

< 0 (8)

hold, then system (4) under the feedback adaptive control law

u = −1

2
ψT(x, xτ )θ̂ −K(x̂)∇H(x̂, 0)

− 1

2
S(x)

[
1

2
(λ+ 1)µI + 2Q1 + I

]
∇H(x, 0)

+
1

2
S(x)

[
1

2
(λ+ 1)µI + 2Q1 + I

]T
ST(x)gT1 (x̂)∇H(x̂, 0),

˙̂
θ = Γψ(x, xτ )gT1 (x)∇H(x, 0),

(9)

can be taken as a global asymptotically observer of system (3) under the feedback control
law (9), where S(x) = [gT1 (x)g1(x)]−1gT1 (x), λ = supt>0 ‖Hess(H(x, 0))‖2, µ is
a scalar, which satisfies µ > (1/β) tr[gT2 (x)g2(x)]/‖x‖2.

Proof. For any continuous function f(x) = g1ū, there has[
gT1 g1

]−1
gT1 g1ū = ū =

[
gT1 g1

]−1
gT1 f(x),

therefore,

g1(x)u = −1

2
g1(x)ψT(x, xτ )θ̂ − g1(x)K(x̂)∇H(x̂, 0)

− 1

2

[
1

2
(λ+ 1)µI + 2Q1 + I

]
∇H(x, 0)

+
1

2

[
1

2
(λ+ 1)µI + 2Q1 + I

]T
ST(x)gT1 (x̂)∇H(x̂, 0),
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under which, system (3) and (4) can be rewritten as an augmented system as follows:

dx(t) =
[
J(x, p)−R(x, p)

]
∇H(x, xτ , 0) dt

+
1

2
g1(x)ψT(x, xτ )(θ − θ̂) dt− g1(x)K(x̂)∇H(x̂, 0) dt

+
1

2

[
1

2
(λ+ 1)µI + 2Q1 + I

]T
ST(x)gT1 (x̂)∇H(x̂, 0) dt

− 1

2

[
1

2
(λ+ 1)µI + 2Q1 + I

]
∇H(x, 0) dt+ g2(x) dw(t),

dx̂(t) =
[
J(x̂, 0)−R(x̂, 0)

]
∇H(x̂, x̂τ , 0) dt− g1(x̂)K(x̂)∇H(x̂, 0) dt

− 1

2
g1(x̂)S(x)

[
1

2
(λ+ 1)µI + 2Q1 + I

]
∇H(x, 0) dt

+
1

2
g1(x̂)S(x)

[
1

2
(λ+ 1)µI + 2Q1 + I

]T
ST(x)gT1 (x̂)∇H(x̂, 0) dt

+KT(x̂)gT1 (x)∇H(x, 0) dt−KT(x̂)gT1 (x̂)∇H(x̂, 0) dt+ g2(x̂) dw(t),

x(t) = φ(t), x̂(t) = φ̂(t), t ∈ [−h, 0].

(10)

We choose a candidate Lyapunov functional as follows:

V (x, x̂, θ̃) = 2H(x, 0) + 2H(x̂, 0) +
1

2
θ̃TΓ−1θ̃

+

t∫
t−τ(t)

∇TH
(
x, x(ξ1), 0

)
Q1∇H

(
x, x(ξ1), 0

)
dξ1

+

t∫
t−τ(t)

∇TH
(
x̂, x̂(ξ2), 0

)
Q2∇H

(
x̂, x̂(ξ2), 0

)
dξ2,

where θ̃ = θ − θ̂. According to Itô differential formula, one has

dV (x, x̂, θ̃) = LV (x, x̂, θ̃) dt+∇V (x, x̂, θ̃)
[
g2(x) + g2(x̂)

]
dw(t),

where

LV (x, x̂, θ̃)

= 2∇TH(x, 0)
[
J(x, p)−R(x, p)

]
∇H(x, xτ , 0)

+ tr
[
gT2 (x)Hess

(
H(x, 0)

)
g2(x)

]
− 2∇TH(x, 0)g1(x)K(x̂)∇H(x̂, 0)

−∇TH(x, 0)

[
1

2
(λ+ 1)µI + 2Q1 + I

]
∇H(x, 0)
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+∇TH(x, 0)

[
1

2
(λ+ 1)µI + 2Q1 + I

]T
ST(x)gT1 (x̂)∇H(x̂, 0)

+∇TH(x, 0)Q1∇H(x, 0)−
(
1− τ̇(t)

)
∇TH(x, xτ , 0)Q1∇H(x, xτ , 0)

+ 2∇TH(x̂, 0)
[
J(x̂, 0)−R(x̂, 0)

]
∇H(x̂, x̂τ , 0)

+ tr
[
gT2 (x̂)Hess

(
H(x̂, 0)

)
g2(x̂)

]
− 2∇TH(x̂, 0)g1(x̂)K(x̂)∇H(x̂, 0)

−∇TH(x̂, 0)g1(x̂)S(x)

[
1

2
(λ+ 1)µI + 2Q1 + I

]
∇H(x, 0)

+∇TH(x̂, 0)g1(x̂)S(x)

[
1

2
(λ+ 1)µI + 2Q1 + I

]T
ST(x)gT1 (x̂)∇H(x̂, 0)

+ 2∇TH(x̂, 0)KT(x̂)gT1 (x)∇H(x, 0)− 2∇TH(x̂, 0)KT(x̂)gT1 (x̂)∇H(x̂, 0)

+∇TH(x̂, 0)Q2∇H(x̂, 0)−
(
1− τ̇(t)

)
∇TH(x̂, x̂τ , 0)Q2∇H(x̂, x̂τ , 0). (11)

According to Lemma 2, one has

tr
[
gT2 (x)Hess

(
H(x, 0)

)
g2(x)

]
6

1

2
tr
[
gT2 (x)Hess

(
H(x, 0)

)
HessT

(
H(x, 0)

)
g2(x)

]
+

1

2
tr
[
gT2 (x)g2(x)

]
6 ∇TH(x, 0)

[
1

2
(λ+ 1)µI

]
∇H(x, 0) (12)

and

tr
[
gT2 (x̂)Hess

(
H(x̂, 0)

)
g2(x̂)

]
6

1

2
tr
[
gT2 (x̂)Hess

(
H(x̂, 0)

)
HessT

(
H(x̂, 0)

)
g2(x̂)

]
+

1

2
tr
[
gT2 (x̂)g2(x̂)

]
6 ∇TH(x̂, 0)

[
1

2
(λ+ 1)µI

]
∇H(x̂, 0). (13)

Substituting (12) and (13) into (11), we get

LV (x, x̂, θ̃)

= 2∇TH(x, 0)
[
J(x, p)−R(x, p)

]
∇H(x, xτ , 0)

−∇TH(x, 0)[Q1 + I]∇H(x, 0)− (1− h̄)∇TH(x, xτ , 0)Q1∇H(x, xτ , 0)

+ 2∇TH(x̂, 0)
[
J(x̂, 0)−R(x̂, 0)

]
∇H(x̂, x̂τ , 0)

+∇TH(x̂, 0)

[
−2g1(x̂)K(x̂)− 2KT(x̂)gT1 (x̂) +

1

2
(λ+ 1)µI +Q2

]
∇H(x̂, 0)

+∇TH(x̂, 0)g1(x̂)S(x)

[
1

2
(λ+ 1)µI + 2Q1 + I

]T
ST(x)gT1 (x̂)∇H(x̂, 0)

− (1− h̄)∇TH(x̂, x̂τ , 0)Q2∇H(x̂, x̂τ , 0).
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In view of condition (7), it follows that

LV (x, x̂, θ̃)

6 2∇TH(x, 0)
[
J(x, p)−R(x, p)

]
∇H(x, xτ , 0)

−∇TH(x, 0)[Q1 + I]∇H(x, 0)− (1− h̄)∇TH(x, xτ , 0)Q1∇H(x, xτ , 0)

+ 2∇TH(x̂, 0)
[
J(x̂, 0)−R(x̂, 0)

]
∇H(x̂, x̂τ , 0)

+∇TH(x̂, 0)

[
−2g1(x̂)K(x̂)− 2KT(x̂)gT1 (x̂) +

1

2
(λ+ 1)µI

+Q2 + g1(x̂)Q3g
T
1 (x̂)

]
∇H(x̂, 0)

− (1− h̄)∇TH(x̂, x̂τ , 0)Q2∇H(x̂, x̂τ , 0). (14)

Noticing Lemma 1 and setting ε = 1, a = b = 2, it yields

2∇TH(x, 0)
[
J(x, p)−R(x, p)

]
∇H(x, xτ , 0)

6
∥∥∇TH(x, 0)

∥∥2 +
∥∥[J(x, p)−R(x, p)

]
∇H(x, xτ , 0)

∥∥2.
Using the properties of the norms that

‖Ez‖ 6 ‖E‖‖z‖ ∀E ∈ Rn×n, ∀z ∈ Rn

and
‖E + F‖ 6 ‖E‖+ ‖F‖ ∀E ∈ Rn×n, ∀F ∈ Rn×n,

we have

2∇TH(x, 0)
[
J(x, p)−R(x, p)

]
∇H(x, xτ , 0)

6
∥∥∇TH(x, 0)

∥∥2 +
∥∥J(x, p)−R(x, p)

∥∥2∥∥∇H(x, xτ , 0)
∥∥2

and ∥∥J(x, p)−R(x, p)
∥∥ 6

∥∥J(x, 0)−R(x, 0)
∥∥+

∥∥∆J(x, p)−∆R(x, p)
∥∥.

Introducing ‖∆J(x, p)−∆R(x, p)‖ 6 m, it follows that∥∥J(x, p)−R(x, p)
∥∥2

6
[∥∥J(x, 0)−R(x, 0)

∥∥+m
]2

= ‖J(x, 0)−R(x, 0)
∥∥2 + 2m

∥∥J(x, 0)−R(x, 0)
∥∥+m2.

As a consequence, one has

2∇TH(x, 0)
[
J(x, p)−R(x, p)

]
∇H(x, xτ , 0)

6 ∇TH(x, 0)∇H(x, 0) +
[∥∥J(x, 0)−R(x, 0)

∥∥2 +m2

+ 2m
∥∥J(x, 0)−R(x, 0)

∥∥]∇TH(x, xτ , 0)∇H(x, xτ , 0). (15)
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Similarly, the following inequality holds:

2∇TH(x̂, 0)
[
J(x̂, 0)−R(x̂, 0)

]
∇H(x̂, x̂τ , 0)

6 ∇TH(x̂, 0)∇H(x̂, 0) +
∥∥J(x̂, 0)−R(x̂, 0)

∥∥2∇TH(x̂, x̂τ , 0)∇H(x̂, x̂τ , 0). (16)

Combining inequalities (14), (15) and (16), it yields

LV (x, x̂, θ̃)

6 −∇TH(x, 0)Q1∇H(x, 0)

+∇TH(x, xτ , 0)
[(∥∥J(x, 0)−R(x, 0)

∥∥+m
)2
I − (1− h̄)Q1

]
∇H(x, xτ , 0)

+∇TH(x̂, 0)
[
−2g1(x̂)K(x̂)− 2KT(x̂)gT1 (x̂)

+
1

2
(λ+ 1)µI +Q2 + I + g1(x̂)Q3g

T
1 (x̂)

]
∇H(x̂, 0)

+∇TH(x̂, x̂τ , 0)
[∥∥J(x̂, 0)−R(x̂, 0)

∥∥2I − (1− h̄)Q2

]
∇H(x̂, x̂τ , 0). (17)

Substituting (5), (6) and (8) into (17), leads to

LV (x, x̂, θ̃) 6 −∇TH(x, 0)Q1∇H(x, 0) +∇TH(x̂, 0)P (x̂)∇H(x̂, 0) 6 0.

Set c1 = λmin(Q1) > 0, c2 = inft>0{λmin(−P (x))} > 0, c = min{c1, c2}, we further
obtain

LV (x, x̂, θ̃) 6 −c
[
∇TH(x, 0)∇H(x, 0) +∇TH(x̂, 0)∇H(x̂, 0)

]
.

In addition, based on (A3) in Assumption 2, there has

LV (x, x̂, θ̃) 6 −cβ
(
‖x‖2 + ‖x̂‖2

)
.

In view of the properties of norm, we further get

LV (x, x̂, θ̃) 6 −cβ
2

(
‖x‖+ ‖x̂‖

)2
6 −cβ

2
‖x− x̂‖2,

or more compactly

E
{
LV (x, x̂, θ̃)

}
6 −cβ

2
E
{
‖x− x̂‖2

}
.

From Lemma 4, it is true that, for all t > t0, t0 ∈ [−h, 0],

E
{
V (t)

}
−E

{
V (t0)

}
=

t∫
t0

E
{
LV (s)

}
ds 6

t∫
t0

E

{
−cβ

2

∥∥x(s)− x̂(s)
∥∥2}ds.

Hence, one has
d

dt
E
{
V (x, x̂, θ̃)

}
6 −cβ

2
E
{∥∥x(t)− x̂(t)

∥∥2}.
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From Assumption 2, we can get that

V (x, x̂, θ̃) > α‖x− x̂‖2.

Set k = −cβ/(2α), then it follows that

d

dt
E
{
‖x− x̂‖2

}
6 kE

{
‖x− x̂‖2

}
. (18)

Multiplying e−kt to the two sides of the inequality (18), then yields

e−kt
d

dt
E
{
‖x− x̂‖2

}
− e−ktkE

{
‖x− x̂‖2

}
6 0,

which implies that
d

dt

(
e−ktE

{
‖x− x̂‖2

})
6 0. (19)

Integrating the inequality (19) from t0 to t, we have

e−ktE
{
‖x− x̂‖2

}
− e−kt0E

{∥∥x(t0)− x̂(t0)
∥∥2} 6 0,

i.e.,
E
{
‖x− x̂‖2} 6 ek(t−t0)E

{∥∥x(t0)− x̂(t0)
∥∥2} ∀t > t0.

Due to k < 0, there has
lim
t→∞

E
{
‖x− x̂‖2

}
= 0.

According to Definition 1, we can conclude that the closed-loop system (4) is global
asymptotically observer of system (3) under the control law (9). This completes the
proof.

Remark 4. Owing to the fact of H(x, xτ , 0) ∈ C2 and Lemma 3, the solution of the
closed-loop system (10) is existent and unique on [0,∞) for any initial data in some
neighborhood of equilibrium.

System (4) is an adaptive observer of system (3) while the structure of system (3) can
not be duplicated. Furthermore, if the structure of system (3) could be duplicated, we can
design an adaptive observer in the form of

dx̂(t) =
[
J(x̂, p)−R(x̂, p)

]
∇H(x̂, x̂τ , 0) dt+

1

2
g1(x̂)ψT(x, xτ )θ̂ dt

+ g1(x̂)u
(
t, t− τ(t)

)
dt+KT(x̂)

[
y − gT1 (x̂)∇H(x̂, 0)

]
dt

+ g2(x̂) dw(t),

˙̂
θ = Γψ(x, xτ )gT1 (x)∇H(x, 0),

x̂(t) = φ̂(t), t ∈ [−h, 0].

(20)

Thus, we have the following corollary.
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Corollary 1. Consider system (3) and Assumptions 1 and 2 are satisfied. If there exist
positive define matrices Q1, Q2, Q3 and a nonzero function matrix K(x) such that

Q1 = Q2, (21)

and the conditions (5), (7) and (8) hold, then system (20) under the feedback adaptive
control law (9) can be acted as a global asymptotically observer of system (3) under the
feedback adaptive control law (9), where S(x) = [gT1 (x)g1(x)]−1gT1 (x).

Remark 5. If the delay τ(t) in system (1) is a constant, i.e., h̄ = 0, conditions (5)
and (6) will be independent of the time-delay, namely, they become delay-independent
conditions. Therefore, Theorem 1 and Corollary 1 still hold when the time delay under
consideration is a constant.

Remark 6. For the state matrices of system (1) contain delay, Theorem 1 still holds
provided the state matrices of system (4) be replaced by J(x̂, x̂τ , 0) and R(x̂, x̂τ , 0).
Accordingly, conditions (5), (6) become

(1− h̄)Q1 >
(∥∥J(x, xτ , 0)−R(x, xτ , 0)

∥∥+m
)2
I,

(1− h̄)Q2 >
∥∥J(x, xτ , 0)−R(x, xτ , 0)

∥∥2I.
This result is established on the premise that Assumption 1 holds with J(xτ , p), R(xτ , p)
instead of J(x, p), R(x, p) in (2). An example is given to verify this statement.

Example 1. Consider a time delay Hamiltonian systems (1) with

H(x, xτ , p) =
1

2

[
x21
(
t− τ(t)

)
+ x22 + sin2 x2 + (1 + p)x23

(
t− τ(t)

)]
,

J(xτ , p) =

 0 0 p+ x3(t− τ(t))
0 0 0

−p− x3(t− τ(t)) 0 0

 ,

R(xτ , p) =

x21(t− τ(t)) 0 0
0 1 0
0 0 p2

 , g1(x) =

1 0 0
0 x23 + 1 0
0 0 1

 ,

we may testify Assumption 1 by finding out the following ψ(x, xτ ) and θ:

ψ(x, xτ ) =

2x3(t− τ(t)) 0 0
2x23(t− τ(t)) 0 0

0 0 2x3(t− τ(t))

 , θ =

 p2

p
−p3

 .

4 Illustrative examples

In this section, we give an example to show how to apply the results proposed in this
paper to design the robust adaptive observer for some classes of nonlinear systems with
stochasticity and varying time-delay based on Hamiltonian function method.
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Let us consider the following stochastic time-delay nonlinear systems with uncertain-
ties

dx1 =
[
−x21(t)x1

(
t− τ(t)

)
+ p(1 + p)x3

(
t− τ(t)

)
+ (1 + p)x3(t)x3

(
t− τ(t)

)
+ u1] dt,

dx2 =

[
−x2(t)− 1

2
sin 2x2(t) + p(1 + p)x3

(
t− τ(t)

)
+
(
x23(t) + 1

)
u2

]
dt+ x2 dw(t),

dx3 =

[
−
(
x3(t) + p

)
x1
(
t− τ(t)

)
− px2(t)− p

2
sin 2x2(t)

− p2(1 + p)x3
(
t− τ(t)

)
+ u3

]
dt,

(22)

where p is uncertain parameter, and |p| < 1; τ(t) = 0.5 sin2(t)is the time varying delay.
Since τ̇(t) = 0.5 sin(2t), we may take h̄ = 0.5.

Let x = [x1, x2, x3]T, u = [u1, u2, u3]T, system (22) can be realized into the
following Hamiltonian systems form:

dx(t) =
[
J(x, p)−R(x, p)

]
∇H(x, xτ , p) dt+ g1(x)u

(
t, t− τ(t)

)
dt

+ g2(x) dw(t)

with the initial condition

x(t0) = φ(t0), t0 ∈ [−0.5, 0],

where

H(x, xτ , p) = 0.5
[
x21
(
t− τ(t)

)
+ x22 + sin2 x2 + (1 + p)x23

(
t− τ(t)

)]
,

J(x, p) =

 0 0 p+ x3(t)
0 0 p

−p− x3(t) −p 0

 , g1(x) =

1 0 0
0 x23(t) + 1 0
0 0 1

 ,

R(x, p) =

x21(t) 0 0
0 1 0
0 0 p2

 , g2(x) =

 0
x2(t)

0

 .

It is easy to verify that the Hamilton function H(x, 0), its gradient∇H(x, 0), as well
as Hess(H(x, 0)) satisfy Assumptions 1 and 2. Meanwhile, β can be taken as β = 1.

To illustrate the result, we carry simulations with the the initial condition φ(x0) =

[−0.8, −0.5, 0.8]T, φ̂(x0) = [−0.5, −0.8, 0.5]T and θ0 = [0.36, 0.6, 0.216]T. Since
‖∆J(x, p)−∆R(x, p)‖ = maxt>0{1, x3(t)}, we may take m =

√
2. Besides, since µ >

tr[gT2 (x)g2(x)]/β‖x‖2, we can choose µ = 1. Furthermore, from ‖Hess(H(x, 0))‖2 =
maxt>0{1, (1 + cos(2x2(t)))2}, we get λ = 4.
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First, assuming that the states of system (22) are not fully measured and the structure
can not be duplicated, we will design an observer-based controller by using Theorem 1.
So we can work out the inequalities (5), (6), (7) and (8) to find the following matrices:

Q1 =

10 0 0
0 10 0
0 0 10

 , Q2 =

2 0 0
0 2 0
0 0 2

 ,

Q3 =

25 0 0
0 25 0
0 0 25

 , K(x) =

8 0 0
0 8(x23(t) + 1) 0
0 0 8

 .

Thus according to Theorem 1, the observer

dx̂1 =
[
−x̂21(t)x̂1

(
t− τ(t)

)
+ x3

(
t− τ(t)

)
θ̂1 + x3(t)x3

(
t− τ(t)

)
θ̂2

+ x̂3(t)x̂3
(
t− τ(t)

)
+ 8x1(t)− 8x̂1(t) + u1

]
dt,

dx̂2 =

[
−x̂2(t)− 1

2
sin 2x̂2(t) +

(x̂23(t) + 1)

x23(t) + 1
x3
(
t− τ(t)

)
θ̂1

− 8
(
x23(t) + 1

)(
x̂23(t) + 1

)(
x̂2(t) +

1

2
sin 2x̂2(t)

)
+ 8
(
x23(t) + 1

)2(
x2(t) +

1

2
sin 2x2(t)

)
+
(
x̂23(t) + 1

)
u2

]
dt+ x̂2(t) dw(t),

dx̂3 =
[
−x̂3(t)x̂1

(
t− τ(t)

)
− x3

(
t− τ(t)

)
θ̂3 + 8x3(t)− 8x̂3(t) + u3

]
dt

(23)

is a globally asymptotically observer of system (22) under the feedback adaptive control
law

u =

−x3(t− τ(t))θ̂1 − x3(t)x3(t− τ(t))θ̂2 + 3.75x̂1(t)

−x3(t−τ(t))
x2
3(t)+1

θ̂1 − 8(x̂23(t) + 1)[x̂2(t) + 1
2 sin 2x̂2(t)]

x3(t− τ(t))θ̂3 − 11.75x3(t) + 3.75x̂3(t)


−

 11.75x1(t)

11.75 1
(x2

3(t)+1)
[x2(t) + 1

2 sin 2x2(t)]

0


+

 0

11.75
(x̂2

3(t)+1)

(x2
3(t)+1)2

[x̂2(t) + 1
2 sin 2x̂2(t)]

0

 ,

˙̂
θ =

2x3(t− τ(t))x1(t) + 2x3(t− τ(t))[x2(t) + 1
2 sin 2x2(t)]

2x3(t)x3(t− τ(t))x1(t)

−2x3(t)x3(t− τ(t))

 .
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Fig. 1. Responses of states x1, x̂1. Fig. 2. Responses of states x2, x̂2.

Fig. 3. Responses of states x3, x̂3. Fig. 4. Control input u.

Fig. 5. Estimation parameter θ̂.

Figures 1–5 are the responses of the states, the control input and the parameter esti-
mation θ̂ of the system with delay τ(t) = 0.5 sin2(t) respectively. It is obvious that the
stochastic varying time-delay nonlinear system (22) and (23) with uncertainties converges
to its equilibrium very quickly.

Next, assuming that the states of system (22) are not fully measured and the structure
can be duplicated, we will demonstrate the application of Corollary 1. So we may work
out inequalities (5), (7), (8) and (21) to find out the following matrices:

Q1 =

10 0 0
0 10 0
0 0 10

 , Q2 =

10 0 0
0 10 0
0 0 10

 ,
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Q3 =

25 0 0
0 25 0
0 0 25

 , K(x) =

10 0 0
0 10(x23(t) + 1) 0
0 0 10

 .

According to Corollary 1, system

dx̂1 =
[
−x̂21(t)x̂1

(
t− τ(t)

)
+ p(1 + p)x̂3

(
t− τ(t)

)
+ (1 + p)x̂3(t)x̂3

(
t− τ(t)

)
+ x3

(
t− τ(t)

)
θ̂1 + x3(t)x3

(
t− τ(t)

)
θ̂2 + 10x1(t)− 10x̂1(t) + u1

]
dt,

dx̂2 =

[
−x̂2(t)− 1

2
sin 2x̂2(t) + p(1 + p)x̂3

(
t− τ(t)

)
+
x̂23(t) + 1

x23(t) + 1
x3
(
t− τ(t)

)
θ̂1 +

(
x̂23(t) + 1

)
u2

− 10
(
x23(t) + 1

)(
x̂23(t) + 1

)(
x̂2(t) +

1

2
sin 2x̂2(t)

)
+ 10

(
x23(t) + 1

)2(
x2(t) +

1

2
sin 2x2(t)

)]
dt+ x̂2(t) dw(t),

dx̂3 =

[
−
(
x̂3(t) + p

)
x̂1
(
t− τ(t)

)
− px̂2(t)− p

2
sin 2x̂2(t)

− p2(1 + p)x̂3
(
t− τ(t)

)
+ x3

(
t− τ(t)

)
θ̂3

+ 10x3(t)− 10x̂3(t) + u3

]
dt

(24)

is a globally asymptotically observer of systems (22) under the feedback adaptive control
law

u =

−x3(t− τ(t))θ̂1 − x3(t)x3(t− τ(t))θ̂2 + 1.75x̂1(t)

−x3(t−τ(t))
x2
3(t)+1

θ̂1 − 10(x̂23(t) + 1)[x̂2(t) + 1
2 sin 2x̂2(t)]

x3(t− τ(t))θ̂3 − 11.75x3(t) + 1.75x̂3(t)


−

 11.75x1(t)

11.75 1
(x2

3(t)+1)
[x2(t) + 1

2 sin 2x2(t)]

0


+

 0

11.75
(x̂2

3(t)+1)

(x2
3(t)+1)2

[x̂2(t) + 1
2 sin 2x̂2(t)]

0

 ,

˙̂
θ =

2x3(t− τ(t))x1(t) + 2x3(t− τ(t))[x2(t) + 1
2 sin 2x2(t)]

2x3(t)x3(t− τ(t))x1(t)

−2x3(t)x3(t− τ(t))

 .

To illustrate conclusion, we take the same initial conditions as mentioned above.
Figures 6–10 are the responses of the states, the control input u and the parameter
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Fig. 6. Responses of states x1, x̂1. Fig. 7. Responses of states x2, x̂2.

Fig. 8. Responses of states x3, x̂3. Fig. 9. Control input u.

Fig. 10. Estimation parameter θ̂.

estimation θ̂ of the system with delay τ(t) = 0.5 sin2(t), respectively. It is obvious from
Figs. 6–10 that the stochastic varying time-delay nonlinear system (24) with uncertainties
converges to its equilibrium more quickly than system (23).

5 Conclusion

In this paper, the observer-based robust adaptive control problem of a class of stochastic
Hamiltonian systems with time-delay and parameter uncertainties has been investigated
by using Young inequality and some properties of norm and trace. The designed controller
ensures that the closed-loop error system is asymptotically stable in mean square. The
results are achieved through well-chosen Lyapunov functional depending on the special
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structural properties of the Hamiltonian systems. Simulations show that the results ac-
quired in this paper are practicable and validate in analyzing the observer-based robust
adaptive control of some classes of stochastic time-delay nonlinear systems.
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