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Abstract. In view of the numerous uncertainties of seismic disturbances and structural parameters,
the irregular building structure is uncertain. In this paper, a new robust optimal H∞ controller for
irregular buildings is designed to guarantee the robust stability and performance of the closed-loop
system in the presence of parameter uncertainties. Such a control method can provide a convenient
design procedure for active controllers to facilitate practical implementations of control systems
through the use of a quadratic performance index and an efficient solution procedure based on linear
matrix inequality (LMI). To verify the effectiveness of the control method, a MDOF (multiple-
degree-of-freedom) eccentric building structure with two active mass damper (AMD) systems on
the orthogonal direction of the top storey subjected to bi-directional ground motions is analyzed.
In the simulation, the active control forces of the AMD systems are designed by the robust optimal
H∞ control algorithm, and the structural system uncertainties are assumed in the system and
input matrices. The simulation results obtained from the proposed control method are compared
with those obtained from traditional H∞ control method, which shows preliminarily that the
performance of robust optimal H∞ controllers is remarkable and robust. Therefore, the robust
optimal H∞ control method is quite promising for practical implementations of active control
systems on seismically excited irregular buildings.
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1 Introduction

As tall building and long-span bridges become lighter and more flexible, they are more
susceptible to the effects of vibration. A critical aspect in the design of civil engineering
structures is the reduction of response quantities such as velocities, deflections and ac-
celerations induced by environmental dynamic loadings. Structural control methods are
the most recent strategies for this purpose, which can be classified as active, semi-active,
passive, and hybrid control methods [1, 2]. Although passive control is widely used in
practice, there have been intensive researches in the area of active control of structures
in the recent past because of achieving higher control of response [3]. Further, control
algorithms developed for active control have been directly useful for developing other
recent control strategies like semi-active control.

In research studies and practical applications, various active control algorithms have
been investigated in designing controllers, such as linear quadratic regulator (LQR) [4,
5], linear quadratic Gaussian (LQG) [6], sliding mode control (SMC) [7, 8], and H∞
control [4, 9]. Due to modeling errors, variation of materials properties, component non-
linearities, and changing load environments, the system description for these structural
systems inevitably contains uncertainties of different nature and level [10]. These un-
certainties can affect both the stability and performance of a control system. Robust
control is concerned with maintaining performance with uncertainty in the dynamical
system. Robust control means having a controller that maintains stability and performance
specifications in spite of uncertainties. To accommodate such possible degradation of
stability and performance, methods such as robustH∞ control are often used.H∞ control
strategy is particularly useful in designing the robust controller because these robustness
criteria in a way can be interpreted as the H∞ norm of a transfer function to be smaller
than a given value. The results from both numerical simulations and experimental tests
indicate that H∞ control is effective [9]. Calise et al. [11] and Wang et al. [12] proposed
two robust H∞ controllers and presented a numerically efficient methodology by solving
algebraic Riccati equations. But Raccati equation approach is difficult to find their feasible
solutions and minimization of H∞-norm bound. Gahinet and Apkarian [13] proposed
a new methodology based on the solution of linear matrix inequalities (LMI) which can be
directly derived from the bounded real lemma and termed as the LMI-based H∞ control.
The theorem of the LMI-based solution method is more straightforward and no restriction
is required. Besides, this solution procedure is quite efficient in terms of computation.
In [14–17], the LMI-based solution approach had been used to design robust H∞ control
for a given H∞-norm bound.

New types of devices have been invented in order to implement these active control
schemes in practical applications. Active mass damper (AMD) systems have been a pop-
ular area of research in recent decades and significant progress has been made in this area
over these years [18–21]. In previous studies, many researchers assumed that a controlled
structure is a planar structure built on a fixed base. However, it is generally recognized that
a real building is actually asymmetric to some degree even with a nominally symmetric
plan. The asymmetric characteristic of the building creates simultaneous lateral and tor-
sional vibration known as torsion coupling (TC) when under seismic disturbances [22,23].
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In this paper, a robust optimal H∞ control algorithm for two AMD systems on the
orthogonal direction of the top story is proposed for the vibration control of irregular
buildings subjected to bi-lateral ground acceleration. The new robust optimal H∞ control
takes the robustness criteria into account and uses the LMI-based solution procedure. In
addition, the comparisons with the numerical results using the traditional H∞ control are
also made for demonstration of its control performance.

2 Equations of motion of structural systems

An n degree-of-freedom TC shear building equipped with two AMD systems on the
orthogonal direction of the top storey and subjected to bi-lateral ground acceleration,
ẍg(t) and ÿg(t), is shown in Fig. 1. The position coordinates of the two AMD systems
along the x and y directions are lx1, lx2, ly1, ly2, respectively. In order to introduce a
certain degree of asymmetry into the model, two-way floor eccentricities between the
center of mass (denoted byM in Fig. 1) and the center of stiffness (denoted by S in Fig. 1)
along the x and y directions (ex and ey) are considered. The corresponding control forces
are represented as ua1 and ua2. Under the following two assumptions: (i) the mass of each
storey is idealized as a concentrated mass at the floor levels; and (ii) the center of mass
and stiffness of each storey is located in the same point; the matrix equation of motion
can be expressed as

Mv̈ + Cv̇ + Kv = −MEw(t) + Bsu(t),

in which v = {x, y, θ,∆xa,∆ya}T is an (3n + 2) vector; x, y, θ are the transla-
tions along the x- and y-directions and rotation along the z-axis, respectively; ∆xa,
∆ya are the translations along the x- and y- directions of the two AMD systems;
u = {ua1, ua2}T is a (2 × 1) dimensional vector consisting of two control forces;
M, C and K are (3n + 2) × (3n + 2) mass and stiffness matrices, respectively; Bs

is a (3n + 2) × 2 matrix denoting the location of the two AMD control systems; E is
a (3n + 2) × 2 dimensional matrix denoting the influence of the earthquake excitation;
w(t) = {ẍg(t), ÿg(t)}T.
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Fig. 1. A model of an eccentric building with AMD systems.
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The mass matrix M can be expressed as following:

M =

[
Ms 0
MT

c MAMD

]
, Ms =

Mxx 0 0
0 Myy 0
0 0 Mθθ

 ,

Mxx =


m1

m2

. . .
mn

 , Myy = Mxx,

Mθθ =


J1

J2
. . .

Jn

 , MAMD =

[
ma1

ma2

]
,

MT
c =

[
0 · · · m

a1
0 · · · 0 0 · · · ma1ly1 +ma2ly2

0 · · · 0 0 · · · ma2 0 · · · ma1lx1 +ma2lx2

]
,

where mi is the ith story mass; Ji = mr2 = floor mass polar moment of inertia about
z-axis; r = radius of gyration of the floor.

The stiffness matrix K can be expressed as following:

K =

[
Ks Kc

0 KAMD

]
, Ks =

Kxx 0 Kxθ

0 Kyy Kyθ

Kθx Kθy Kθθ

 ,

Kxx =


kx1x1

kx1x2
· · ·

kx2x1
kx2x2

kx2x3
· · ·

· · · · · ·
kxn−1xn−2 kxn−1xn−1 kxn−1xn

kxnxn−1 kxnxn + ka1

 ,

Kyy =


ky1y1 ky1y2 · · ·
ky2y1 ky2y2 ky2y3 · · ·

· · · · · ·
kyn−1yn−2 kyn−1yn−1 kyn−1yn

kynyn−1 kynyn + ka2

 ,

Kθθ =


kθ1θ1 kθ1θ2 · · ·
kθ2θ1 kθ2θ2 kθ2θ3 · · ·

· · · · · ·
kθn−1θn−2

kθn−1θn−1
kθn−1θn

kθnθn−1 kθnθn + ka1l
2
y1 + ka2l

2
x2

 ,
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Kxθ = KT
θx = Kxxey, Kyθ = KT

θy = Kyyex,

KT
c =

[
0 · · · −k

a1
0 · · · 0 0 · · · −ka1ly1

0 · · · 0 0 · · · −ma2 0 · · · −ka2lx2

]
;

where kxixi , kyiyi , kθiθi are story stiffness in x, y, and θ directions, respectively; ka1 and
ka2 are stiffness of the two AMD systems.

The structural damping matrix C is assumed to be proportional to the mass and
stiffness matrices as [24]

C = αM + βK,

α =
2ωiωj(ζiωj − ζjωi)

ω2
j − ω2

i

, β =
2(ζjωj − ζiωi)

ω2
j − ω2

i

,

in which α and β are the proportional coefficients; ωi and ωj are the structural modal
frequencies of modes i and j, respectively; and ζi and ζj are the structural damping ratios
for modes i and j.

The excitation influence matrix E is given by

E =

[
1 · · · 1 0 · · · 0 0 · · · 0 1 0
0 · · · 0 1 · · · 1 0 · · · 0 0 1

]
.

The control location matrix Bs is given by

Bs =

[
0 · · · −1 0 · · · 0 0 · · · ly1 1 0
0 · · · 0 0 · · · −1 0 · · · lx2 0 1

]
.

3 Robust optimalH∞ control via LMI

Active control systems utilize actuators to apply the external control forces to the struc-
ture. In this study, the desired control forces are determined and optimized through the
following methods Robust optimal H∞ control via LMI.

Now consider the following uncertain structural system:

(M + ∆M)v̈ + (C + ∆C)v̇ + (K + ∆K)v = (M + ∆M)Ew(t) + Bsu(t). (1)

where ∆M, ∆K, ∆C, and ∆Bs are corresponding perturbations. The uncertainty ∆M
is assumed to satisfy the following bound:∥∥∆MM−1∥∥ 6 ‖δ‖ < 1. (2)

Notice that the condition in Eq. (2) ensures that M+∆M is non-singular. For simplicity,
we consider (I + δ)(I + δ′) = I, and then Eq. (1) can be rearranged in matrix form as

v̈ + (I + δ′)M−1(C + ∆C)v̇ + (I + δ′)M−1(K + ∆K)v

= −Ew(t) + (I + δ′)M−1(Bs + ∆Bs)u(t). (3)
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In control theory, Eq. (3) can be conveniently rewritten in state-space form as

Ż(t) = (A + ∆A)Z(t) + (B + ∆B)u(t) + Hw(t), (4)

where

Z(t) =
[
v v̇(t)

]
, H =

[
0 −E

]
,

A =

[
0 I

−M−1K −M−1C

]
, ∆A =

[
0 0

−M−1δK −M−1δC

]
,

B =
[
0 M−1Bs

]
, ∆B =

[
0 M−1δBs

]
,

δK = (I+δ′)∆K+δ′K, δC = (I+δ′)∆C+δ′C, δBs = (I+δ′)∆Bs+δ
′Bs.

The “ontrolled output” defined in the following:

Ys = ΓZ(t) = Cdv + Cvv̇

is used to identify response quantities that should be reduced for example, displacement
and floor accelerations.

According to the condition in Eq. (2) and Eq. (4), we have

δK = LkFkEk, δC = LcFcEc, (5)

where ‖Fk‖ 6 1, ‖Fc‖ 6 1, Lk, Ek, Lc, Ec are known constant matrices, which
characterize how the uncertain parameters in Fk, Fc enter the nominal damping, stiffness
and control location matrices C, K and B, respectively. The uncertainties in structural
system (1) satisfying (2), (5) are said to be admissible. Considering the condition in
Eq. (5), we can rewritten ∆A and ∆B as

∆A = DF(t)E1, ∆B = DF(t)E2, (6)

where

D =

[
0 0

−M−1LK −M−1LC

]
, E1 =

[
Ek 0
0 Ec

]
,

F =

[
Fk 0
0 Fk

]
, E2 =

[
0

(δcE
−1
c )−1δBs

]
,

For the linear time-invariant system in Eq. (4), the performance index J is given by

J =

∞∫
0

(
ZT(t)QZ(t) + uT(t)Ru(t)

)
dt, (7)

where Q > 0 and R > 0 are weighting matrices.
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Definition 1. Considering system (4) with (6), (7), and u(t) = −KuZ(t), the following
conditions are satisfied:

(i) The closed-loop system (4) is asymptotically stable.

(ii) A minimization of the performance index J in Eq. (7) results in the optimal con-
troller for the closed-loop system (4).

(iii) With zero initial condition (i.e. Z(0) = 0), the signals w(t) and Ys are bounded by

∞∫
0

YT
s Ys dt 6 γ2

∞∫
0

wTw dt, i.e. ‖Ys‖22 6 γ2‖w‖22

for all w ∈ L2[0,∞), w 6= 0, for a constant γ > 0. In this condition, the system (4)
with (6), (7) is said to be stable with disturbance attenuation γ, and control law
u(t) = −KuZ(t) is said to be a robust optimal H∞ control for system (4) with (6),
(7). The parameter γ is said to be the H∞-norm bound for the robust optimal H∞
control.

Before we obtain the main result, the following lemmas from [25, 26] are used.

Lemma 1. (See [25].) Consider the uncertain structural system in Eq. (4) without exci-
tation and the performance index J in Eq. (7). If there exists a positive definite matrix P
such that

(A−BKu + ∆A1)TP + P(A−BKu + ∆A1) + Q + BKT
uRBKu (8)

is satisfied, then, a optimal full-state controller u that stabilizes the linear system, Eq. (4),
is given by u(t) = −KuZ(t). In Eq. (8), ∆A1 = DF(E1 −E2Ku).

Lemma 2. (See [26].) Let XC , YC , ZC be real matrices of appropriate dimensions.
Then, for any scalar η > 0,

XT
CYC + YT

CXC 6 ηXT
CXC + η−1YT

CYC .

Lemma 3. (See Schur complement of [26].) For a given matrix S =
[
S11 S12

∗ S22

]
with

S11 = ST
11, S22 = ST

22, then the following conditions are equivalent:
(i) S < 0;

(ii) S22 < 0, S11 − S12S
−1
22 ST

12 < 0.

Now the robust optimal H∞ control will be designed from the following result.

Theorem 1. Consider the linear time-invariant system in Eq. (4) and the performance
index J in Eq. (7). For a given scalar γ > 0, if there exists a positive definite matrix
P = PT > 0 such that

(A + ∆A−BKu −∆BKu)TP + P(A + ∆A−BKu −∆BKu)

+ Q + KT
uRKu + γ−2PHKTP + ΓTΓ < 0 (9)
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is satisfied. Then, the closed-loop system (4) is robust and optimal, and a robust optimal
H∞ full-state controller u that stabilizes the linear system, Eq. (4), is given by u(t) =
−KuZ(t).

Proof. Define the Lyapunov function as

V
(
Z(t)

)
= Z(t)TPZ(t), (10)

where P = PT > 0. The time derivative of the Lyapunov function in (10), along the
trajectories of (4) without excitation and u(t) = −KuZ(t) is given by

V̇
(
Z(t)

)
= ˙Z(t)TPZ(t) + Z(t)P ˙Z(t)T

= Z(t)T
[
(A + ∆A−BKu −∆BKu)TP

+ P(A + ∆A−BKu −∆BKu)
]
Z(t). (11)

From (11) with (9) and w(t) = 0, we have

V̇
(
Z(t)

)
< −Z(t)T

[
Q + KT

uRKu + γ−2PHHTP + ΓTΓ
]
Z(t).

Hence the closed system (4) with u(t) = −KuZ(t) and w(t) = 0 is asymptotically
stable with performance index γ, γ > 0.

According to Lemma 1, a minimization of the performance index J in Eq. (7) results
in the optimal controller for the closed-loop system (4).

According to the bounded real lemma [27], for the linear time-invariant system, such
as equation (4), the controller is designed such that the ratio of the L2 norm of the control
output (i.e. Ys) to the L2 norm of the disturbance (i.e.w), with zero initial conditions, is
smaller than γ. That is

‖Ys‖2 < γ‖w‖, (12)

in which γ is the disturbance attenuation which is a measure of performance, and the
L2 norm is defined by

‖Ys‖22 =

∞∫
0

YT
s Ys dt, ‖w‖22 =

∞∫
0

wTw dt. (13)

From (12) and (13), we have
∞∫
0

(
YT
s Ys − γ2wTw

)
dt < 0. (14)

According to Eq. (10) and Eq. (14), we have
∞∫
0

(
YT
s Ys − γ2wTw + V̇ Z(t)

)
dt

=

∞∫
0

(
YT
s Ys − γ2wTw

)
dt+ V Z(∞)− V Z(0). (15)
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From (14) with (15), V Z(∞) = 0 and Z(0) = 0, we have

YT
s Ys − γ2wTw + V̇ Z(t) < 0. (16)

According to Eq. (10), Eq. (16) can be written as

YT
s Ys − γ2wTw + V̇ Z(t)

= Z(t)T
[
(A + ∆A−BKu −∆BKu)TP

+ P(A + ∆A−BKu −∆BKu)
]
Z(t)

+ wTHTPZ(t) + Z(t)TPHw + Z(t)TΓTΓZ(t)− γ2wTw < 0. (17)

By Lemma 2, the following inequality also holds:

Z(t)TPHw + wTHTPZ(t) 6 γ−2Z(t)TPHHTPZ(t) + γ2wTw. (18)

From (17) with (18), we have

Z(t)T
[
(A + ∆A−BKu −∆BKu)TP

+ P(A + ∆A−BKu −∆BKu)Z(t)

+ γ−2Z(t)TPHHTPZ(t) + Z(t)TΓTΓZ(t) < 0. (19)

From Eq. (9), we can get Eq. (19). Hence the closed system (4) with the robust optimal
H∞ full-state controller u(t) = −KuZ(t) is asymptotically stable with performance
index γ, γ > 0.

Theorem 2. Consider the uncertain structural system in Eq. (4) and the performance
index J in Eq. (7). For a given scalar γ > 0, ε > 0, if there exists a positive definite
matrix N and a matrix Y such that

Π1 N YT H NΓT Π2

∗ −Q−1 0 0 0 0
∗ ∗ −R−1 0 0 0
∗ ∗ ∗ −γ2I 0 0
∗ ∗ ∗ ∗ −I 0
∗ ∗ ∗ ∗ ∗ −ε−1I

 < 0 (20)

is satisfied. Then, the closed-loop system (4) is robust and optimal, and a full-state
controller u that stabilizes the linear system, Eq. (4), is given by

u(t) = −KuZ(t) = −YN−1Z(t),

where Π1 = NAT −YTBT + AN − BY − ε−1DDT, Π2 = (E1N − E2Y)T, the
notation ∗ is used to represent a matrix which is inferred from symmetry.
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Proof. According to Lemma 2, there exists

(∆A−∆BKu)TP + P(∆A−∆BKu)

= (E1 −E2Ku)TFTDTP + PDF(E1 −E2Ku)

6 ε(E1 −E2Ku)TFTF(E1 −E2Ku) + ε−1PDDTP

6 ε(E1 −E2Ku)T(E1 −E2Ku) + ε−1PDDTP. (21)

From (8) with (21), we have

(A−BKu)TP + P(A−BKu) + Q + KT
uRKu + γ−2PHHTP

+ ΓTΓ + ε(E1 −E2Ku)T(E1 −E2Ku) + ε−1PDDTP < 0. (22)

Pre- and post-multiplying the matrix in (22) by P−1 and P−T with P−T = P−1, respec-
tively, we can obtain the following inequality:

P−1AT −P−1KT
uBT + AP−1 −BKuP

−1 + P−1QP−1

+ P−1KT
uRKuP

−1 + γ−2HHT + P−1ΓTΓP−1

+ εP−1(E1 −E2Ku)T(E1 −E2Ku)P−1 + ε−1DDT < 0.

Define the new variable P−1 = N, KuP
−1 = Y, we can obtain Ku = YN−1 and the

following inequality:

NAT −YTBT + AN−BY + NQN + YTRY + γ−2HHT

+ NΓTΓN + ε(E1N−E2Y)T(E1N−E2Y)− ε−1DDT < 0. (23)

From (23) with Lemma 3, we have LMI (20). This proof can be completed.

4 Numerical results

In this section, to verify the effectiveness of the control method, a three storey eccentric
building structure with two active mass damper (AMD) systems on the orthogonal direc-
tion of the top storey subjected to bi-directional ground motions is analyzed. The mass and
stiffness coefficient of each storey unit are mi = 500 metric ton, kxi = 490000 kN/m,
kyi = 98000 kN/m, and kθi = 25000000000 kN/m, respectively. Floor mass polar
moment of inertia is Ji = 3 · 105 kg m2. Two-way floor eccentricities between the center
of mass and the center of stiffness along the x and y directions are ex = 3 m and ey = 2 m.
The damper ratio of the structure is 0.01. The mass and stiffness coefficient of the two
AMD systems are ma = 50 metric ton and ka = 1970 kN/m, respectively. As a dynamic
effect, the east-west acceleration component and the north-south acceleration component
of the 1940 EI Centro earthquake records scaled to a maximum ground acceleration of
0.18 g are used as the input excitation, and they are shown in Fig. 2.
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Fig. 2. The acceleration component of 1940 EI Centro earthquake.

Table 1. Maximum response quantities.

Cases Storey Displacement Acceleration Control force
x y θ ẍ ÿ θ̈ AMD1 AMD2

cm cm 10−2 rad cm s−2 cm s−2 10−2 rad s−2 kN kN
Uncontrolled 1 2.46 6.07 0.13 546 417 23.54

2 4.30 10.31 0.24 796 519 36.28
3 5.25 12.31 0.30 889 677 41.34

H(0%) 1 1.62 4.41 0.09 417 333 15.86 311 256
2 2.79 7.56 0.16 542 399 23.31
3 3.41 9.06 0.20 657 494 27.87

H(−20%) 1 2.28 3.51 0.13 455 251 40.1 344 197
2 3.95 6.49 0.22 643 322 59.47
3 4.85 8.27 0.27 722 393 34.92

H(−50%) 1 2.59 5.97 0.12 397 295 18.05 50425 33710
2 5.08 10.89 0.2 463 227 22.98
3 7.26 16.26 0.25 630 382 28.39

According to [27], we design an H∞ state feedback controller for the nominal system
(i.e. the system has no parametric uncertainties). Using γ = 31.62 and Γ = I22, we can
get the following control gain:

Ku = 108
[
0.85 −3.19 36.98 2.24 9.55 −0.92 125.60 630 251.55 −1.07 0.34
9.71 34.14 11.05 2.83 5.48 6.58 179.01 915.25 398.98 0.31 −0.83

]
×

[
−0.1 −0.24 −0.16 0.09 0.19 0.04 −0.12 0.10 1.36 0.34 0.28
−0.00 −0.02 −0.05 0.17 0.32 −0.22 −0.2 0.11 2.07 0.29 0.57

]
.

In the different cases, the maximum displacement and the maximum acceleration of
each storey unit respect to the ground are presented in Table 1. In Table 1, the response
quantities for the system without control devices are designated as “Uncontrolled”, the
response quantities for the nominal system (with AMD control devices) are designated
as “H(0%)”. When we vary the stiffness and damper of all storey unit of the building
by −20%, the response quantities for the system (with AMD control devices) are desig-
nated as “H(−20%)”. When we vary the stiffness and damper of all storey unit of the
building by −50%, the response quantities for the system (with AMD control devices)
are designated as “H(−50%)”.

From Table 1, we can see clearly that the structure system will be unstable as the
system has bigger parametric uncertainties. To guarantee the robust stability performance
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Table 2. Maximum response quantities.

Cases Storey Displacement Acceleration Control force
x y θ ẍ ÿ θ̈ AMD1 AMD2

cm cm 10−2 rad cm s−2 cm s−2 10−2 rad s−2 kN kN
1 2.46 6.07 0.13 546 417 23.54

Uncontrolled 2 4.30 10.31 0.24 796 519 36.28
3 5.25 12.31 0.30 889 677 41.34
1 1.63 4.11 0.08 409 323 15.47

RH1(0%) 2 2.80 7.04 0.15 524 373 22.46 253 213
3 3.38 8.55 0.19 621 484 25.86
1 1.93 3.14 0.11 439 302 21.01

RH1(−20%) 2 3.36 5.90 0.18 615 296 29.78 276 138
3 4.10 7.83 0.22 717 391 31.90
1 2.12 2.92 0.10 364 292 17.47

RH1(−50%) 2 4.00 5.33 0.17 502 236 25.25 245 179
3 5.03 7.15 0.21 641 400 29.78
1 1.30 3.98 0.07 349 320 21.42

RH2(0%) 2 2.23 6.90 0.13 470 366 26.15 399 307
3 2.71 8.29 0.17 573 460 24.47
1 1.78 3.06 0.09 410 282 22.38

RH2(−20%) 2 3.11 5.75 0.16 576 306 31.51 482 208
3 3.82 7.46 0.20 609 362 29.37
1 1.88 2.99 0.09 333 286 19.27

RH2(−50%) 2 3.60 5.35 0.14 485 235 25.34 444 306
3 4.63 6.75 0.17 630 375 32.55

of the structural system in the presence of parameter uncertainties, we can design ro-
bust optimal H∞ controller on the basis of Section 3. The uncertainties in the damping,
stiffness matrices etc. are, respectively, modeled as

∆M = 0.05M, ∆K = 0.5K, ∆C = 0.5C, ∆Bs = 0.25Bs.

In order to have a comparison of the robust stability between the traditionalH∞ controller
and the optimal H∞ controller based on the almost same maximum response quantities,
the following weighing matrices are used:

Q = 10−4 diag
[
109 109 0.5 · 109 2 · 108 2 · 108 108 5 · 1010 5 · 1010 2.5 · 1010 2 · 106 2 · 106

]
×

[
5 · 107 5 · 107 5 · 107 5 · 107 5 · 107 5 · 107 3 · 107 3 · 107 3 · 107 106 106

]
,

R = diag
[
10−5 10−5

]
in Eq. (7).

Using γ = 2.79 · 104, ε = 1.38 · 106 and E1 = Γ = I22, (20) results in the following
control gain:

Ku = 105
[
−0.1882 −44 20.38 3.07 3.67 −0.63 12.15 55.80 128.53 14.54 −0.04
0.49 0.31 −5.83 2.92 −23.97 −49.68 18.23 83.99 198.39 −0.09 15.12

]
×

[
−0.91 −2.25 4.42 0.07 0.13 0.10 0.62 1.27 19.38 7.59 0.08
0.10 0.11 0.01 0.67 −0.16 4.55 0.89 1.84 30.19 0.09 8.04

]
.

In the different cases, the maximum displacement and the maximum acceleration of
each storey unit respect to the ground are presented in Table 2. The control force time
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(a) AMD1 (b) AMD2

(c) AMD1 (d) AMD2

Fig. 3. Control force time histories of the structure with two AMD systems: (a), (b) in the “RH1” cases; (c),
(d) in the “RH2” cases.

histories of AMD1 and AMD2 are presented in Fig. 3(a), (b). In Table 2 and Fig. 3(a),
(b), the response quantities for the nominal system (with AMD control devices) are
designated as “RH1(0%)”. When we vary the stiffness and damper of all storey unit of
the building by−20%, the response quantities for the system (with AMD control devices)
are designated as “RH1(−20%)”. When we vary the stiffness and damper of all storey
unit of the building by −50%, the response quantities for the system (with AMD control
devices) are designated as “RH1(−50%)”.

From Table 2 and Fig. 3(a), (b), we can see clearly that the new robust optimal H∞
controller can be designed to guarantee the robust stability and performance of the closed-
loop system in the presence of parameter uncertainties.

In order to have a better control effectiveness in comparison with the “RH1” cases,
the following weighing matrices are used:

Q = 10−3 diag
[
109 109 0.5 · 109 2 · 108 2 · 108 108 5 · 1010 5 · 1010 2.5 · 1010 2 · 106 2 · 106

]
,

×
[
5 · 107 5 · 107 5 · 107 5 · 107 5 · 107 5 · 107 3 · 107 3 · 107 3 · 107 106 106

]
,

R = diag
[
10−8 10−8

]
in Eq. (7).

Using γ = 2.79 · 104, ε = 3.08 · 106 and E1 = Γ = I22, (20) results in the following
control gain:

Ku = 106
[
14.15 −27.03 −53.28 0.55 2.19 5.79 −2.14 −0.43 228.70 8.84 −1.39
2.36 5.96 4.28 11.34 25.46 −57.69 −2.71 −1.749 334.12 −1.18 7.85

]
×

[
0.16 −0.49 1.43 −0.10 −0.03 −0.19 −0.03 −0.04 8.56 3.41 −0.19
0.09 0.16 −0.03 0.47 0.70 1.72 −0.05 −0.07 13.04 −0.15 3.33

]
.
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(a) Transversal displacement (b) Longitudinal displacement

(c) Rotation (d) Transversal acceleration

(e) Longitudinal acceleration (f) Rotation acceleration

Fig. 4. Comparisons of response quantities between the “RH1” case and the the “RH2” case.

In the different cases, the maximum displacement and the maximum acceleration of
each storey unit respect to the ground are presented in Table 2. The control force time
histories of AMD1 and AMD2 are presented in Fig. 3(c), (d). In Table 2 and Fig. 3(c),
(d), the response quantities for the nominal system (with AMD control devices) are
designated as “RH2(0%)”. When we vary the stiffness and damper of all storey unit of
the building by−20%, the response quantities for the system (with AMD control devices)
are designated as “RH2(−20%)”. When we vary the stiffness and damper of all storey
unit of the building by −50%, the response quantities for the system (with AMD control
devices) are designated as “RH2(−50%)”.

We can see clearly from Table 2 and Fig. 3(c), (d) that it can get a better control
effectiveness through the adjustment of weighing matrices.

The comparisons of the response time histories of the structure between the “RH1(0%)
case and the “RH2(0%)” case are shown in Fig. 4.

We can see clearly from Fig. 4 that considering reasonable weighting matrices, the
controller can acquire considerably optimal response quantities under the better perfor-
mance of robust.
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5 Conclusions

AMD systems have been a popular area of research in recent decades and significant
progress has been made in this area over these years. In view of the numerous uncertain-
ties of seismic disturbances and structural parameters, the building structure is uncertain.
Because robust controllers can tolerate uncertainties, control of a building structures
seismic response is an ideal application. In this paper, considering that a real building
is actually asymmetric to some degree even with a nominally symmetric plan, a robust
optimal H∞ control algorithm for two AMD systems on the orthogonal direction of the
top storey is proposed for the vibration control of irregular buildings subjected to bi-lateral
ground acceleration. Simulation results show preliminary that such a control method can
guarantee the robust stability and performance of the closed-loop system in the presence
of parameter uncertainties. In addition, the comparisons with the numerical results using
the traditional H∞ control are also made for demonstration of its control performance.
For practical implementations of active control systems on seismically excited irregular
buildings, it is unavoidable to consider the time delay in control, sensor and actuator
failures. So for the further study, it is important to design the robust controllers in the
presence of the complicated environment.
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