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Abstract. This paper considers the problem of global output feedback control for a class of
nonlinear systems with inverse dynamics. The main contribution of paper is that: For the inverse
dynamics with uncertain ISS/iISS supply rates, and the systems being disturbed by L2 noises,
we construct a reduced-order observer-based output feedback controller, which drives the output
of system to zero and maintain other closed-loop signals bounded. Finally, a simulation example
shows the effectiveness of the control scheme.
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1 Introduction

Since the notion of input-to-state stability (ISS) was first introduced in [1], it has been
recognized as a central concept in nonlinear control systems. [2–5] and the references
therein investigated many kinds of properties of ISS. [6–9] and the references therein
considered controller design and stability analysis for various classes of nonlinear systems
with ISS (or ISpS) inverse dynamics. Subsequently, another important concept, integral
input-to-state stability (iISS), was firstly presented in [10], and several characterizations
on iISS were investigated in [11], in which iISS is proved to be strictly weaker than ISS.
In [12], the authors analyzed nonlinear cascades in which the driven subsystem is iISS,
and characterized the admissible iISS-gains for stability. Recently, [13–16] gave several
Lyapunov-based small-gain theorems covering iISS systems.

So far, in addition to the above literatures, there are many other results on the design
and analysis of controller for nonlinear systems with ISS/iISS inverse dynamics. For
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example, Arcak et al. in [12] applied the admissible iISS-gains for stability of cascade
systems to develop a new observer-based backstepping design. Jiang et al. in [17] firstly
presented a unifying framework for the robust global regulation via output feedback
for nonlinear systems with iISS inverse dynamics. Recently, [18] further studied output
feedback regulation for a class of nonlinear systems with iISS inverse dynamics, in which
the observer gain is governed by a Riccati differential equation, and Xu and Huang
in [19] considered the output regulation problem for output feedback systems with relative
degree one and iISS inverse dynamics. In [20], the authors considered reduced-order
observer-based output feedback regulation for a class of nonlinear systems with iISS
inverse dynamics. Recently, Yu et al. in [21, 22] extended the notion and some properties
of iISS to stochastic nonlinear systems.

However, almost of the above papers only consider the ISS/iISS inverse dynamics
with known ISS/iISS supply rates. When the inverse dynamics with uncertain ISS/iISS
supply rates, how to design a feedback controller for nonlinear systems seems to be an
interesting work.

The main contribution of paper is that: For the inverse dynamics with uncertain
ISS/iISS supply rates, and the systems being disturbed by L2 noises, we construct a re-
duced-order observer-based output feedback controller, which drives the output of system
to zero and maintain other closed-loop signals bounded.

The remainder of paper is organized as follows. Section 2 is problem statements.
Section 3 gives the design of output feedback controller. Section 4 is the main results.
A simulation example is given in Section 5. Section 6 concludes the paper.

Notations

R+ stands for the set of all nonnegative real numbers, Rn is the n-dimensional Euclidean
space, |x| is the usual Euclidean norm of a vector x. K denotes the set of all functions
γ : R+ → R+, which are continuous, strictly increasing and γ(0) = 0; K∞ is the set
of all functions which are of class K and unbounded, KL denotes the set of all functions
β(s, t) : R+ × R+ → R+, which are of class K for each fixed t, and decrease to zero as
t → ∞ for each fixed s. σ1(s) = O(σ2(s)) as s → 0+ means that σ1(s) 6 c1σ2(s) for
some constant c1 > 0 and all s in a small neighborhood of zero, and σ1(s) = O(σ2(s))
as s→∞ means that σ1(s) 6 c2σ2(s) for some constant c2 > 0 and all large enough s.
L2(R+;R) is the family of all functions l : R+ → R such that

∫∞
0
l2(t) dt <∞.

2 Problem statements

In this paper, we consider a class of nonlinear systems with the detailed form described as

η̇ = q(t, η, y),

ẋi = xi+1 + fi(t, x̄i) + gi(t, η, y) + di(t), i = 1, . . . , n− 1,

ẋn = u+ fn(t, x̄n) + gn(t, η, y) + dn(t),

y = x1,

(1)
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where x = (x1, . . . , xn) ∈ Rn, u ∈ R, y ∈ R are the state, the control input, and the
measurable output, respectively, η ∈ Rq denotes the inverse dynamics, (x2, . . . , xn) and
η are unmeasurable signals, x̄i = (x1, . . . , xi) ∈ Ri, i = 1, . . . , n. It is assumed that
the modeled (or known) dynamics fi, i = 1, . . . , n, are smooth, and the unmodeled (or
uncertain) dynamics q and gi, i = 1, . . . , n, are locally Lipschitz. di(t), i = 1, . . . , n, are
uncertain external noise.

The control objective is to design an output feedback controller for system (1) based
on a reduced-order observer. Such controller drives the output of systems to zero asymp-
totically and maintains other closed-loop signals bounded.

The main results of paper are based on the following assumptions.

Assumption 1. For η-system of (1), there is a positive definite function V0 ∈ C1 such
that

α0

(
|η|
)
6 V0(η) 6 α0

(
|η|
)
,

∂V0
∂η

q(η, y) 6 −π0
(
|η|
)

+ p0γ0
(
|y|
)
, (2)

where α0, α0, γ0 are class K∞ functions, π0 is a positive-definite continuous function,
and p0 is an uncertain positive constant.

Remark 1. From [11], one knows that η-subsystem satisfying (2) is iISS, and the
functions pairs (π0, p0γ0) are supply rates. Specially, if π0 is class K∞ function, the
η-subsystem is ISS.

Since p0 in (2) is unknown, the inverse dynamics have uncertain ISS/iISS supply rates.

Assumption 2. The modeled dynamics f1(t, y) 6 f̂1(y) with f̂1(y) being smooth func-
tion and f̂1(0) = 0, fi(t, x̄i), i = 2, . . . , n, satisfy that∣∣fi(t, x̄i)− fi(t, ¯̂xi)∣∣ 6 ρi

∣∣x̄i − ¯̂xi
∣∣, i = 2, . . . , n,

where x̄i = (x1, . . . , xi), ¯̂xi = (x1, x̂2, . . . , x̂i) ∈ Ri, and ρi are known positive
constants with ρ0 = (

∑n
i=2 ρ

2
i )

1/2 such that the linear matrix inequality(
PĀ+ ĀTP + SB +BTST + ρ20δ1I + 2Q P

P −δ1I

)
6 0 (3)

hods, where Ā =
(
0 I(n−2)×(n−2)

0 0

)
,B = (−1, 0, . . . , 0)1×(n−1), P,Q are positive definite

matrices and δ1 is a positive constant.

Remark 2. Assumption 3 shows that fi includes not only the output, but also the un-
measured state variables. Moreover, fi(x̄i) can be any smooth function with respect
to measurable variable x1, and be Lipschitz function with respect to the unmeasurable
variables x2, . . . , xi with the Lipschitz constant satisfying LMI (3).

Assumption 3. For each 1 6 i 6 n, there exist unknown positive constants pi1, pi2, and
known positive-definite smooth functions φi1, φi2 such that∣∣gi(t, η, y)

∣∣ 6 pi1φi1
(
|y|
)

+ pi2φi2
(
|η|
)
.
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Assumption 4. The external noise di(t) satisfies di(t) ∈ L2(R+;R), i = 1, . . . , n.

Remark 3. Assumption 3 is an usual condition in output feedback control of nonlinear
systems (e.g., see [17,18,20,23]). Assumption 4 shows that system (1) is disturbed by L2

noises.

3 Output feedback controller design

This section gives the design procedure of global output feedback controller by using the
method of adaptive backstepping.

3.1 Reduced-order observer design

Firstly, we define a new variable v = x2 + g1(t, η, y) + d1(t), which will play an
important role in the following design. We construct the following (n − 1)-dimensional
state estimation:

˙̂xi = x̂i+1 + fi(t, ¯̂xi) + li(v − x̂2), i = 2, . . . , n− 1,

˙̂xn = u+ fn(t, ¯̂xn) + ln(v − x̂2),
(4)

where observer gain l = (l2, . . . , ln)T is chosen such that

ATP + PA+ δ−11 PP + ρ20δ1I 6 −2Q, (5)

in which A =
(
−l In−2

0...0

)
, P , Q are positive definite matrices and δ1 > 0. Noting that the

signal v in (4) is unmeasurable, we introduce the new observation variables

ξi = x̂i − liy, i = 2, . . . , n, (6)

which, together with (4), leads to

ξ̇i = x̂i+1 + fi(t, ¯̂xi)− li
(
f1(t, y) + x̂2

)
, i = 2, . . . , n− 1,

ξ̇n = u+ fn( ¯t, x̂n)− ln
(
f1(t, y) + x̂2

)
.

(7)

From (6), one obtains fi(t, ¯̂xi) = fi(t, y, x̂2, . . . , x̂i) = fi(t, y, ξ2 + l2y, . . . , ξi + liy) :=
f̃i(t, y, ξ̄i), where ξ̄i = (ξ2, . . . , ξi). Substituting (6) into (7), one obtains the reduced-
order observer

ξ̇i = ξi+1 + li+1y + f̃i(t, y, ξ̄i)− li(f1(t, y) + ξ2 + l2y), i = 2, . . . , n− 1,

ξ̇n = u+ f̃n(t, y, ξ̄n)− ln(f1(t, y) + ξ2 + l2y).
(8)

Defining the error variables ei = xi − x̂i, 2 6 i 6 n, by (1) and (4), one has

ėi = −lie2 + ei+1 + fi(t, x̄i)− fi(t, ¯̂xi)− lig1(t, η, y)

− lid1(t) + gi(t, η, y) + di(t), i = 2, . . . , n− 1,

ėn = −lne2 + fn(t, x̄n)− fn(t, ¯̂xn)− lng1(t, η, y)

− lnd1(t) + gn(t, η, y) + dn(t),
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which, in compact notation, is rewritten as

ė = Ae+ F (t, x)− F (t, x̂) +G(t, η, y) +D(t), (9)

where e = (e2, . . . , en)T, F (t, x) = (f2(t, x̄2), . . . , fn(t, x̄n))T, F (t, x̂) = (f2(t, ¯̂x2),
. . . , fn(t, ¯̂xn))T, G(t, η, y) = (g2− l2g1, . . . , gn− lng1)T, D(t) = (d2(t)− l2d1(t), . . . ,
dn(t) − lnd1(t))T. Setting ē = 1/p∗e, p∗ = max16i6n{1, pi1, pi2, p212}, then (9) be-
comes

˙̄e = Aē+
1

p∗
(
F (t, x)− F (t, x̂)

)
+

1

p∗
G(t, η, y) +

1

p∗
D(t), (10)

which together with (1) and (8) consist of the following controlled system for feedback
design:

η̇ = q(t, η, y),

˙̄e = Aē+
1

p∗
(
F (t, x)− F (t, x̂)

)
+

1

p∗
G(t, η, y) +

1

p∗
D(t),

ẏ = ξ2 + p∗ē2 + l2y + f1(t, y) + g1(t, η, y) + d1(t),

ξ̇2 = ξ3 + l3y + f̃2(t, y, ξ̄2)− l2
(
f1(t, y) + ξ2 + l2y

)
,

...

ξ̇n = u+ f̃n(t, y, ξ̄n)− ln
(
f1(t, y) + ξ2 + l2y

)
.

(11)

Remark 4. By Schur compliment lemma in [24], (5) can be solved by the linear matrix
inequality (3). P , S and δ1 in (3) can be solved by using LMI toolbox in MATLAB and
the observer gain l = P−1S.

Remark 5. In [20], there is a mistake in the choice of observer gain. Here we correct it
and give a LMI algorithm of it.

3.2 Adaptive controller design

Now, we give the adaptive controller design procedure by using the backstepping method.

Step 1. Begin with the y-subsystem of (11) and consider ξ2 as the virtual dynamic control
input. We define the 1st dynamic virtual control input

α1 = −cκψ1(y)y, κ̇ = Γψ1(y)y2, (12)

where Γ , c are two positive parameters and ψ1 is a smooth positive design function,
introduce a new intermediate variable v2 = ξ3 + l3y+ f̃2(y, ξ̄2)− l2(f1(y) + ξ2 + l2y)−
∂α1/∂κΓψ1(y)y2, and set z1 = ξ2 − α1(κ, y), obviously,

ż1 = v2 −
∂α1

∂y

(
ξ2 + l2y + p∗ē2 + f1 + g1 + d1(t)

)
. (13)
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Step 2. Denoting V1 = (1/2)y2, viewing ξ2 as the virtual control input, and considering
the Lyapunov function V2 = (1/2)y2 + (1/2)z21 , with the use of (11)–(13), one has

V̇2 = z1

(
v2 + y − ∂α1

∂y
(ξ2 + l2y + p∗ē2 + f1 + g1 + d1)

)
− cκψ1y

2 + y(p∗ē2 + l2y + f1 + g1 + d1). (14)

By Young’s inequality, one leads to

z1y 6
1

2
z21 +

1

2
y2, (15)

−∂α1

∂y
z1(p∗ē2 + g1 + d1) 6

2ε2p
∗ + p∗2

2ε2

(
∂α1

∂y

)2
z21 + ε2ē

2
2 +

g21
2p∗

+
d21
2p∗

,

where ε2 is a small design parameter to be determined in Appendix. We define an un-
known constant θ such that θ > (2ε2p

∗ + p∗2)/(2ε2), and set Φ1(t, ē2, η, y) = y(p∗ē2 +
l2y+ f1 + g1 + d1) + (1/2)y2 + ε2ē

2
2 + g21/2p

∗+ d21/2p
∗, by (14) and (15), some simple

manipulations lead to

V̇2 6 z1

(
v2 +

1

2
z1 −

∂α1

∂y
(ξ2 + l2y + f1) + θ

(
∂α1

∂y

)2
z1

)
− cκψ1(y)y2 + Φ1.

Letting θ̂ be the estimate of the unknown parameter θ, choosing V̄2 = V2 + 1/(2Γθ) ×
(θ̂ − θ)2, where Γθ > 0 is a parameter, and setting z2 = ξ3 − α2(κ, y, ξ2, θ̂), τ1 =
Γθ(∂α1/∂y)2z21 , and α2 = −c1z1−(1/2)z1− l3y− f̃2+ l2(f1+ξ2+ l2y)+(∂α1/∂κ)×
Γψ1y

2 + (∂α1/∂y)(ξ2 + l2y + f1)− θ̂(∂α1/∂y)2z1, in which c1 > 0 is a constant, one
can verify that

˙̄V2 6 −cκψ1(y)y2 + Φ1 + z1z2 − c1z21 +
1

Γθ
(θ̂ − θ)( ˙̂

θ − τ1), (16)

and the variable z2 satisfies

ż2 = v3 −
∂α2

∂θ̂

˙̂
θ − ∂α2

∂y
(ξ2 + p∗ē2 + l2y + f1 + g1 + d1),

where v3 = ξ4 + l4y + f̃3 − l3(f1 + ξ2 + l2y) − (∂α2/∂κ)Γψ1y
2 − (∂α2/∂ξ2)(ξ3 +

l3y + f̃2 − l2(f1 + ξ2 + l2y)).

Step i (3 6 i 6 n). At step i, one can obtain the similar property to (16). Such a result is
presented by the following lemma, for notational coherence, denote u = ξn+1.

Lemma 1. For each i = 3, . . . , n, there exist smooth functions αi, τi−1, Φi−1, variable
zi = ξi+1 − αi, and positive constant ci−1 such that V̄i = V̄i−1 + (1/2)z2i−1 satisfies

˙̄Vi 6 −cκψ1(y)y2 + Φi−1 + zi−1zi

−
i−1∑
j=1

cjz
2
j +

1

Γθ

(
θ̂ − θ −

i−1∑
j=1

Γθzj
∂αj

∂θ̂

)
(

˙̂
θ − τi−1). (17)
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Proof. See Appendix.

Hence at step n, by Lemma 1, there is a smooth dynamic output feedback controller

u = αn(κ, y, ξ2, . . . , ξn, θ̂), κ̇ = Γψ1(y)y2,
˙̂
θ = τn−1, (18)

such that V̄n = (1/2)y2 + (1/2)
∑n−1
j=1 z

2
j + (1/2)Γθ(θ̂ − θ)2 satisfies

˙̄Vn 6 −cκψ1(y)y2 + Φn−1 −
n−1∑
j=1

cjz
2
j . (19)

4 Main result

Before giving the main result of paper, we need the following lemmas.

Lemma 2. Consider the η-subsystem satisfying Assumption 1.

(i) If lim infs→∞ π0(s) =∞, then, for any positive-definite continuous function φ with

φ(s) = O
(
π0(s)

)
as s→ 0+,

there always exist a positive-definite function σ and a classK∞ function ϕ such that

t∫
0

φ
(∣∣η(τ)

∣∣) dτ 6 σ
(
|η0|
)

+ p̃0

t∫
0

ϕ
(∣∣y(τ)

∣∣) dτ,

where p̃0 is unknown positive constant. Moreover, if γ0 is such that γ0(s) = O(s2)
as s→ 0+, so is ϕ.

(ii) If lim infs→∞ π0(s) <∞, then, for any positive-definite continuous function φ with

φ(s) = O
(
π0(s)

)
as s→ 0 + and s→∞,

the same conclusion of (i) also holds.

Proof. The proof of Lemma 2 is similar to the proof of Proposition 2 in [20].

Lemma 3. There are unknown positive constant θ0, which is dependent on ε2, p∗, pi1,
pi2 (1 6 i 6 n), l2 and relative degree n, and uncertain L2(R+;R) functions D1(t),
D2(t), D3(t) such that

|Φn−1| 6 nε2ē
2
2 + θ0

(
y2 + f̂21 (y) + φ211

(
|y|
)

+ φ212
(
|η|
))

+D2
1(t),

1

p∗2
|G|2 6

n∑
i=2

4
(
l2i φ

2
11(|y|) + φ2i1(|y|)

)
+

n∑
i=2

4
(
l2i φ

2
12

(
|η|
)

+ φ2i2
(
|η|
))

+D2
2(t),

1

p∗2
∣∣D(t)

∣∣2 6 D2
3(t).
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Proof. With the aid of the completion of squares, it follows directly from the definitions
of Φn−1, G and D(t).

Theorem 1. Suppose that Assumptions 1–4 hold with the following properties:

φ2i2(s) =

{
O(π0(s)) as s→ 0+ if lim infs→∞ π0(s) =∞,
O(π0(s)) as s→ 0+, s→∞ if lim infs→∞ π0(s) <∞

(20)

for all i = 1, . . . , n, and γ0(s) = O(s2) as s→ 0+. Then by choosing the design function
ψ1, one has:

(i) The solutions of (1), (8) and (18) are well-defined and bounded over [0,∞).

(ii) limt→∞(|y(t)|+ |η(t)|) = 0.

Proof. (i) Choosing the Lyapunov function Ve = ēTP ē, where P = PT > 0 is defined
in (5), and Vc = Ve + V̄n, by (10) and Lemma 3, one has

V̇e = ēT
(
ATP + PA

)
ē+

2

p∗
ēTP

(
F (t, x)− F (t, x̂)

)
+

2

p∗
ēTPG+

2

p∗
ēTPD

6 ēT
(
ATP + PA

)
ē+ δ−11 ēTPP ē+

δ1
p∗2
∣∣F (t, x)− F (t, x̂)

∣∣2
+ 2δ−12 ēTPP ē+

δ2
p∗2
|G|2 +

δ2
p∗2
|D|2

6 ēT
(
ATP + PA+ δ−11 PP + δ1ρ

2
0I + 2δ−12 PP

)
ē

+ 4δ2

n∑
i=2

(
l2i φ

2
11

(
|y|
)

+ φ2i1
(
|y|
))

+ 4δ2

n∑
i=2

(
l2i φ

2
12

(
|η|
)

+ φ2i2
(
|η|
))

+ δ2
(
D2

2(t) +D2
3(t)

)
. (21)

From (19), (21) and Lemma 3, it follows that

cV̇c 6 −cκψ1(y)y2 + θ0
(
y2 + f̂21 (y) + φ211

(
|y|
)

+ φ212
(
|η|
))

+D2
1(t) + δ2

(
D2

2(t) +D2
3(t)

)
+ ēT

(
ATP + PA+ δ−11 PP + δ1ρ

2
0I + 2δ−12 PP + nε2I

)
ē

+ 4δ2

n∑
i=2

(
l2i φ

2
11

(
|y|
)

+ φ2i1
(
|y|
))

+ 4δ2

n∑
i=2

(
l2i φ

2
12

(
|η|
)

+ φ2i2
(
|η|
))
. (22)

One can choose sufficiently large δ2 and sufficiently small ε2 such that 2δ−12 PP +
nε2I 6 Q, which together with (5) imply that

ATP + PA+
(
δ−11 + 2δ−12

)
PP +

(
ρ20δ1 + nε2

)
I 6 −Q, (23)
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where Q is defined in (5). By Assumption 1, Lemma 2 and (20), one has

t∫
0

φ2i2
(∣∣η(s)

∣∣)ds 6 σi
(∣∣η(0)

∣∣)+ p̃i0

t∫
0

ϕi1
(∣∣y(s)

∣∣) ds, (24)

where σi are positive definite functions, ϕi1 ∈ K∞ with ϕi1(s) = O(s2) as s→ 0+, and
p̃i0 are unknown positive constants.

Choose a smooth design function ψ1 to satisfy

ψ1(y)y2 > max
{
y2 + f̂21 (y) + φ211

(
|y|
)
, l2i φ

2
11

(
|y|
)

+ φ2i1
(
|y|
)
,

ϕi1
(
|y|
)
, γ0

(
|y|
)
, 1 6 i 6 n

}
. (25)

Such a function ψ1 always exists due to the fact that f1, φi1 are smooth near zero with
f1(0) = φi1(0) = 0, and ϕi1(s) = O(s2) as s→ 0+. Then it follows from (22) and (25)
that

V̇c 6 −cκψ1y
2 +

(
θ0 + 4(n− 1)δ2

)
ψ1y

2 + θ0φ
2
12

(
|η|
)

+ 4δ2

n∑
i=2

(
l2i φ

2
12

(
|η|
)

+ φ2i2
(
|η|
))

+D2
1(t) + δ2

(
D2

2(t) +D2
3(t)

)
. (26)

Integrating on both sides of (26) from 0 to t, and noting κ̇ = Γψ1(y)y2 in (18), by (24)
and (25), one gets

Vc(t)− Vc(0) 6 − c

2Γ
κ2(t) + d1κ(t) + d2 +

t∫
0

D2
4(s) ds, (27)

where d1 = (1/Γ )(2θ0p̃10 + 8(n− 1)δ2 + 4δ2
∑n
i=2 l

2
i p̃i0), d2 = −d1κ(0) + c/(2Γ )×

κ2(0)+θ0σ1(|η(0)|)+4δ2
∑n
i=2(σi(|η(0)|)+l2i σ1(|η(0)|)),D2

4(t) = D2
1(t)+δ2(D2

2(t)+
D2

3(t)).
Assume that the solutions of the closed-loop system are defined on a right-maximal

interval [0, T ) with 0 < T 6 ∞. Next, we will prove that κ(t) is bounded on [0, T )
by contradiction. Suppose that κ(t) is unbounded, since κ̇ = Γψ1(y)y2 > 0, so κ(t) is
increasing and tends to∞ as t → T . Dividing both sides of (27) by κ(t) for sufficiently
large t (where t < T ), one gets

−Vc(0)− d2 −
∫ t
0
D2

4(s) ds

κ(t)
6 − c

2Γ
κ(t) + d1. (28)

Since D1, D2, D3 ∈ L2(R+;R), so D4 ∈ L2(R+;R). As t → T , the right side of (28)
converges to −∞, while the left side of (28) converges to zero, which is a contradiction.
Consequently, κ(t) is bounded on [0, T ).

By (12), (25) and the boundedness of κ(t), we obtain that
∫ t
0
γ0(|y(s)|) ds is bounded

on [0, T ), which together with (2) imply that V0(η(t)) and η(t) remain bounded on [0, T ).
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Using (27) and the boundedness of κ(t), one also concludes that Vc(t) is bounded
over [0, T ). By definition of Vc(t) in (21) above, it holds that the closed-loop signals y(t),
z1(t), . . . , zn−1(t), θ̂(t) and ē(t) are all bounded over [0, T ). From the definition of zi(t)
and αi(t), it is not hard to prove that ξi(t), xi(t), u(t) are bounded over [0, T ). Therefore,
T =∞, and conclusion (i) holds.

(ii) By the boundedness of y(t) and ẏ(t), then γ0(|y(t)|) is uniformly continu-
ous in [0,∞). Using

∫∞
0
γ0(|y(t)|) dt < ∞ and Barbalat’s lemma in [23], one has

limt→∞ γ0(|y(t)|) = 0 and limt→∞ y(t) = 0. By Assumption 1,
∫∞
0
γ0(|y(t)|) dt <∞

and Proposition 6 in [10], one has limt→∞ η(t) = 0. By (21), (23) and (24), one can
obtain that

∫∞
0
ēTQē(t) dt < ∞, so by Barbalat’s lemma, limt→∞ ē(t) = 0. This

concludes the proof.

5 A simulation example

Consider the following nonlinear system with inverse dynamics and noises:

η̇ = − arctan η + d0y
2,

ẋ1 = x2 + f1(x1) + p11y + p12
η

1 + |η|
+

d1
1 + t

,

ẋ2 = u+ f2(x̄2) + p21y
2 + p22

η2

1 + η2
+ d2e

−t,

y = x1,

(29)

where f1(x1) = x21, f2(x̄2) = x1 + cosx2, and p11, p12, p21, p22, d0, d1 and d2 are
unknown constants. Choosing V (η) = η arctan η, it is easy to verify that V̇ (η) 6
− arctan2 |η|+ 3d0y

2.
With the notations of Assumptions 1-4, one can take π0(|η|) = arctan2 |η|, γ0(|y|) =

3y2, φ11(|y|) = |y|, φ12(|η|) = |η|/(1 + |η|), φ21(|y|) = y2, φ22(|η|) = η2/(1 + η2).
Then φ2i2(s) = O(π0(s)) as s → 0+ and s → ∞, i = 1, 2, the conditions of Theorem 1
are satisfied.

By (8), the reduced-order observer is given by

ξ̇2 = u+ f2(y, ξ2 + l2y)− l2
(
f1(y) + ξ2 + l2y

)
. (30)

According to Section 3, the dynamic output feedback control law can be designed as

κ̇ = Γψ1(y)y2,
˙̂
θ = Γθ

(
∂α1

∂y

)2
z21 ,

u = −c1z1 −
1

2
z1 − f2(y, ξ2 + l2y) + l2

(
f1(y) + ξ2 + l2y

)
+
∂α1

∂κ
Γψ1(y)y2 +

∂α1

∂y
(ξ2 + l2y + f1)− θ̂

(
∂α1

∂y

)2
z1,

(31)

where α1 = −cκψ1(y)y, z1 = ξ2 − α1, and Γ , Γθ, c, c1 are positive parameters.
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Fig. 1. The responses of closed-loop system (29)–(31).

By the proof of Proposition 2 in [20], one can take ϕ11(|y|) = ϕ21(|y|) = 3y2 in (24).
So ψ1(y) in (25) can be chosen as ψ1(y) = 2y2 + l22 + 3.

In simulation, we choose the parameters c = 0.1, c1 = 0.1, l2 = 1, Γθ = 0.8,
Γ = 0.6, p11 = 1, p12 = 1, p21 = 0.5, p22 = 0.5, d0 = 1, d1 = 3, d2 = 5, the initial
values η(0) = −2, x1(0) = −0.8, x2(0) = −0.5, ξ2(0) = 0.1, κ(0) = 0, θ̂(0) = 0.5.
Fig. 1 gives the responses of closed-loop system (29)–(31).

6 Conclusions

This paper considers global output feedback control for a class of nonlinear systems with
inverse dynamics and L2 noise. For the inverse dynamics with uncertain supply rates, the
reduced-order observer based output feedback controller is constructed, which drives the
output of system to zero asymptotically and maintains other closed-loop signals bounded.

Appendix. The proof of Lemma 1

Assuming that V̄i−1 satisfies the similar properties to (17), noticing that

żi−1 = vi −
∂αi−1

∂θ̂

˙̂
θ − ∂αi−1

∂y
(ξ2 + p∗ē2 + l2y + f1 + g1 + d1),

vi = ξi+1 + li+1y + f̃i − li(f1 + ξ2 + l2y)− ∂αi−1
∂κ

Γψ1y
2

−
i−1∑
j=2

∂αi−1
∂ξj

(
ξj+1 + lj+1y + f̃j − lj(f1 + ξ2 + l2y)

)
, (32)
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there holds

˙̄Vi 6 −cκψ1(y)y2 + Φi−2 + zi−2zi−1 −
i−2∑
j=1

cjz
2
j

+
1

Γθ

(
θ̂ − θ −

i−2∑
j=1

Γθzj
∂αj

∂θ̂

)
(

˙̂
θ − τi−2)

+ zi−1

(
vi −

∂αi−1

∂θ̂

˙̂
θ − ∂αi−1

∂y
(ξ2 + p∗ē2 + l2y + f1 + g1 + d1)

)
. (33)

Using Young’s inequality, it follows that

− ∂αi−1
∂y

zi−1(p∗ē2 + g1 + d1)

6 ε2ē
2
2 +

2ε2p
∗ + p∗2

2ε2

(
∂αi−1
∂y

)2
z2i−1 +

g21
2p∗

+
d21
2p∗

. (34)

Define

τi−1 = τi−2 + Γθ

(
∂αi−1
∂y

)2
z2i−1, Φi−1 = Φi−2 + ε2ē

2
2 +

g21
2p∗

+
d21
2p∗

,

αi = −ci−1zi−1 − zi−2 − li+1y + li(f1 + ξ2 + l2y)− f̃i +
∂αi−1
∂y

(ξ2 + l2y + f1)

+

i−1∑
j=2

∂αi−1
∂ξj

(
ξj+1 + lj+1y + f̃j − lj(f1 + ξ2 + l2y)

)
+
∂αi−1
∂κ

Γψ1y
2

+
∂αi−1

∂θ̂
τi−1 − θ̂

(
∂αi−1
∂y

)2
zi−1 +

i−2∑
j=1

zj
∂αj

∂θ̂
Γθ

(
∂αi−1
∂y

)2
zi−1,

where ln+1 = 0, which together with (32)–(34) and zi = ξi+1 − αi imply that

˙̄Vi 6 −cκψ1(y)y2 + Φi−1 + zi−1zi−2 −
i−1∑
j=1

cjz
2
j

+
1

Γθ

(
θ̂ − θ −

i−2∑
j=1

Γθzj
∂αj

∂θ̂

)
(

˙̂
θ − τi−2) + zi−1

(
(θ − θ̂)

(
∂αi−1
∂y

)2
zi−1

+

i−2∑
j=1

zj
∂αj

∂θ̂
Γθ

(
∂αi−1
∂y

)2
zi−1 −

∂αi−1

∂θ̂
(

˙̂
θ − τi−1)

)

= −cκψ1(y)y2 + Φi−1 + zi−1zi −
i−1∑
j=1

cjz
2
j

+
1

Γθ

(
θ̂ − θ −

i−1∑
j=1

Γθzj
∂αj

∂θ̂

)
(

˙̂
θ − τi−1). (35)
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