
26 Nonlinear Analysis: Modelling and Control, 2014, Vol. 19, No. 1, 26–42

Particle swarm optimization for linear support vector
machines based classifier selection

Gintautas Garšva, Paulius Danėnas
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Abstract. Particle swarm optimization is a metaheuristic technique widely applied to solve various
optimization problems as well as parameter selection problems for various classification techniques.
This paper presents an approach for linear support vector machines classifier optimization
combining its selection from a family of similar classifiers with parameter optimization.
Experimental results indicate that proposed heuristics can help obtain competitive or even better
results compared to similar techniques and approaches and can be used as a solver for various
classification tasks.
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1 Introduction

Novel machine learning techniques play a very important role in solving various analysis
and forecasting problems in various domains. Computational finance is one of such fields,
which involves many researchers working in subfields such as financial forecasting, de-
velopment of advanced techniques for credit risk modelling and evaluation to evaluate
ratings, classify debtors by their risk level, predict bankruptcies. Various financial insti-
tutions and authorities such as banking sector, investors, governing authorities pay a lot
more attention to these techniques as they prove to overcome limitations of previously
applied techniques or tend to show competitive results in terms of accuracy or precision.
As Balthazar refers in [1], machine learning techniques such as support vector machines
(SVM) based models are already successfully applied to solve real world problems in
Standard & Poor’s rating company. Support vector machines is widely adopted classi-
fication technique with performance comparable to neural network classifiers; yet, they
help to avoid some of their problems such as overtraining, overfitting, local minimas.
SVM is applied to solve various classification problems in different domains, including
bioinformatics and computational biology [2, 3], document classification [4, 5] image
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recognition [6, 7] etc. as well as bankruptcy prediction [8–10]. Least squares SVM (LS-
SVM), developed by Suykens and Vandevalle [11], reformulates SVM as quadratic pro-
gramming problem, solved by a set of linear equations. Lai et al., Zhou and Lai used
LS-SVM to develop approaches for credit risk evaluation [12, 13]. One of main chal-
lenges in SVM adoption for practical real world problems is parameter selection task
– multiple SVMs with different parameters have to be computed in order to find SVM
which results in best classification performance. This is also stated in book by Steinwart
and Christmann [14]. Various heuristic and evolutionary optimization techniques are used
to solve this task. Grid search is used as an option by various researchers such as Chen
et al. [8], Yun et al. [15]; it is also implemented by default in some SVM packages such
as LibSVM [16]. Papers which describe adoption of genetic algorithm report its benefits
and increase in overall classification performance [17, 18]. Particle swarm optimization
(abbr. as PSO) algorithm introduced by Kennedy [19] and based on behaviour of flock
of birds has also been reported by various researchers as an effective tool for parameter
selection [15, 20–23], feature selection [24] or combination of both [25–27].

Linear support vector machines are not widely applied to solve classification problems
in credit risk domain, mainly because of their inflexibility in modelling. They are more
applicable for large scale classification, whereas related surveys [28,29] indicated that re-
search of insolvency prediction or ratings analysis mostly involved mostly less than 1000
instances. This is related mainly to limited availability of related data; however, increasing
amount of various financial data available online offers possibilities for new insights, as
well as advantages of larger scale research. The authors of linear SVM (particularly its
implementations in LIBLINEAR software) showed that in some cases it is able to produce
competitive results to nonlinear SVMs while resulting in less complexity and reduced
computational time required to train classifier [30–32]. Similar results were also obtained
in our previous works [33, 34] where we worked with comparatively large number of in-
stances. Wu [35] demonstrated that linear SVM classifiers can be very sensitive regarding
their cost parameters; therefore their selection is necessary, yet subtle task. To deal with
this problem, we previously introduced a hybrid technique based on PSO and linear SVM
called PSO-LinSVM with capability to select linear SVM classifier algorithm together
with its parameters. In this work we concentrated mainly on its adoption on credit risk
evaluation problem, applying real-value based PSO algorithm for hybrid search space
with one discrete dimension [36, 37]. Although the results were promising, the nature
of real-valued PSO indicated its possible improvements regarding particle movement in
discrete dimension. Therefore, this paper extends this work by proposing enhancement of
PSO-LinSVM algorithm for hybrid search space.

2 Description of techniques used in research

2.1 Support vector machines algorithms

Support vector machines (SVM) technique is based on statistical learning theory, de-
veloped by Vapnik and Chervonenkis, and structural risk minimization (SRM), which
minimizes an upper bound on the generalization error and enables good generalization
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Let d(x) = wx + b

“Positive” hyperplane:
d(x) = +1
“Negative” hyperplane:
d(x) = -1
Classifier margin: d(x) = 0

x− – point of “negative”
hyperplane
x+ – point of “positive”
hyperplane, nearest to x−
M – margin width (|x+ −
x−| = M)

Possible point values
(classes):
+1 if d(x) > 1
−1 if d(x) 6 −1

Fig. 1. Linear support vector machine illustration. (Source: adopted from [38], using comments by the authors.)

capabilities; it is described in detail in [39]. SVM performs data discrimination by map-
ping the input space to a high-dimensional feature space using kernel functions.

Linear SVM is illustrated in Fig. 1. The main objective is to find a hyperplane which
minimizes margin error and is described as a set of support vectors. Finding these vectors
from training data is formulated as quadratic optimization problem [39]

minimize
w,b,ξ

1

2
‖w‖2 + C

l∑
i=1

ξi

subject to yi
(
wTφ(xi) + b

)
> 1− ξi, ξi > 0,

(1)

whereC is a regularization (also referred as cost [16]) parameter that determines the trade-
off between the maximum margin and the minimum classification error. The decision
function is defined as [39]

sgn
(
φ(x) ·w

)
. (2)

If training vectors are not linearly separable, they can be represented in a larger
(probably infinite) dimensional space by using kernel functionK(xi, xj) ≡ φ(xi)Tφ(xj).
SVM is solved using dual formulation [16, 38]

minimize
1

2

l∑
i=1

l∑
j=1

yiyjαiαjK(xi, xj)−
l∑
i=1

αi

subject to
l∑
i=1

αiyi ∀i: 0 6 αi 6 C,

(3)

where the number of training examples is denoted by l, training vectors xi ∈ R, i =
1 . . . l, and a vector y ∈ Rl such that y ∈ {−1, 1}. α is a vector of l Lagrange multipliers,
where each αi corresponds to a training example (xi, yi). According to [38], parameters
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Table 1. Linear SVM classification algorithms and their formulations.

Algorithm Minimization problem

L2-regularized logistic regression minw
1
2
wTw + C

∑l
i=1 log(1 + eylw

Txl )

L2-regularized L2-loss SVC (dual) minα
1
2
αTQα− eTα, 0 6 αi 6 C, i = 1 . . . l

L2-regularized L2-loss SVC (primal) minw
1
2
wTw + C

∑l
i=1(max(0, 1− ylwTxl))

2

L2-regularized L1-loss SVC minw
1
2
wTw + C

∑l
i=1 max(0, 1− ylwTxl)

L1-regularized L2-loss SVC minw
1
2
‖w‖1 + C

∑l
i=1(max(0, 1− ylwTxl))

2

L1-regularized logistic regression minw
1
2
‖w‖1 + C

∑l
i=1 log(1 + eylw

Txl )

L2-regularized logistic regression (dual) minα
1
2
αTQα+

∑
i:αi>0 αi logαi

−
∑
i:αi<C

(C − αi) log(C − αi)−
∑l
i=1 C logC

for optimal hyperplane w0 and b0 are obtained using

w0 =

l∑
i=1

α0iyixi, b0 =
1

NSV

NSV∑
s=1

(
ys − xT

sw0

)
, s = 1 . . . NSV , (4)

where NSV is the number of support vectors. Support vectors are instances which have
nonzero α0i and support forming the decision function which becomes [16]

sgn

(
l∑
i=1

yiαiK(xi,x) + b

)
. (5)

Linear SVM. A linear SVM classifier is defined as follows [40]: given training vectors
xi ∈ Rn, i = 1 . . . l, in two class, and a vector y ∈ Rl such that y ∈ {−1, 1}, a linear
classifier generates a weight vector x using a decision function

sgn
(
wTx

)
. (6)

LIBLINEAR includes a family of linear SVM and logistic regression classifiers for
large-scale SVM classification. These classifiers have several advantages over nonlinear
SVM implementations (such as LibSVM or SVMLight) as absence of kernel functions
results in reduced complexity and training time. In some cases, the discriminant function
of the classifier includes a bias term b. LIBLINEAR handles this term by augmenting the
vector w and each instance xi with an additional dimension wT ←

⌊
wT,b

⌋
, xT

i ←⌊
xT
i ,b

⌋
using constant B, which is specified by the user as bias term (further B will be

referred as bias parameter) [40]. According to [40], L1-SVM and L2-SVM are solved
using coordinate descent method [40, 41]; for logistic regression and L2-SVM, a trust
region Newton method [40, 42] is implemented.

For the research, LIBLINEAR classifiers listed in Table 1 were used; for more infor-
mation refer to [30, 40].

Least squares SVM. Least squares SVM (abbr. as LS-SVM) aims to solve a set of linear
equations instead of convex quadratic programming performed by using standard SVM.
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LS-SVM is also referred as kernel Fisher discriminant analysis [11]. The problem can be
formulated as

minimize
w,b,e

1

2
wTw +

1

2
γ

l∑
i=1

e2i

subject to yi
(
wTφ(xi) + b

)
= 1− ei, i = 1 . . . l,

(7)

with l denoting the number of training instances. Lagrangian for LS-SVM is defined
as [11]

L(w, b, e, α) =
1

2
wTw +

1

2
γ

l∑
i=1

e2i −
l∑

k=1

αk
{
yk
[(
wTφ(xk) + b

)]
− 1 + ek

}
(8)

with αk as Lagrangian multipliers.

2.2 Heuristic optimization algorithms applied in researh

Simulated annealing (SA) method is described as “based on the metaphor of molecules
cooling into a crystalline pattern after being heated. In a molten metal the molecules
move chaotically, and as the metal cools they begin to find patterns of connectivity with
neighbouring molecules, until they cool into a nice orderly pattern – an optimum” [19].
According to Kennedy et al., simulated annealing extends hill climbing with a stochastic
decision and a cooling schedule [19]. Application of this technique has been proved to
show good performance and obtain good results in relatively small number of iterations.
The main idea of the algorithm is as follows: at each iteration, a set of possible solutions
is generated and a random successor v is chosen. If f(v) < f(u), it is considered
as optimal, otherwise cost function value increases, then the new set is accepted with
a certain probability and a random step is taken to obtain the new variable set where r is
selected according to

r < e(f(u)−f(v))/T , (9)

here r is random value from uniform distribution, i.e., r ∼ U(0, 1). After a certain number
of iterations, the new variable sets do not minimize the costs, thus the procedure is stopped
after temperature T converges to 0 (i.e., T 6 ε).

Particle swarm optimization (PSO). Particle swarm optimization (abbr. as PSO) algo-
rithm was introduced by Kennedy [19]. This technique is based on behaviour of flock of
birds which search for food randomly in some area, knowing only the distance from the
food. In PSO, each possible solution is represented as this bird and is called a particle,
and its location relative to the object which is searched (food in this example) is defined
by the fitness value. Thus all the particles have one fitness value defined by a function
which is optimized, and each particle has one velocity to determine its flying direction and
distance. All the particles perform search in the solution space by following currently the
most optimal particle. PSO is initialized to be a group of random particles and iteratively
find the optimal solution. In each iteration each particle is updated itself by two extremes
that are tracked. The first extreme is the optimal solution found by the particle itself

www.mii.lt/NA



Particle swarm optimization for linear support vector machines based classifier selection 31

(pbest), the other is the optimal solution found by the whole swarm (gbest). At each step
of the algorithm, particles are displaced from their current position by applying a velocity
vector to them. The magnitude and direction of their velocity at each step is influenced
by their velocity in the previous iteration of the algorithm, simulating momentum, and
the location of a particle relative to the location of its pbest and the gbest . At each
step a particle is stochastically accelerated towards its previous best position and towards
a neighbourhood (global) best position, thereby forcing particles to continually search in
the most-promising regions found so far in the solution space.

Velocity equation includes such components [43]:
• The previous velocity (also referred as inertia or momentum) vp(t), representing

memory of the previous movement direction, i.e. movement in the immediate past.
This prevents the particle from drastically changing direction, and to bias towards
the current direction.

• Global optima value ŷ.
• The cognitive component c1r1(yp − xp), representing confidence in solutions of

individual particle which is relative to past performances and encourages the par-
ticle to return to their own best positions; r1 is a random value with a uniform
distribution, i.e., r1 ∼ U(0, 1).

• The social component c2r2(ŷ − xp) representing confidence on solutions by the
neighbours of particle and representing common standard that individuals want to
obtain; r2 ∼ U(0, 1). The particle is able to head to the best position found by the
particle’s neighbourhood.

• Positive acceleration constants (also referred as learning factors) c1 and c2 used to
scale the contribution of the cognitive and social components.

3 Proposed classification approach

As Table 1 shows, linear SVM based classifiers, although having different formulations,
share several common parameters. Therefore, selection problem can be approached as
selection of classifier together with its parameters instead of parameter selection for each
classifier from this set. This lead to a metaheuristic approach proposed in this paper. Ac-
cording to the techniques which are used for its development (particle swarm optimization
and linear SVM) it is further referred as PSO-LinSVM.

Definition 1. Each particle P = 〈p1; p2; p3〉 in PSO-LinSVM is represented as follows:
• p1 – non-negative integer value, which represents the algorithm used for classifica-

tion;
• p2 – real value, cost parameter C;
• p3 – real value, which represents bias term B.

Note that p1 value itself does not play an important role in obtaining position value,
as p1 is initialized randomly in whole search space, and optimization is done accord-
ing to performance of SVM classifier represented by this particle. However, scattered

Nonlinear Anal. Model. Control, 2014, Vol. 19, No. 1, 26–42



32 G. Garšva, P. Danėnas

values may influence particle velocity; therefore, it is required that p1 values are non-
negative successive integers (i.e., given clmin 6 Pi1 6 clmax , S(i) = i + h for each
Pi1). Although it is possible that it can be used with other h values, it is not reasonable
computationally, as corresponding population initialization and velocity equations would
require modifications by replacing round operations with operators which ensure that Pi1
and velocity values stay valid and require additional operations. Thus h = 1 was used in
the experiments. The results can depend the number of particles used in optimization –
the larger number of particles is used, the better coverage of search space is obtained, but
the larger is the demand for computational resources. Another factor which can influence
final results arises from initialization of particles which are initialized randomly in search
space; thus cl sequential ordering as well as implementation of random number generator
used in the implementation of this algorithm can also have impact on the results.

Such inner representation is used in further research (according to −s value for train-
ing command in LIBLINEAR library which defines the linear SVM classifier):

• 0 – L2-regularized logistic regression (primal);
• 1 – L2-regularized L2-loss support vector classification (dual);
• 2 – L2-regularized L2-loss support vector classification (primal);
• 3 – L2-regularized L1-loss support vector classification (dual);
• 4 – L1-regularized L2-loss support vector classification;
• 5 – L1-regularized logistic regression;
• 6 – L2-regularized logistic regression (dual).

The main objective of this algorithm is to maximize fitness function defined as sum of
TPR values for each class

ffitness =

NC∑
i=1

TPRi =

NC∑
i=1

TP i
FN i + TP i

, (10)

where NC is the number of classes, TPRi – TPR value for ith class. Alternatively, it can
be defined as minimization problem where it is aimed to minimize the difference between
“ideal” performance (i.e., when TPR value for all classes is equal to 1) and performance
obtained by the classifier

ffitness = NC −
NC∑
i=1

TPRi = NC −
NC∑
i=1

TP i
FN i + TP i

. (11)

Accuracy or error ratio for fitness evaluation is chosen often [21–23]; however, in
case of imbalanced learning, accuracy is not the best option (it is possible to obtain high
classification accuracy, if the classifier correctly recognizes most of “majority” instances,
but fails to identify most of “minority” instances), so sum of TP rate values is selected
in our approach. These evaluations are obtained by performing k-fold cross-validation
training; the number of folds can be selected according to the size of training dataset. As
the formula shows, an ideal solution can be obtained only in case of perfect classification;
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as this happens very rarely, the main goal is to find satisfactory solution. Therefore, this
technique ism also adjusted in order to terminate search after no further improvements in
performance are observed. This technique also comprises such aspects as velocity clamp-
ing, where Vmax ,j represents maximum allowed velocity in dimension j. According to
Engelbrecht [43], large values of Vmax ,j facilitate global exploration, while smaller values
encourage local exploitation. It is often computed as a fraction σ of search space and
selected empirically, according to the problem which is solved. Therefore, in proposed
technique it is calculated as

σj =
Rmax ,j

|Rmin,j |+ |Rmax ,j |
× 0.8, (12)

where Rmin,j is denoted as minimum of search space for jth dimension, Rmax ,j – as its
maximum.

The proposed approach for linear SVM classifier selection based on these principles
is presented as Algorithm 1. The algorithm is defined as a solver for ffitness minimization
problem, as defined in Eq. (11), although it can be easily adapted to solve maximization
problem in Eq. (10).

Algorithm 1. PSO-LinSVM algorithm.

function PSO-LINSVM(n, c1, c2, terminate_iterations , max_iterations , rangeC , rangeBias)

Input: a set of examples {x, y}, y ∈ Z
Output: SVM with a set of optimal parameters yp

k ←− 3 . number of dimensions in particle, representing linear SVM classifiers according to
Definition 1

perf ←− []
global_fitness ←− 0
term_iterations ←− 0
t←− 0 . number of iterations
P ←− Init(n) . Initialize a 3-dimentional swarm
for ∀px ∈ P do

px1 ←− clmin + ROUND(rand(0, 1)× (clmax − clmin ))
px2 ←− Cmin + rand(0, 1)× (Cmax − Cmin )
px3 ←− bmin + rand(0, 1)× (bmax − bmin )
yp ←− P

repeat
if no_iterations = max_iterations then return SVM(yp)

for ∀px ∈ P do
f(xp)←− EVALSVM(px1, px2, px3)
if f(xp) < ŷ(t) then

yp ←− xp
term_iterations ←− 1

else
term_iterations ←− term_iterations + 1

if f(yp) < f(ŷ) then ŷ = yp

for ∀px ∈ P do
for j ←− 1, k do

Vmax ←− σj × (Rmax ,j −Rmin,j)
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Algorithm 1. (Continued.)

if j = 1 then
Vmax ←− ROUND(Vmax )
vpj(t+1)←− vpj(t)+ROUND(c1×rand(0, 1)×(ypj(t)−xpj(t))+c2×rand(0, 1)×

(ŷj(t)− xpj(t)))
else

vpj(t+ 1)←− vpj(t) + c1 × rand(0, 1)× (ypj(t)− xpj(t)) + c2 × rand(0, 1)×
(ŷj(t)− xpj(t))

if vpj(t+ 1) > Vmax then vpj(t+ 1)←− Vmax

xp(t+ 1)←− xp(t) + vp(t+ 1)

yp(t+ 1)←−
{
yp(t) iff(xp(t+ 1)) 6 f(yp(y))

yp(t+ 1) iff(xp(t+ 1)) > f(yp(y))

if xp1(t+ 1) > clmax then xp1(t+ 1)←− clmin

if xp2(t+ 1) < Cmin then xp2(t+ 1)←− Cmin

ŷ(t)←− min(f(y0(t)), . . . , f(yn(t)))
t←− t+ 1

until term_iterations < terminate_iterations

Such parameters are defined for the proposed algorithm:
• n – size of swarm.

• c1 – PSO coefficient for cognitive component.

• c2 – PSO coefficient for social component.

• cl ←− {i | clmin 6 i 6 clmax , clmin ∈ Z, i ∈ Z, clmax ∈ Z} – a set of
classifiers, represented by inner encodings.

• rangeC = [Cmin ;Cmax ] – range of cost parameters which is considered (note that
C > 0).

• rangeBias = [bmin ; bmax ] – range ofB (bias term) parameters which is considered
in optimization.

• terminate_iteration (optional) – parameter which defines the number of iterations
after which PSO optimization should be terminated if no further improvement is
observed.

• max_iterations (optional) – maximum number of iterations for PSO opti-
mization. It is also optional and if it is not given, the procedure loops until
terminate_iteration criteria is satisfied. This can be considered if a fast conver-
gence to optimal solution is known to occur.

• ŷ(t) is the global best position obtained at iteration t.

Several modifications, compared to original PSO gbest algorithm, can be excluded
here:
• This algorithm performs search in mixed search space (one of dimensions is mapped

to integer space, while other two are represented by subsets of real-valued space),
thus both initialization procedure and velocity equation are modified to meet these
requirements.
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• The search space is constrained by several constraints (p1 ∈ {i | clmin 6 i 6
clmax , clmin , i, clmax ∈ Z}; p2 > 0) which cannot be violated, i.e., none of ob-
tained parameters can be outside of these constraints. To deal with these constraints,
particle “teleportation” principle is applied (if particle reaches upper boundary for
first dimension it is moved back to the lower boundary), while infeasible value for
p2 is replaced by minimal value of cost parameter C.

4 Experimental results

An experiment to verify classification efficiency of PSO-LinSVM algorithm defined in
Algorithm 1 was performed using Australian and German datasets; they both can be
accessed in the UCI repository. These datasets were chosen because of their popularity
and wide adoption for similar experiments as well as the credit risk domain context;
therefore, the results can be used in benchmarking to compare with similar algorithms.
Two variations of German credit dataset are provided: the original dataset which contains
categorical/symbolic attributes and one for algorithms that need numerical attributes. The
latter file has been edited and several indicator variables have been added to make it
suitable for algorithms which cannot cope with categorical (nominal) variables. Thus the
final German credit dataset consists of 1000 instances (700 instances labeled as “Class 1”
and 300 instances labeled as “Class 2”) with 24 numerical attributes. Main specification
of numerical German credit dataset is given in Table 2.

Australian credit dataset concerns credit card applications. All attribute names and
values have been changed to meaningless symbols to protect confidentiality of the data.
Numerical version of this dataset has 690 instances with 14 attributes; of these 690 in-
stances, 383 instances are labeled as “Class 1” and 307 instances are labeled as “Class 2”.

The proposed technique was compared with LibSVM and LS-SVM implementations.
The experiment was performed using MATLAB 2010b environment, LibSVM 3.12, Lib-
LINEAR 1.8 and LS-SVMlab 1.8 toolboxes. Their parameter selection was implemented
using simulated annealing algorithm in MATLAB’s optimization toolbox, while PSO

Table 2. Main characteristics of German dataset.

Attri- Min. Max. Mean Std.
bute value value deviation
A1 1 4 2.577 1.258
A2 4 72 20.903 12.059
A3 0 4 2.545 1.083
A4 2 184 32.711 28.253
A5 1 5 2.105 1.58
A6 1 5 3.384 1.208
A7 1 4 2.682 0.708
A8 1 4 2.845 1.104
A9 1 4 2.358 1.05
A10 19 75 35.546 11.375
A11 1 3 2.675 0.706
A12 1 4 1.407 0.578

Attri- Min. Max. Mean Std.
bute value value deviation
A13 1 2 1.155 0.362
A14 1 2 1.404 0.491
A15 1 2 1.037 0.189
A16 0 1 0.234 0.424
A17 0 1 0.103 0.304
A18 0 1 0.907 0.291
A19 0 1 0.041 0.198
A20 0 1 0.179 0.384
A21 0 1 0.713 0.453
A22 0 1 0.022 0.147
A23 0 1 0.2 0.4
A24 0 1 0.63 0.483
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optimization was developed using PSO toolbox for MATLAB by Sam Chen1. Two ap-
proaches for fitness evaluation were applied, in order to obtain a classifier with best
classification performance capabilities in both balanced and unbalanced classification
conditions:
• Accuracy, obtained using k-fold cross-validation (further referred as CV optimiza-

tion).
• The sum of TP ratios also obtained using k-fold cross-validation (this principle

further referred as balanced CV optimization). This is an approach used in [36,37].

In the experiment, k = 5 was selected (although if dataset is large, k = 2 or k = 3 can
be considered as a computationally more efficient choice). Fig. 2 and Fig. 3 present result
visualizations obtained after iteratively performing classification tasks in bounded search
spaces, for both accuracy and unbalanced classification optimization. In order enable
comparison of various optimization approaches, a direct parameter search procedure was
run, using seven linear SVM classifiers in LIBLINEAR 1.8 toolbox (this procedure is
further referred as LIBLINEAR+DS). These figures show performance results in terms
of accuracy, where each point is represented as (C; bias; max(acci)), with and acci as
accuracy obtained by best performing classifier from the set of LIBLINEAR classifiers
at particular search space point. C parameter change step was set to 5, whereas bias
parameter was set to change by 1. Such representation can be used to visualize search
surface and can be used to identify core parameters for optimization procedure. As an
example, these figures help to identify that best performing classifier had relatively large
C (somewhere between 30 and 70) and bias parameters for the case of German dataset,
whereas regularization parameter is relatively small for Australian credit dataset. This
information can be considered during initialization of particles, for e.g., to initialize larger
part of swarm in particular regions in order to enable faster convergence or increase pos-
sibility to obtain best possible solution. In this research, default PSO initialization (with
its modifications for discrete dimension) is considered. Notably, unbalanced classification
resulted in total domination of single classifiers with different C and bias parameters.

According to Engelbrecht, larger social coefficient is a better option for search spaces
with smooth surface while larger cognitive coefficient is preferred for problem spaces
which have many global and local optimas and therefore result in rough search space
[43]. As visualizations of linear SVM search space show, SVM selection problem can
be considered as the latter case, therefore, in further experiments c1 > c2 will be used.
These figures also show that accuracy selected as evaluation metrics resulted in wide range
of classifiers, i.e., none of the classifiers could be identified as the most effective solution
whereas in case of balanced cross-validation (using sum of true positive rate values) based
evaluation single classifiers (dual L2-regularized L1-loss support vector classification and
dual L2-regularized logistic regression) dominated. Note that although such results might
indicate optimal classifiers, they are not necessary among the visualized points, as direct
search was performed in discrete and limited search subspace, thus this representation is
very approximate.

1Another Particle Swarm Toolbox, http://www.mathworks.com/matlabcentral/fileexchan
ge/25986-another-particle-swarm-toolbox
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Fig. 2. Linear SVM classifier initial results (German dataset).

Fig. 3. Linear SVM classifier initial results (Australian dataset).

In order to compare proposed approach with similar classification techniques, similar
SVM (particularly LibSVM C-SVC) and LS-SVM classifiers were also developed by per-
forming heuristic parameter selection on their kernel functions using previously described
simulated annealing and particle swarm optimization. C-SVC was run using with RBF
(further referred as LibSVMRBF) and sigmoid (further referred as LibSVMSigmoid) kernel
functions (polynomial kernel function was not selected of relatively large parameter space
and slow performance) whereas LS-SVM classifiers were based on polynomial (further
referred as LS-SVMPoly) and RBF (LS-SVMRBF) kernels. Dataset split 7:3 (i.e., 70% of
data was selected for classifier training and optimization procedure, the rest 30% were
used for testing) widely used in such research was selected.

SA procedure was run using exponential temperature (temperatureexp) and simu-
lannealbnd functions in 180 iterations whereas PSO implementation was applied with
default parameters. LIBLINEAR and PSO based classifier with similar approach to PSO-
LinSVM (used in [36]) was also tested; the main difference lies in its design as it is based
on real-valued PSO implementation instead of hybrid which is proposed in this paper.
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Similar approach is also applied for LIBLINEAR classifier selection using SA; default
MATLAB real-valued SA implementation was used for its implementation.

Table 3 and Table 4 present classification results for different SVM based classifiers
represented as error rate and true positive rates for each class; core parameters which were
obtained during parameter selection such as selected classifier index (in cases of LIBLIN-
EAR based classifiers, as well as PSO-LinSVM) and C parameter (for all classifiers) are
also given.

Table 3. German dataset results.

Optimization based on accuracy

Linear clas- Cost Error TPR1 TPR2
sifier code parameter rate

LIBLINEAR+DS 0 46 0.214 0.897 0.527
PSO-LinSVM 3 14.808 0.187 0.894 0.634

Particle Swarm Optimization
LIBLINEAR 5 99.274 0.197 0.894 0.602
LibSVMRBF − 0.014 0.197 0.903 0.591
LibSVMSigmoid − 2.885 0.247 0.889 0.581
LS-SVMPoly − 8.659 0.33 0.763 0.462
LS-SVMRBF − 4.674 0.217 0.889 0.548

Simulated Annealing
LIBLINEAR 6 76.788 0.203 0.884 0.602
LibSVMRBF − 0.013 0.207 0.889 0.581
LibSVMSigmoid − 19.52 0.297 0.966 0.14
LS-SVMPoly − 9.969 0.357 0.72 0.473
LS-SVMRBF − 2.198 0.24 0.894 0.462

Optimization based on balanced accuracy

LIBLINEAR+DS 3 46 0.214 0.897 0.527
PSO-LinSVM 3 14.808 0.187 0.894 0.634

Particle Swarm Optimization
LIBLINEAR 7 96.112 0.233 0.797 0.699
LibSVMRBF − 0.016 0.217 0.874 0.581
LibSVMSigmoid − 11.406 0.38 0.72 0.613
LS-SVMPoly − 2.859 0.49 0.536 0.452
LS-SVMRBF − 3.944 0.24 0.87 0.516

Simulated Annealing
LIBLINEAR 5 85.577 0.2 0.874 0.634
LibSVMRBF − 0.012 0.2 0.889 0.602
LibSVMSigmoid − 10.932 0.273 0.908 0.387
LS-SVMPoly − 0.138 0.363 0.705 0.484
LS-SVMRBF − 5.752 0.23 0.87 0.548

Table 4. Australian dataset results.

Optimization based on accuracy

Linear clas- Cost Error TPR1 TPR2
sifier code parameter rate

LIBLINEAR+DS 5 6 0.122 0.864 0.896
PSO-LinSVM 1 33.606 0.126 0.853 0.901

Particle Swarm Optimization
LIBLINEAR 6 15.401 0.164 0.905 0.747
LibSVMRBF − 0.02 0.184 0.914 0.692
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Table 4. (Continued.)

Linear clas- Cost Error TPR1 TPR2
sifier code parameter rate

LibSVMSigmoid − 20 0.169 0.905 0.736
LS-SVMPoly − 3.85 0.43 0.655 0.462
LS-SVMRBF − 9.972 0.164 0.879 0.78

Simulated Annealing
LIBLINEAR 7 0.005 0.159 0.905 0.758
LibSVMRBF − 0.057 0.213 0.888 0.659
LibSVMSigmoid − 0.119 0.179 0.897 0.725
LS-SVMPoly − 0.01 0.164 0.914 0.736
LS-SVMRBF − 2.656 0.159 0.879 0.791

Optimization based on balanced accuracy

LIBLINEAR+DS 5 6 0.122 0.864 0.896
PSO-LinSVM 1 33.606 0.126 0.853 0.901

Particle Swarm Optimization
LIBLINEAR 6 64.458 0.169 0.862 0.791
LibSVMRBF − 0 0.15 0.785 0.934
LibSVMSigmoid − 9.159 0.159 0.922 0.769
LS-SVMPoly − 3.201 0.43 0.69 0.418
LS-SVMRBF − 10.327 0.164 0.879 0.78

Simulated Annealing
LIBLINEAR 2 45.864 0.155 0.871 0.813
LibSVMRBF − 0 0.15 0.785 0.934
LibSVMSigmoid − 16.945 0.159 0.871 0.89
LS-SVMPoly − 0.4 0.193 0.897 0.692
LS-SVMRBF − 4.363 0.145 0.897 0.802

Table 4 presents experimental results obtained with Australian dataset. Again, linear
SVM classifiers outperformed other SVM classifiers. LS-SVMRBF showed similar results,
while it outperformed other classifiers in balanced CV based optimization. PSO-LinSVM
with L2-regularized L2-loss support vector classification (dual) classifier again proved to
be best choice; however, direct search resulted in highest performance. Note that in both
experiments PSO-LinSVM obtained the same classifiers in both cases of fitness based on
accuracy and balanced CV evaluation. The second case also proved to be a reasonable
choice in general – both Table 3 and Table 4 show that application of such this approach
often resulted in increased accuracy compared to accuracy-based optimization; this is
especially seen with classifiers developed using simulated annealing approach.

This approach identified best parameter sets for classifiers better than or equal to
accuracy-based evaluation approach in almost all cases for Australian dataset except LS-
SVMPoly (notable that this classifier also did not perform well with PSO optimization
technique for this dataset).

5 Conclusions and future works

Support vector machines techniques are powerful nonparametric techniques which can
perform efficient classification and obtain results comparable to neural networks. This
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article presents new particle swarm optimization and linear SVM based approach which
can be applied for both small scale and large scale classification tasks. This technique
uses particle swarm optimization based heuristic to select best performing SVM classifier
from a set of linear classifiers with the same parameters. Its comparison with iterative
parameter search showed that it is able to obtain SVM configuration resulting in better
classification performance in terms of accuracy and identification of each class. An ap-
proach for classifier evaluation based on sum of true positive ratios is proposed together
with this algorithm; it is more suitable for imbalanced learning as it tries to maximize
classification performance instead of often applied accuracy. Empirical results showed
that it can produce similar results to accuracy-based parameter selection approach. It is
also shown that this approach can be a competitively efficient solution for classification
problems, compared to similar SVM based techniques. Future work will concern more
detailed investigation of PSO-LinSVM parameters, improvements in PSO algorithm, such
as topologies or application of particle clusters [19], possible effects which come from
sequential ordering or initialization, together with other possible enhancements.
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