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Abstract. This paper deals with the exponential synchronization problem for reaction-diffusion
neural networks with mixed time-varying delays and stochastic disturbance. By using stochastic
analysis approaches and constructing a novel Lyapunov–Krasovskii functional, a periodically
intermittent controller is first proposed to guarantee the exponential synchronization of reaction-
diffusion neural networks with mixed time-varying delays and stochastic disturbance in terms of
p-norm. The obtained synchronization results are easy to check and improve upon the existing ones.
Particularly, the traditional assumptions on control width and time-varying delays are removed in
this paper. This paper also presents two illustrative examples and uses simulated results of these
examples to show the feasibility and effectiveness of the proposed scheme.

Keywords: synchronization, neural networks, mixed time-varying delays, reaction-diffusion,
periodically intermittent control.

1 Introduction

In the past decade, there has been a great interest in various types of neural networks
(for example, Hopfield neural networks, cellular neural networks, Cohen–Grossberg neu-
ral networks, bidirectional associative memory neural networks, competitive neural net-
works, etc.) due to their wide range of applications, such as signal processing, pattern
recognition, image processing, associative memory, fault diagnosis, aerospace, defense,
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telecommunications, automatic control engineering, and combinatorial optimization.
However, time delays are unavoidably in the information processing of neurons due to
various reasons [1–3]. For example, time delays can be caused by the finite switching
speed of amplifier circuits in neural networks or deliberately introduced to achieve tasks
of dealing with motion-related problems, such as moving image processing. Meanwhile,
a neural network usually has a spatial nature due to the presence of an amount of parallel
pathways of a variety of axon sizes and lengths, it is desired to model them by introducing
distributed delays. Therefore, both discrete and distributed delays, especially both discrete
and distributed time-varying delays, should be taken into account when modeling realistic
neural networks [4–7].

It has been reported that if the parameters and mixed time-varying delays are ap-
propriately chosen, the neural networks can exhibit complicated behaviors even with
strange chaotic attractors. Thus, the synchronization problems of chaotic neural networks
with mixed time-varying delays have received much more attention both in theory and in
practice due to its potential applications in various technological fields, including chaos
generators design, secure communications, chemical and biological systems, information
processing, distributed computation, optics, social science, harmonic oscillation genera-
tion, human heartbeat regulation, power system protection, and so on [8–12].

In signal transmission, the signal will become weak due to diffusion, so an external
control should be added until the strength of the signal reaches an upper level. Then,
the external control can be removed considering the cost. Therefore, in comparison with
continuous control, discontinuous controllers, which include intermittent control and im-
pulsive control, have attracted more interest due to its wide applications in engineering
fields [13]. Intermittent control, which was first introduced to control linear econometric
models in [14], has been used for a variety of purposes such as manufacturing, transporta-
tion and communication in practice. In [15–17], the synchronization problems for a class
of chaotic neural networks with constant delay were investigated by designing period-
ically intermittent controllers based on 2-norm. And then, the periodically intermittent
control was applied to deal with the synchronization of chaotic neural networks without
time delays in [18] based on 2-norm. In [19], Yu et al. investigated the synchronization
problem of Cohen–Grossberg neural networks with time-varying delays by designing
a periodically intermittent controller based on ∞-norm. Moreover, a novel intermittent
impulsive synchronization scheme was proposed to realize synchronization of two chaotic
delayed neural networks in [20]. As pointed out by Hu et al. [21], the most previous results
presented in [15–17] were obtained by constructing Lyapunov functions and using two
central differential inequalities, and the restriction that the control width is greater than the
time delay was imposed in [15–17]. And the condition that the non-control width should
be greater than the time delay was also required in [16]. Evidently, the applied areas of the
results obtained in [15–17] are limited because of these assumptions. Therefore, in order
to reduce the possible conservatism for the sake of broader applications of the intermittent
control technique, under the precondition that the derivative of the time-varying delay was
smaller than one, Hu et al. [21] studied the exponential stabilization and synchronization
for a class of neural networks with time-varying delays for the first time using a peri-
odically intermittent control technique based on p-norm and ∞-norm, respectively. The
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Reaction-diffusion neural networks 3

methods used in [21] were totally different from the corresponding previous works and
the obtained conditions were less conservative. Particularly, the traditional assumptions
on control width and time delay were removed.

Actually, the synaptic transmission in real neural networks can be viewed as a noisy
process introduced by random fluctuations from the release of neurotransmitters and other
probabilistic causes [22–25]. Hence, noise is unavoidable and should be taken into consid-
eration in modeling. On the other hand, diffusion effects cannot be avoided in the neural
networks when electrons are moving in asymmetric electromagnetic fields. So we must
consider that the activations vary in space as well as in time. From the above analysis,
the stochastic noise perturbation and diffusion effects on dynamic behaviors of neural
networks cannot be neglected, so the theoretical results on dynamic behaviors including
stochastic disturbance and diffusion parameters are more reasonable. With respect to
reaction-diffusion neural networks with stochastic perturbation, a few results about the
dynamic analysis have been reported in the literature [26–35].

To the best of our knowledge, there are few results, or even no results concerning the
synchronization issues for neural networks with mixed time-varying delays, stochastic
noise perturbation and reaction-diffusion in terms of p-norm by using periodically in-
termittent control. The issues of integrating mixed time-varying delays, stochastic noise
perturbation and reaction-diffusion effects into the study of synchronization for neural
networks require more complicated analysis. Therefore, it is interesting to study this
problem both in theories and applications.

Motivated by the above discussion, this paper is concerned with the exponential syn-
chronization for reaction-diffusion neural networks with mixed time-varying delays and
stochastic perturbation in terms of p-norm by using periodically intermittent control ap-
proach. Some examples with numerical simulations are provided to show the feasibility
and effectiveness of the proposed method.

The main contribution of this paper can be summarized as follows:

1. It is the first time to establish the exponential synchronization criterion for reaction-
diffusion neural networks with mixed time-varying delays and stochastic noise
perturbation based on periodically intermittent control.

2. Unlike the existing results of synchronization for reaction-diffusion neural net-
works based on 2-norm (see [36–39]), some new and useful conditions are obtained
in this paper to guarantee the exponential synchronization of the proposed neural
networks under the periodically intermittent control in terms of p-norm.

3. The restrictions on periodically intermittent controller that the control width is
greater than the time delay and the non-control width is also greater than the time
delay are removed, which is more general than those periodically intermittent con-
trollers given in [15–17].

4. A novel Lyapunov–Krasovskii functional is proposed and the restriction in [21] that
the derivative of the time-varying delay should be smaller than one is removed.

5. In [40], the authors pointed out that it is quite difficult to find a chaotic attractor
for reaction-diffusion delayed neural networks. Obviously, this is an important
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and interesting open problem. In this paper, by using the classical implicit format
solving the partial differential equations and the method of steps for differential
difference equations, we find that if the parameters are appropriately chosen, the
reaction-diffusion neural networks can exhibit chaotic attractors.

The organization of this paper is as follows: in the next section, problem statement
and preliminaries are presented; in Section 3, a periodically intermittent controller is
proposed to ensure exponential synchronization of reaction-diffusion neural networks
with mixed time-varying delays and stochastic noise perturbation in terms of p-norm;
numerical simulations will be given in Section 4 to demonstrate the effectiveness and
feasibility of our theoretical results. We ends this work with a conclusion in Section 5.

Notation. Throughout this paper, Rn and Rn×m denote the n dimensional Euclidean
space and the set of all n × m real matrices, respectively; the notation C 2,1(R+ ×
Rn;R+) denotes the family of all nonnegative functions V (t, x(t)) on R+×Rn, which are
continuously twice differentiable in x and once differentiable in t; (Ω,F ,P) is a complete
probability space, where Ω is the sample space, F is the σ-algebra of subsets of the
sample space and P is the probability measure on F ; E{·} stands for the mathematical
expectation operator with respect to the given probability measure P; “sgn” is the sign
function.

2 Problem statement and preliminaries

In this paper, we are concerned with a class of reaction-diffusion neural networks with
mixed time-varying delays, which can be described by the following integro-differential
equations:

dui(t, x)

dt
=

l∗∑
k=1

∂

∂xk

(
Dik

∂ui(t, x)

∂xk

)
− ciui(t, x) +

n∑
j=1

aijfj
(
uj(t, x)

)

+

n∑
j=1

bijgj
(
uj(t− τij(t), x)

)
+

n∑
j=1

dij

t∫
t−τ∗

ij(t)

hj
(
uj(s, x)

)
ds+ Ji, (1)

where i = 1, 2, . . . , n, n is the number of neurons in the neural networks; x = (x1, x2,
. . . , xl∗)T ∈ Ω ⊂ Rl∗ and Ω = {x = (x1, x2, . . . , xl∗)T | |xk| < mk, k = 1, 2, . . . , l∗}
is a bound compact set with smooth boundary ∂Ω and mesΩ > 0 in space Rl∗ ; u(t, x) =
(u1(t, x), . . . , un(t, x))T with ui(t, x) corresponds to the state of the ith neural unit at
time t and in space x; ci > 0 represents the decay rate of the ith neuron; aij , bij and
dij are, respectively, the connection strength, the time-varying delay connection strength,
and the distributed time-varying delay connection strength of the jth neuron on the ith
neuron; fj(·), gj(·) and hj(·) denote the activation functions; Dik > 0 corresponds to the
transmission diffusion operator along the ith neuron; 0 < τij(t) 6 τ and 0 < τ∗ij(t) 6 τ∗

are the time-varying delay and the distributed time-varying delay along the axon of the
jth unit from the ith unit, respectively; Ji denotes the bias of the ith neuron.
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The boundary condition of system (1) is

ui(t, x)|∂Ω = 0, (t, x) ∈ [−τ̄ ,+∞)× ∂Ω, (2)

and the initial value of system (1) is

ui(s, x) = φi(s, x), (s, x) ∈ [−τ̄ , 0]×Ω, (3)

where τ̄ = max{τ, τ∗}, φ(s, x) = (φ1(s, x), . . . , φn(s, x))T ∈ C is bounded and
continuous and C = C([−τ̄ , 0] × Ω,Rn) be the Banach space of continuous functions,
which maps [−τ̄ , 0]×Ω into Rn with the topology of uniform converge and p-norm (p is
a positive integer) defined by

‖φ‖p =

(∫
Ω

n∑
i=1

sup
−τ̄6s60

∣∣φi(s, x)
∣∣p dx

)1/p

.

Chaotic systems depend extremely on initial values, and even infinitesimal changes in
the initial condition will lead to an asymptotic divergence of orbits. In order to observe
the synchronization behavior of system (1), we introduce another delayed neural network,
which is the response system of the drive system (1). However, the initial condition of the
response system is defined to be different from that of the drive system. Therefore, the
controlled response system of network (1) can be described by the following equations:

dvi(t, x) =

{
l∗∑
k=1

∂

∂xk

(
Dik

∂vi(t, x)

∂xk

)
− civi(t, x) +

n∑
j=1

aijfj
(
vj(t, x)

)

+

n∑
j=1

bijgj
(
vj(t− τij(t), x)

)
+

n∑
j=1

dij

t∫
t−τ∗

ij(t)

hj
(
vj(s, x)

)
ds

+ Ji + wi(t, x)

}
dt+

n∑
j=1

σij
(
ej(t, x), ej

(
t− τij(t), x

))
dωj(t), (4)

where i = 1, 2, . . . , n, v(t, x) = (v1(t, x), . . . , vn(t, x))T is an n-dimensional state
vector of the neural networks; e(t, x) = (e1(t, x), . . . , en(t, x))T = v(t, x) − u(t, x)
is the synchronization error signal; σ = (σij)n×n is the diffusion coefficient matrix (or
noise intensity matrix) and the stochastic disturbance ω(t) = [ω1(t), . . . , ωn(t)]T ∈ Rn
is a Brownian motion defined on (Ω,F ,P), and

E
{

dω(t)
}

= 0, E
{

dω2(t)
}

= dt.

This type of stochastic perturbation can be regarded as a result from the occurrence of
the internal error when the simulation circuits are constructed, such as inaccurate design
of the coupling strength and some other important parameters [41], therefore, it relies on
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the drive system (1). w(t, x) = (w1(t, x), . . . , wn(t, x))T is an intermittent controller
defined by

wi(t, x) =

{∑n
j=1 kij(vj(t, x)− uj(t, x)), (t, x) ∈ [mT,mT + δ)×Ω,

0, (t, x) ∈ [mT + δ, (m+ 1)T )×Ω,
(5)

where m = 0, 1, . . ., kij (i, j = 1, . . . , n) denotes the control strength, T > 0 denotes the
control period and 0 < δ < T is called the control width.

The boundary condition and initial condition for response system (4) are given in the
forms

vi(t, x)|∂Ω = 0, (t, x) ∈ [−τ̄ ,+∞)× ∂Ω, (6)
and

vi(s, x) = ψi(s, x), (s, x) ∈ [−τ̄ , 0]×Ω, (7)

where ψi(s, x) (i = 1, 2, . . . , n) are bounded and continuous on [−τ̄ , 0]×Ω.
Subtracting (1) from (4) yields the error system as follows:

dei(t, x) =

{
l∗∑
k=1

∂

∂xk

(
Dik

∂ei(t, x)

∂xk

)
− ciei(t, x) +

n∑
j=1

aijf
∗
j

(
ej(t, x)

)
+

n∑
j=1

bijg
∗
j

(
ej(t− τij(t), x)

)
+

n∑
j=1

dij

t∫
t−τ∗

ij(t)

h∗j
(
ej(s, x)

)
ds

+ wi(t, x)

}
dt+

n∑
j=1

σij
(
ej(t, x), ej

(
t− τij(t), x

))
dωj(t),

where

f∗j
(
ej(·, x)

)
= fj

(
vj(·, x)

)
− fj

(
uj(·, x)

)
,

g∗j
(
ej(·, x)

)
= gj

(
vj(·, x)

)
− gj

(
uj(·, x)

)
,

h∗j
(
ej(·, x)

)
= hj

(
vj(·, x)

)
− hj

(
uj(·, x)

)
.

In this paper, we give the following hypotheses:

(H1) We assume that there exist positive constants Lj , Mj and Nj such that the neuron
activation functions fj , gj and hj satisfy the following conditions:∣∣fj(v̂j)− fi(v̌j)∣∣ 6 Lj

∣∣v̂j − v̌j∣∣,∣∣gj(v̂j)− gi(v̌j)∣∣ 6Mj

∣∣v̂j − v̌j∣∣,∣∣hj(v̂j)− hi(v̌j)∣∣ 6 Nj
∣∣v̂j − v̌j∣∣,

where v̂j , v̌j ∈ R (j = 1, 2, . . . , n).

(H2) Time-varying transmission delay τij(t) satisfies τ̇ij(t) 6 % < 1 or τ̇ij(t) > % > 1
for all t, where % is a constant.
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Reaction-diffusion neural networks 7

(H3) There exists a positive constant ηij (i, j = 1, 2, . . . , n) such that∣∣σij(v̂1, v̌1)− σij(v̂2, v̌2)
∣∣2 6 ηij

(
|v̂1 − v̂2|2 + |v̌1 − v̌2|2

)
for any v̂1, v̂2, v̌1, v̌2 ∈ R, and

σij(0, 0) = 0, i, j = 1, 2, . . . , n.

Before ending this section, we introduce some notations, the notion of exponential
synchronization for reaction-diffusion neural networks (1) and (4) under periodically
intermittent controller (5) based on p-norm, and some lemmas, which will come into
play later on.

For any u(t, x) = (u1(t, x), . . . , un(t, x))T ∈ Rn, define

∥∥u(t, x)
∥∥
p

=

(∫
Ω

n∑
i=1

∣∣ui(t, x)
∣∣p dx

)1/p

.

Let PC = PC([−τ̄ , 0] × Ω,Rn) denote the piecewise left continuous functions φ:
[−τ̄ , 0]×Ω → Rn with the norm

‖φ‖p =

(∫
Ω

n∑
i=1

sup
−τ̄6s60

∣∣φi(s, x)
∣∣p dx

)1/p

.

Definition 1. The reaction-diffusion neural networks (1) and (4) can be exponentially
synchronized under the intermittent controller (5) based on p-norm, if there exist constants
µ > 0 and M > 1 such that

E
{∥∥v(t, x)− u(t, x)

∥∥
p

}
6ME

{
‖ψ − φ‖p

}
e−µt

for (t, x) ∈ [0,+∞)×Ω.

Lemma 1. (See [42].) Let p > 2 be a positive integer, mk (k = 1, 2, . . . , l∗) be a positive
constant, X be a cube |xk| 6 mk, and let h(x) be a real-valued function belonging to
C1(Ω), which vanish on the boundary ∂Ω of Ω, i.e., h(x)|∂Ω = 0. Then∫

Ω

∣∣h(x)
∣∣p dx 6

p2m2
k

4

∫
Ω

∣∣h(x)
∣∣p−2

∣∣∣∣ ∂h∂xk
∣∣∣∣2 dx.

Lemma 2. (See [43].) Assume that there exist two continuous functions f(x), g(x):
[a, b]→ R, constants a, b, p and q satisfying

b > a, p, q > 1,
1

p
+

1

q
= 1,

then the following inequality holds:
b∫
a

∣∣f(x)g(x)
∣∣dx 6

[ b∫
a

∣∣f(x)
∣∣p dx

]1/p[ b∫
a

∣∣g(x)
∣∣q dx

]1/q

.
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3 Exponential synchronization criterion

In this section, suitable T , δ and kij are designed to realize exponential synchronization
between reaction-diffusion neural networks (1) and (4) under the periodically intermit-
tent controller (5) in terms of p-norm. For convenience, the following denotations are
introduced.

Let

λi = p

[
ci − aiiLi −

1

2
(p− 1)ηii

]
+

l∗∑
k=1

4(p− 1)Dik

pm2
k

−
n∑
j=1
j 6=i

p−1∑
l=1

|aij |pξlijL
pζlij
j − p− 1

2

n∑
j=1
j 6=i

p−2∑
l=1

η
pξlij
ij − p− 1

2

n∑
j=1

p−2∑
l=1

η
pε∗lij
ij

−
n∑
j=1

p−1∑
l=1

(
|bij |pξ

∗
lijM

pζ∗lij
j + |dij |pξ

∗∗
pijN

pζ∗∗pij

j

)
−

n∑
j=1
j 6=i

|aji|pξpjiL
pζpji
i − p− 1

2

n∑
j=1
j 6=i

(
η
pε(p−1)ji

ji + η
pεpji
ji

)
− τ∗

n∑
j=1

ρ∗∗ij ,

ωi = pkii +

n∑
j=1
j 6=i

p−1∑
l=1

|kij |p$lij +

n∑
j=1
j 6=i

|kji|p$pji ,

ρij =
1

α|1− %|

[
|bji|pξ

∗
pjiM

pζ∗pji
i +

p− 1

2

(
η
pε∗(p−1)ji

ji + η
pε∗pji
ji

)]
,

ρ∗ij = ρij − αρij sgn(1− %), ρ∗∗ij = (τ∗)p−1|dji|pξ
∗∗
pjiN

pζ∗∗pji

i ,

where 0 < α < 1; ξlij , ζlij , ξ∗lij , ζ
∗
lij , ξ

∗∗
lij , ζ

∗∗
lij , $lij , εlij and ε∗lij are nonnegative real

numbers and satisfy, respectively,
p∑
l=1

ξlij = 1,

p∑
l=1

ζlij = 1,

p∑
l=1

ξ∗lij = 1,

p∑
l=1

ζ∗lij = 1,

p∑
l=1

ξ∗∗lij = 1,

p∑
l=1

ζ∗∗lij = 1,

p∑
l=1

$lij = 1,

p∑
l=1

εlij = 1 and
p∑
l=1

ε∗lij = 1.

In the following, we will give an assumption

(H4) λi − ωi −
∑n
j=1 ρij > 0 for i = 1, 2, . . . , n.

Consider the function

Fi(εi) = λi − ωi − εi −
n∑
j=1

ρije
εiτ ,

www.mii.lt/NA



Reaction-diffusion neural networks 9

where εi > 0. It is easy to see that

F ′i (εi) = −1−
n∑
j=1

τρije
εiτ < 0, Fi(0) = λi − ωi −

n∑
j=1

ρij > 0.

On the other hand, Fi(εi) is continuous on [0,+∞) and Fi(εi) → −∞ as εi → +∞,
then exists a positive number ε̄i such that Fi(ε̄i) > 0 and Fi(εi) > 0 for εi ∈ (0, ε̄i).
Denoting ε = mini=1,...,n{ε̄i}, then

Fi(ε) = λi − ωi − ε−
n∑
j=1

ρije
ετ > 0.

It follows from the assumption (H4) that there exists a positive number θi such that

λi + θi −
n∑
j=1

ρij > 0

for all i = 1, 2, . . . , n. In a similar way, we have

Gi(ε) = λi + θi − ε−
n∑
j=1

ρije
ετ > 0, (8)

and Gi(·) is decreasing.

Theorem 1. Under assumptions (H1)–(H4), the noise-perturbed response system (4) and
the drive system (1) can be exponentially synchronized under the periodically intermittent
controller (5) based on p-norm with the exponential decay rate (εT − (T − δ)θ)/pT , if
the following condition is also satisfied:

(H5) ε− (T − δ)θ/T > 0, where θ = maxi=1,...,n{θi}.

We put the proof of Theorem in Appendix.

Remark 1. Ma et al. [37] investigated the synchronization problem for a class of stochas-
tic reaction-diffusion neural networks with time-varying delays and Dirichlet boundary
conditions in terms of 2-norm by using linear feedback control under the precondition
that the derivative of the time-varying delay was smaller than one. Zhao and Deng studied
the exponential synchronization of reaction-diffusion neural networks with continuously
distributed delays and stochastic influence in terms of 2-norm based on adaptive con-
trol in [44]. In [40], by using the Lyapunov functional method, many real parameters
and inequality techniques, the global exponential synchronization for a class of delayed
reaction-diffusion cellular neural networks with Dirichlet boundary conditions in terms of
2k-norm (integer k > 0) was discussed. In contrast, our results are derived considering
the model with both discrete and distributed time-varying delays based on p-norm (p > 2),
which have more general application ranges. In this paper, this problem is concerned
and some central criteria are derived by designing periodically intermittent controller.
Our results are more general and they effectually complement or improve the previously
known results in the literature where only p = 2 or 2k were considered.
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Remark 2. As pointed out in [21], there are few results concerning the robust stability and
robust synchronization schemes for complex networks, in particular stochastic complex
networks and reaction-diffusion complex networks based on p-norm and∞-norm using
intermittent control. This motivates us to write this paper. It is the first time to establish
the exponential synchronization criterion for neural networks with mixed time-varying
delays, stochastic noise perturbation and reaction-diffusion effects in terms of p-norm. In
this paper, the periodically intermittent control is generalized to study a more reasonable
neural network model and the traditional restrictions in [15–17] that δ > τ and T −δ > τ
are removed.

Remark 3. In Theorem 3, a novel Lyapunov–Krasovskii functional V (t, x) is employed
to deal with the reaction-diffusion neural networks with mixed time-varying delays
and stochastic perturbation. In the novel Lyapunov–Krasovskii functional (A.1), the
integral term

∫ t
t−τ Vi(s, x) ds is divided into two parts as ρij

∫ t
t−τij(t)

Vi(s, x) ds and
ρ∗ij
∫ t−τij(t)

t−τ Vi(s, x) ds, where ρ∗ij is chosen as ρij − αρij sgn(1 − %) with 0 < α < 1,
such a newly introduced variable may lead to potentially less conservative results on the
upper bound of the time derivative of time-varying delay.

Remark 4. The results in this paper show that, the exponential synchronization criteria
on reaction-diffusion neural networks are dependent of time-varying delays, diffusion
effects and stochastic noise fluctuations. Furthermore, we can see a very interesting fact,
that is, as long as diffusion coefficients Dik in the system is large enough, then the as-
sumption (H4) always can satisfy. This shows that under the boundary conditions (2) and
(6), a large enough diffusion always may make the reaction-diffusion neural networks (1)
and (4) globally exponentially synchronous under the intermittent controller (5) with
condition (H5).

4 Numerical examples

In this section, by using the classical implicit format and the method of steps for differen-
tial difference equations, we give some examples with numerical simulations to illustrate
the effectiveness of the theoretical results obtained above.

Example 1. For the sake of simplification, we consider a reaction-diffusion neural net-
work model described by

dui(t, x)

dt
= Di

∂2ui(t, x)

∂x2
− ciui(t, x) +

2∑
j=1

aijfj
(
uj(t, x)

)
+

2∑
j=1

bijgj
(
uj(t− τ(t), x)

)
+

2∑
j=1

dij

t∫
t−τ∗(t)

hj
(
uj(s, x)

)
ds, (9)

where i = 1, 2, fi(ui) = 0.5(|ui + 1| − |ui − 1|) and gi(ui) = hi(ui) = tanh(ui).
Clearly, it can be seen that the hypothesis (H1) is satisfied with Li = Mi = Ni = 1
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(i = 1, 2). The parameters of (9) are assumed that c1 = c2 = 1, a11 = 0.2, a12 = −1,
a21 = −0.3, a22 = 1, b11 = −1, b12 = −1.5, b21 = −0.2, b22 = −2, d11 = 0.8,
d12 = 0.1, d21 = −0.5, d22 = −1, D1 = 0.1, D2 = 0.2, τ(t) = 0.7 + 0.1 sin(t) and
τ∗(t) = 1.3 + 0.6 cos(t). The initial condition of drive system (9) is chosen as

u1(s, x) = 0.5

(
1 +

s− τ(s)

π

)
sin

(
x

π

)
,

u2(s, x) = 0.3

(
1 +

s− τ(s)

π

)
sin

(
x

π

)
,

(10)

where (s, x) ∈ [−1.9, 0] × Ω. The reaction-diffusion neural network (9) with boundary
condition (2) and initial condition (10) exhibits a chaotic behavior as shown in Fig. 1.

The noise-perturbed response system is described by

dvi(t, x) =

{
Di
∂2vi(t, x)

∂x2
− civi(t, x) +

2∑
j=1

aijfj
(
vj(t, x)

)

+

2∑
j=1

bijgj(vj
(
t− τ(t), x)

)
+

2∑
j=1

dij

t∫
t−τ∗(t)

hj
(
vj(s, x)

)
ds

+ wi(t, x)

}
dt+

2∑
j=1

σij
(
ej(t, x), ej

(
t− τ(t), x

))
dωj(t), (11)

where

σ11 = 0.1e1(t, x) + 0.2e1

(
t− τ(t), x

)
, σ12 = 0,

σ21 = 0, σ22 = 0.2e2(t, x) + 0.3e2

(
t− τ(t), x

)
.

Meanwhile, we set the initial condition for response system (11) as follows:

v1(s, x) = 0.1

(
1 +

s− τ(s)

π

)
sin

(
x

π

)
,

v2(s, x) = 0.6

(
1 +

s− τ(s)

π

)
sin

(
x

π

)
for (s, x) ∈ [−1.9, 0]×Ω.

By simple computation, we obtain that τ̇(t) 6 % = 0.1 < 1, m1 = 5, τ = 0.8, τ∗ =
1.9, τ̄ = 1.9, η11 = 0.04, η12 = η21 = 0 and η22 = 0.09. In addition, for convenience,
we only consider the case p = 2. Choosing k11 = −7, k12 = 0, k21 = 0, k22 = −12,
α = 0.95 and ξlij = ζlij = ξ∗lij = ζ∗lij = ξ∗∗lij = ζ∗∗lij = $lij = εlij = ε∗lij = 1/2 for
l, i, j = 1, 2, then

λ1 = −7.865, λ2 = −9.135, ω1 = −14, ω2 = −24,

ρ11 = 1.2163, ρ12 = 0.2339, ρ21 = 1.7543, ρ22 = 2.4444,

ρ∗11 = 0.0608, ρ∗12 = 0.0117, ρ∗21 = 0.0887, ρ∗22 = 0.1222.

Nonlinear Anal. Model. Control, 2014, Vol. 19, No. 1, 1–25
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Fig. 1. Chaotic attractor of neural network model (9).

Fig. 2. Synchronization errors e1(t, x) and e2(t, x) between systems (9) and (11).

Hence, ε̄1 = 1.4785, ε̄2 = 1.4518 and θ > 23.9997 by computation. Therefore, ε =
1.4518 and δ > 18.7902 when T = 20 and θ = 24 are taken in virtue of assumption (H5).
Select δ = 19, then (H5) is also satisfied. According to Theorem 3, which implies that
systems (9) and (11) are exponential synchronized in terms of p-norm as shown in Fig. 2.

Example 2. Consider the neural networks with four dynamical nodes:

dui(t, x)

dt
= Di

∂2ui(t, x)

∂x2
− ciui(t, x) +

4∑
j=1

aijfj
(
uj(t, x)

)
+

4∑
j=1

bijgj
(
uj
(
t− τ(t), x

))
+

4∑
j=1

dij

t∫
t−τ∗

hj
(
uj(s, x)

)
ds+ Ji, (12)

where i = 1, 2, 3, 4, fi(ui) = 0.5(|ui + 1|− |ui− 1|), gi(ui) = arctan(ui) and hi(ui) =
tanh(ui). Similarly, we can derive that the hypothesis (H1) is satisfied with Li = Mi =
Ni = 1 (i = 1, 2, 3, 4). The parameters of (12) are assumed that ci = Di = 1, Ji = 0.1
(i = 1, 2, 3, 4), a11 = −1, a12 = 1, a13 = 0.5, a14 = −0.5, a21 = −0.3, a22 = −1,
a23 = −1, a24 = −1, a31 = 0.6, a32 = 0.1, a33 = −1, a34 = −1, a41 = −0.2,
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Fig. 3. Chaotic attractor of neural network model (12).

a42 = 0.1, a43 = −0.1, a44 = −0.5, b11 = 1 , b12 = −0.1, b13 = −1, b14 = −0.1,
b21 = −0.2, b22 = −1, b23 = −0.5, b24 = 0.1, b31 = 0.1, b32 = −0.1, b33 = 0.3,
b34 = −0.4, b41 = −0.3, b42 = 0.1, b43 = −0.3, b44 = −0.5, d11 = 1.2, d12 = 0.1,
d13 = 0.5, d14 = −0.4,d21 = −0.5, d22 = 0.5, d23 = −0.5, d24 = −0.1, d31 = −0.1,
d32 = 0.6, d33 = 0.3, d34 = −0.4, d41 = −0.1, d42 = 0.1, d43 = 0.2, d44 = −0.3,
τ(t) = 1.1t+ 0.1 and τ∗ = 0.5. The initial condition of system (12) is chosen as

u1(s, x) =0.5

(
1 +

s− τ(s)

π

)
sin

(
x

π

)
,

u2(s, x) =0.3

(
1 +

s− τ(s)

π

)
sin

(
x

π

)
,

u3(s, x) =0.2

(
1 +

s− τ(s)

π

)
cos

(
x

π

)
,

u4(s, x) =0.6

(
1 +

s− τ(s)

π

)
cos

(
x

π

)
,

(13)

where (s, x) ∈ (−∞, 0]× Ω. The reaction-diffusion neural network (12) with boundary
condition (2) and initial condition (13) exhibits a chaotic behavior as shown in Fig. 3.

Nonlinear Anal. Model. Control, 2014, Vol. 19, No. 1, 1–25



14 Q. Gan et al.

The corresponding response system can be given as

dvi(t, x) =

{
Di
∂2vi(t, x)

∂x2
− civi(t, x) +

4∑
j=1

aijfj
(
vj(t, x)

)
+

4∑
j=1

bijgj
(
vj
(
t− τ(t), x

))
+

4∑
j=1

dij

t∫
t−τ

hj
(
vj(s, x)

)
ds

+ Ji + wi(t, x)

}
dt+

4∑
j=1

σij
(
ej(t, x), ej

(
t− τ(t), x)

)
dωj(t), (14)

where

σii = 0.1ei(t, x) + 0.2ei
(
t− τ(t), x

)
, σij = 0, i 6= j, i, j = 1, 2, 3, 4.

Meanwhile, the initial condition for response system (14) is given by:

v1(s, x) = 0.1

(
1 +

s− τ(s)

π

)
sin

(
x

π

)
,

v2(s, x) = 0.6

(
1 +

s− τ(s)

π

)
sin

(
x

π

)
,

v3(s, x) = 0.8

(
1 +

s− τ(s)

π

)
cos

(
x

π

)
,

v4(s, x) = 0.2

(
1 +

s− τ(s)

π

)
cos

(
x

π

)
,

for (s, x) ∈ (−∞, 0]×Ω.
In this case, τ̇(t) > % = 1.1 > 1. Choosing k11 = −5, k22 = −8, k33 = −10,

k44 = −12, kij = 0 (i 6= j, i, j = 1, 2, 3, 4), T = 30 and δ = 29, similar to Example 1,
it follows from Fig. 4 that systems (12) and (14) are exponential synchronized in terms of
p-norm.

Remark 5. In [45], the authors studied the globally exponential synchronization for a
class of reaction-diffusion neural networks with discrete variable delays and finite dis-
tributed constant delays based on periodically intermittent control under Dirichlet bound-
ary conditions. Theorem 1 in [45] cannot be used to study this example with τ̇(t) > 1
for all t (fast-varying delay). However, after a simple computation, the conditions of
Theorem 3 hold. The numerical simulations clearly verify the effectiveness of the devel-
oped periodically intermittent controller to the exponential synchronization of reaction-
diffusion neural networks with mixed time-varying delays and stochastic perturbation
based on p-norm.

Remark 6. Note that the activation functions in [38, 46–50] are required to satisfy the
condition

0 6
fj(v̂j)− fi(v̌j)

v̂j − v̌j
6 Lj ,

for any v̂j , v̌j ∈ R (j = 1, 2, . . . , n).
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Fig. 4. Synchronization errors e1(t, x), e2(t, x), e3(t, x) and e4(t, x) between systems (12) and (14).

Obviously, this condition is stranger than the Lipstchizian condition in (H1). Hence,
the results in [38, 46–50] are unavailable for this example.

5 Conclusion

In this paper, a periodically intermittent controller has been proposed to ensure the expo-
nential synchronization for a class of reaction-diffusion neural networks with mixed time-
varying delays and stochastic noise perturbation under Dirichlet boundary conditions in
terms of p-norm. The problem considered in this paper is more general in many aspects
and incorporates as special cases various problems, which have been studied extensively
in the literature. Some remarks and numerical examples have been used to demonstrate
the effectiveness of the obtained results.

It should be pointed out that there are many published papers focusing on the synchro-
nization problems of chaotic neural networks, but mixed time-varying delays, stochastic
perturbation and reaction-diffusion effects have never been taken into consideration in
terms of the synchronization issue based on p-norm for a variety of neural networks.
To the best knowledge of the authors, this is the first paper incorporating mixed time-
varying delays, stochastic perturbation and reaction-diffusion effects into the problem of
exponential synchronization for chaotic neural networks under periodically intermittent
control in terms of p-norm.

Nonlinear Anal. Model. Control, 2014, Vol. 19, No. 1, 1–25



16 Q. Gan et al.

From condition (H4) in Theorem 3, we see that as long as feedback strength parameter
kii (i = 1, 2, . . . , n) is chosen small enough, then condition (H4) always holds. Therefore,
we can obtain that there always exists an appropriate periodically intermittent control
input strategy in response system (4) at all time such that drive-response systems (1) and
(4) with boundary conditions (2) and (6) and initial conditions (3) and (7) are global
exponential synchronization. However, the decomposing way used in (A.5)–(A.10) and
the inequality technique used in (A.11) maybe increase the conservatism of the criteria on
the upper bound of feedback strength kii. So, this is a problem that we should study in
the further.

In fact, due to the different parameters, activation functions and neural network archi-
tectures, which is unavoidable in real implementation, the master system and response
system are not identical and the resulting synchronization is not exact and complex.
Therefore, it is important and challenging to study the synchronization problems of non-
identical chaotic neural networks. Furthermore, our analysis is carried out under the
assumption p > 2 throughout this paper. Evidently, there is an interesting open problem
concerning the exponential synchronization for non-identical reaction-diffusion neural
networks with mixed time-varying delays and stochastic noise disturbance by using peri-
odically intermittent control for p = 1 or based on∞-norm. This will become our future
investigative direction.

Appendix. Proof of Theorem 3

Define the Lyapunov–Krasovskii functional V (t, x) ∈ C2,1(R+ × Rn;R+) as

V (t, x) =

∫
Ω

n∑
i=1

[
Vi(t, x) + eετ

n∑
j=1

ρij

t∫
t−τij(t)

Vi(s, x) ds

+ eετ
n∑
j=1

ρ∗ij

t−τij(t)∫
t−τ

Vi(s, x) ds+

n∑
j=1

ρ∗∗ij

0∫
−τ∗

ij(t)

t∫
t+s

Vi(η, x) dη ds

]
dx, (A.1)

where
Vi(t, x) = Vi

(
t, e(t, x)

)
= eεt

∣∣ei(t, x)
∣∣p, i = 1, 2, . . . , n.

By the Itô’s differential formula, we have the following stochastic differential:

dV
(
t, e(t, x)

)
= LV

(
t, e(t, x)

)
dt+ Ve

(
t, e(t, x)

)
σ(t) dω(t), (A.2)

where

LV
(
t, e(t, x)

)
= Vt

(
t, e(t, x)

)
+ Ve

(
t, e(t, x)

)
Φ

+
1

2
trace

[
σT(t)Vee

(
t, e(t, x)

)
σ(t)

]
,

Vt
(
t, e(t, x)

)
=
∂V (t, e(t, x))

∂t
,
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Ve
(
t, e(t, x)

)
=

(
∂V (t, e(t, x))

∂e1
, . . . ,

∂V (t, e(t, x))

∂en

)
,

Vee(t, e(t, x)) =

(
∂2V (t, e(t, x))

∂ei∂ej

)
n×n

,

Φ = (Φ1, . . . , Φn),

Φi = −ciei(t, x) +

n∑
j=1

aijf
∗
j

(
ej(t, x)

)
+

n∑
j=1

bijg
∗
j

(
ej
(
t− τij(t), x

))

+

n∑
j=1

dij

t∫
t−τ∗

ij(t)

h∗j
(
ej(s, x)

)
ds+ wi(t, x).

It follows from (A.2) the Dini derivation, it can be deduced that

D+E
{
V (t, x)

}
=

∫
Ω

n∑
i=1

{
εVi(t, x) + peεt

∣∣ei(t, x)
∣∣p−1

×

[
−ci
∣∣ei(t, x)

∣∣+

n∑
j=1

aijf
∗
j

(∣∣ej(t, x)
∣∣)+

n∑
j=1

bijg
∗
j

(∣∣ej(t− τij(t), x)∣∣)

+

n∑
j=1

dij

t∫
t−τ∗

ij(t)

h∗j
(∣∣ej(s, x)

∣∣) ds+

n∑
j=1

kij
∣∣ej(t, x)

∣∣]

+ eετ
n∑
j=1

ρij
[
Vi(t, x)−

(
1− τ̇ij(t)

)
Vi
(
t− τij(t), x

)]
+ eετ

n∑
j=1

ρ∗ij
[(

1− τ̇ij(t)
)
Vi
(
t− τij(t), x

)
− Vi(t− τ, x)

]

+

n∑
j=1

ρ∗∗ij

[
τ∗ij(t)Vi(t, x)−

t∫
t−τ∗

ij(t)

Vi(s, x) ds

]

+
p(p− 1)

2
eεt
∣∣ei(t, x)

∣∣p−2
n∑
j=1

ρ2
ij

(∣∣ej(t, x)
∣∣, ∣∣ej(t− τij(t), x)∣∣)}dx

+

∫
Ω

n∑
i=1

peεt
∣∣ei(t, x)

∣∣p−1
l∗∑
k=1

∂

∂xk

(
Dik

∂|ei(t, x)|
∂xk

)
dx (A.3)

for (t, x) ∈ [mT,mT + δ)×Ω.
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From the boundary conditions (2), (6) and Lemma 1, we can obtain [42]

p

∫
Ω

∣∣ei(t, x)
∣∣p−1

l∗∑
k=1

∂

∂xk

(
Dik

∂|ei(t, x)|
∂xk

)
dx

6 −
l∗∑
k=1

4(p− 1)Dik

pm2
k

∫
Ω

∣∣ei(t, x)
∣∣p dx. (A.4)

Furthermore, it follows from (H1) and the fact

ap1 + ap2 + · · ·+ app > pa1a2 · · · ap, ai > 0, i = 1, 2, . . . , p,

that

p
∣∣ei(t, x)

∣∣p−1
n∑

j=1,
j 6=i

aijf
∗
j

(∣∣ej(t, x)
∣∣)

6 p
∣∣ei(t, x)

∣∣p−1
n∑
j=1
j 6=i

|aij |Lj
∣∣ej(t, x)

∣∣
=

n∑
j=1
j 6=i

p

[
p−1∏
l=1

(
|aij |ξlijL

ζlij
j

∣∣ei(t, x)
∣∣)](|aij |ξpijLζpijj

∣∣ej(t, x)
∣∣)

6
n∑
j=1
j 6=i

p−1∑
l=1

|aij |pξlijL
pζlij
j

∣∣ei(t, x)
∣∣p +

n∑
j=1
j 6=i

|aij |pξpijL
pζpij
j

∣∣ej(t, x)
∣∣p. (A.5)

Similarly, we have

p
∣∣ei(t, x)

∣∣p−1
n∑
j=1

bijg
∗
j

(∣∣ej(t−τij(t), x)∣∣)
6

n∑
j=1

p−1∑
l=1

|bij |pξ
∗
lijM

pζ∗lij
j

∣∣ei(t, x)
∣∣p+

n∑
j=1

|bij |pξ
∗
pijM

pζ∗pij
j

∣∣ej(t−τij(t), x)∣∣p, (A.6)

p
∣∣ei(t, x)

∣∣p−1
n∑
j=1

dij

t∫
t−τ∗

ij(t)

h∗j
(∣∣ej(s, x)

∣∣) ds

6
n∑
j=1

p−1∑
l=1

|dij |pξ
∗∗
lijN

pζ∗∗lij

j

∣∣ei(t, x)
∣∣p

+

n∑
j=1

|dij |pξ
∗∗
pijN

pζ∗∗pij

j

[ t∫
t−τ∗

ij(t)

∣∣ej(s, x)
∣∣ds]p, (A.7)
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p
∣∣ei(t, x)

∣∣p−1
n∑
j=1
j 6=i

kij
∣∣ej(t, x)

∣∣
6

n∑
j=1
j 6=i

p−1∑
l=1

|kij |p$lij
∣∣ei(t, x)

∣∣p +

n∑
j=1
j 6=i

|kij |p$pij
∣∣ej(t, x)

∣∣p, (A.8)

p
∣∣ei(t, x)

∣∣p−2
n∑
j=1
j 6=i

ηij
∣∣ej(t, x)

∣∣2

6
n∑
j=1
j 6=i

p−2∑
l=1

η
pεlij
ij

∣∣ei(t, x)
∣∣p +

n∑
j=1
j 6=i

(
η
pε(p−1)ij

ij + η
pεpij
ij

)∣∣ej(t, x)
∣∣p (A.9)

and

p
∣∣ei(t, x)

∣∣p−2
n∑
j=1

ηij
∣∣ej(t− τij(t), x)∣∣2

6
n∑
j=1

p−2∑
l=1

η
pε∗lij
ij

∣∣ei(t, x)
∣∣p +

n∑
j=1

(
η
pε∗(p−1)ij

ij + η
pε∗pij
ij

)∣∣ej(t− τij(t), x)∣∣p. (A.10)

By applying (A.4)–(A.10), assumptions (H2)–(H3) and Lemmas 1–2 to (A.3), we
have

D+E
{
V (t, x)

}
6 E

{∫
Ω

n∑
i=1

{[
ε− p

(
ci − aiiLi − kii −

1

2
(p− 1)ηii

)

−
l∗∑
k=1

4(p− 1)Dik

pm2
k

+

n∑
j=1
j 6=i

p−1∑
l=1

(
|aij |pξlijL

pζlij
j + |kij |p$lij

)

+

n∑
j=1

p−1∑
l=1

(
|bij |pξ

∗
lijM

pζ∗lij
j + |dij |pξ

∗∗
pijN

pε∗∗pij
j

)
+
p− 1

2

n∑
j=1
j 6=i

p−2∑
l=1

η
pξlij
ij +

p− 1

2

n∑
j=1

p−2∑
l=1

(
η
pε∗lij
ij + η

pε∗∗lij
ij

)]
Vi(t, x)

+

[
n∑
j=1
j 6=i

(
|aij |pξpijL

pζpij
j + |kij |p$pij

)
+
p− 1

2

n∑
j=1
j 6=i

(
η
pε(p−1)ij

ij + η
pεpij
ij

)]
Vj(t, x)
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+

n∑
j=1

ρ∗∗ij

[
τ∗Vi(t, x)−

t∫
t−τ∗

ij(t)

Vi(s, x) ds

]

+

n∑
j=1

|dij |pξ
∗∗
pijN

pζ∗∗pij

j

[ t∫
t−τ∗

ij(t)

∣∣ej(s, x)
∣∣ds]p

+

n∑
j=1

[
|bij |pξ

∗
pijM

pζ∗pij
j +

p− 1

2

(
η
pε∗(p−1)ij

ij + η
pε∗pij
ij

)]
eετVj

(
t− τij(t), x

)
+ eετ

n∑
j=1

ρijVi(t, x) + eετ
n∑
j=1

(
−αρij |1− %|

)
Vi(t− τij(t), x)

}
dx

}

= −E

{∫
Ω

n∑
i=1

[
λi − ωi − ε−

n∑
j=1

ρije
ετ

]
Vi(t, x) dx

}
6 0, (A.11)

which implies that
E
{
V (t, x)

}
6 E

{
V (mT, x)

}
(A.12)

for (t, x) ∈ [mT,mT + δ)×Ω.
Similarly, for (t, x) ∈ [mT + δ, (m+ 1)T )×Ω, we can get

D+E
{
V (t, x)

}
6 −

∫
Ω

n∑
i=1

[
λi + θi − ε− eετ

n∑
j=1

ρij

]
Vi(t, x) dx+

∫
Ω

n∑
i=1

θiVi(t, x) dx

6
∫
Ω

n∑
i=1

θVi(t, x) dx,

which leads to

E
{
V (t, x)

}
6 E

{
V (mT + δ, x) exp

{
θ(t−mT − δ)

}}
for (t, x) ∈ [mT + δ, (m+ 1)T )×Ω.

Combining these two cases, we summarize that:

(i) For (t, x) ∈ [0, δ)×Ω, it follows from (A.12) that

E
{
V (t, x)

}
6 E

{
V (0, x)

}
.

(ii) For (t, x) ∈ [δ, T )×Ω, we have

E
{
V (t, x)

}
6 E

{
V (δ, x) exp

{
θ(t− δ)

}}
6 E

{
V (0, x) exp

{
θ(t− δ)

}}
.
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(iii) For (t, x) ∈ [T, T + δ)×Ω, we get

E
{
V (t, x)

}
6 E

{
V (T, x)

}
6 E

{
V (0, x) exp

{
θ(T − δ)

}}
.

(iv) For (t, x) ∈ [T + δ, 2T )×Ω, we know

E
{
V (t, x)

}
6 E

{
V (T+δ, x) exp

{
θ(t−T−δ)

}}
6 E

{
V (0, x) exp

{
θ(t−2δ)

}}
.

Repeating this procedure, we obtain that for (t, x) ∈ [mT,mT + δ)×Ω,

E
{
V (t, x)

}
6 E

{
V (mT, x)

}
6 E

{
V (0, x) exp

{
mθ(T − δ)

}}
. (A.13)

Moreover, in the case of (t, x) ∈ [mT + δ, (m+ 1)T )×Ω, we have

E
{
V (t, x)

}
6 E

{
V (mT + δ, x) exp

{
θ(t−mT − δ)

}}
6 E

{
V (0, x) exp

{
θ(t− (m+ 1)δ)

}}
. (A.14)

If (t, x) ∈ [mT,mT + δ)×Ω, we have m 6 t/T , then it follows from (A.13) that

E
{
V (t, x)

}
6 E

{
V (0, x) exp

{
(T − δ)θ

T
t

}}
. (A.15)

Similarly, if mT + δ 6 t < (m + 1)T , we have t/T < m + 1, then it follows
from (A.14) that (A.15) holds for (t, x) ∈ [mT + δ, (m + 1)T ) × Ω. Hence, for any
(t, x) ∈ [0,+∞)×Ω, (A.15) always holds.

Note that

E
{
V (0, x)

}
= E

{∫
Ω

n∑
i=1

[
Vi(0, x) + eετ

n∑
j=1

ρij

0∫
−τij(0)

Vi(s, x) ds

+ eετ
n∑
j=1

ρ∗ij

−τij(0)∫
−τ

Vi(s, x) ds+

n∑
j=1

ρ∗∗ij

0∫
−τ∗

ij(0)

0∫
s

Vi(η, x) dη ds

]
dx

}

6 E

{∫
Ω

n∑
i=1

[∣∣ei(0, x)
∣∣p + eετ

n∑
j=1

ρij

0∫
−τij(0)

eεs
∣∣ei(s, x)

∣∣p ds

+ eετ
n∑
j=1

ρ∗ij

−τij(0)∫
−τ

eεs
∣∣ei(s, x)

∣∣p ds+

n∑
j=1

τ∗ρ∗∗ij

0∫
−τ∗

ij(0)

eεs
∣∣ei(s, x)

∣∣p ds

]
dx

}
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6 E

{∫
Ω

n∑
i=1

[∣∣ei(0, x)|p + eετ max
i=1,...,n

{
n∑
j=1

ρij

}
n∑
j=1

0∫
−τij(0)

eεs
∣∣ei(s, x)

∣∣p ds

+ eετ max
i=1,...,n

{
n∑
j=1

ρ∗ij

}
n∑
j=1

−τij(0)∫
−τ

eεs
∣∣ei(s, x)

∣∣p ds

+ max
i=1,...,n

{
τ∗

n∑
j=1

ρ∗∗ij

}
n∑
j=1

0∫
−τ∗

ij(0)

eεs
∣∣ei(s, x)

∣∣p ds

]
dx

}

6

[
1 + τeετ max

i=1,...,n

{
n∑
j=1

(ρij + ρ∗ij)

}
+ max
i=1,...,n

{
(τ∗)2

n∑
j=1

ρ∗∗ij

}]
×E

{
‖ψ − φ‖pp

}
(A.16)

and

E
{
V (t, x)

}
>

{∫
Ω

n∑
i=1

eεt
∣∣ei(t, x)

∣∣p dx

}
= eεtE

{∥∥v(t, x)− u(t, x)
∥∥p
p

}
. (A.17)

Let

M =

[
1 + τeετ max

i=1,...,n

{
n∑
j=1

(ρij + ρ∗ij)

}
+ max
i=1,...,n

{
(τ∗)2

n∑
j=1

ρ∗∗ij

}]1/p

> 1,

µ =
1

p

[
ε− (T − δ)θ

T

]
> 0.

It follows from (A.15)–(A.17) that

E
{∥∥v(t, x)− u(t, x)

∥∥
p

}
6ME

{
‖ψ − φ‖p

}
e−µt,

which implies that the noise-perturbed response system (4) and the drive system (1) can
be exponentially synchronized under the intermittent controller (5) based on p-norm. This
completes the proof of Theorem 3.
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