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Abstract. In this paper, a price competition model with two heterogeneous players participating in
carbon emission trading is formulated. The stable conditions of the equilibrium points of this system
are discussed. Numerical simulations are used to show bifurcation diagrams, strange attractors, and
sensitive dependence on initial conditions. We observe that the speed of adjustment of bounded
rational player may change the stability of the Nash equilibrium and cause the system to behave
chaotically. In addition, we find that the price of emission permits plays an important role in the
duopoly game. The chaotic behavior of the system has been stabilized on the Nash equilibrium
point by applying delay feedback control method.
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1 Introduction

Carbon emission trading is one of international flexible mechanisms of the Kyoto Protocol
on climate change to reduce greenhouse gas emission. It refers to a mechanism that gov-
ernment distributes the total amount of emission permits of carbon dioxide to enterprises
who involve in the emission trading scheme and allows enterprises to trade emission
permits at the same time. This mechanism requires enterprises, which hold emission
permits to emit carbon dioxide that is proportional to the amount in these emission permits
they hold. Therefore, if an enterprise’s carbon dioxide emission is less than expected,
the enterprise can sell the remaining permits to get some profits. What’s more, when an
enterprise emits excessive carbon dioxide, it must purchase the additional permits to avoid
fines and sanctions from the government. In this mechanism, enterprises, which can abate
their emission at low costs have an incentive to reduce more carbon emission increasing,
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since they can sell their surplus emission permits to enterprises with high abatement costs
for profits. Carbon emission trading is proved to be cost-effective in reducing carbon
dioxide emission and be applied in practice.

The vast majority of existing literatures studied carbon emission trading from macro
perspective, such as the ways of initial allocation of emission permits, the impacts of
carbon emission trading on an area or a sector and the competition of carbon emission
trading between countries. Krysiak et al. [1] studied the optimal size of a permits market
in terms of optimal number of trading zones. Goulder et al. [2] examined the implica-
tions of two types of emissions allowance allocation: auctioned allowances and freely
allocated allowances. Lee et al. [3] analyzed the impacts of combining a carbon tax and
emission trading on different industry sectors. Bernard et al. [4] discussed a strategic
competition between Russia and some developing countries in international markets for
carbon emission permits and assessed the impacts of this competition on the pricing of
emission permits. Jaehn et al. [5] considered the causes why prices of allowances varied
dramatically and found that market power, the combination of information asymmetry
and price interdependencies played an important role in explaining the emissions trading
paradox. So far, there is almost no literature studying the impacts of carbon emission
trading on enterprises from micro-level.

With the assumption of a perfect market and rational behavior by all players, the price
of emission permits will equal to the marginal abatement costs. However, this cannot
always be achieved in reality for the existence of oligopoly market. The oligopoly is
a special market controlled by a small number of enterprises, in which the actions of
these enterprises affect supply and price of homogeneous or heterogeneous products.
It is this characteristic of interdependence that makes an enterprise has to take into ac-
count of the actions and reactions of its rivals when a decision is made. In the repeated
oligopoly games, all enterprises maximize their profits by selecting an output or setting
a price. When participating in the carbon emission trading scheme, enterprises engage in
oligopolistic competition for emission permits as well as products, so they might be able
to exert market power in the permits market to their advantages or use their market power
in the permits market to gain power in the product market.

There exists large number of literatures that deal with quantity and price competitions
of homogeneous or heterogeneous products in static oligopoly, for example, the works
by Dixit [6], Singh et al. [7] and Wauthy [8]. The findings of these literatures become
a cornerstone of the oligopoly theory. Recently, the dynamics of the oligopoly game
has been studied in [9–14]. Puu [9] firstly found abundant complex dynamics arising
in the Cournot duopoly case, such as strange attractors with fractal dimension. Agiza
et al. [10] studied the chaotic dynamics in nonlinear duopoly game, where players had
heterogeneous expectations: bounded rational and adaptive expectations. Elsadany [11]
formulated a bounded rationality duopoly game with delay and studied its dynamical
behaviors. The analysis showed that enterprises using delayed bounded rationality have
a higher chance of reaching a Nash equilibrium point. Fanti et al. [12] analyzed the
dynamics of a nonlinear Cournot duopoly with managerial delegation and homogeneous
players and observed some phenomena, which would not occur under profit maximiza-
tion. Chen et al. [13] studied the complex dynamic process of the triopoly games in
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Chinese 3G telecoms market by using a Bertrand model with bounded rationality, and
there were also a variety of complicated dynamics in the system. Fanti et al. [14] studied
the dynamics of a Bertrand duopoly with differentiated products by introducing oppor-
tune microeconomic foundations. The results demonstrated that an increase in either the
degree of substitutability or complementarity between products of different varieties was
a source of complexity in a duopoly with price competition. In this study we consider that
enterprises are involving in carbon emission trading i.e. we analyze a duopoly game with
two heterogeneous players participating in carbon emission trading.

The purpose of this paper is to study the dynamics of a price competition model,
which contains two enterprises using heterogeneous expectations rules while participat-
ing in carbon emission trading, and analyze the impacts of carbon emission trading on
the system. The paper is organized as follow. In Section 2, a price competition model
with heterogeneous players participating in carbon emission trading is briefly formulated.
In Section 3, we analyze the dynamics of duopoly game model. Explicit parametric
conditions of the existence and local stability of equilibrium points will be given. In
Section 4, dynamical behaviors under some change of control parameters of the game are
presented by numerical simulations. Sensitive dependence on initial conditions, Lyapunov
exponents and strange attractors are calculated numerically and the impacts of carbon
emission trading on the duopoly game are discussed. In Section 5, delay feedback control
method is applied to control chaos of the system. Finally, a conclusion is shown in
Section 6.

2 Model

While participating in carbon emission trading, enterprises take not only the production
costs into consideration, but also the carbon emission costs. In general, in order to reduce
carbon emission, the emission permits that each enterprise obtains from government
initially cannot satisfy its need. For the insufficient emission permits, enterprise may
either buy emission permits from permits market or abate its carbon emission. Thus
the carbon emission costs consist of abatement costs and tradable permits costs. Let Ce
represents the abatement costs, e represents the amount of carbon abatement,E represents
the amount of carbon emission, y represents the emission permits obtained initially from
government and pc represents the price of emission permit in the permits market, so the
carbon emission costs of each enterprise are

Ct = Ce + pc(E − e− y).

Here E − e− y denotes the tradable emission permits obtained from the permits market,
a positive (negative) term E − e − y means that enterprise purchases (sells) emission
permits.

We assume that there are two enterprises, which choose different prices for their prod-
ucts in an oligopoly market and the permits market is independent of the product market
and strong i.e. the permits market can supply enough emission permits for enterprises
who want to purchase or sell emission permits. It meets the following demands:
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1. The price of each enterprise during period t = 0, 1, 2, . . . is represented by pi(t),
i = 1, 2, and the quantity each enterprise sells Qi, a linear demand function, is
determined by the following equations [15]: Qi = 1/(1−d2)[a(1−d)−pi+dpj ],
i 6= j, where a > 0 and 0 6 d 6 1. The parameter d denotes the degree of product
differentiation or product substitution. The production cost function is Cqi = ciQi,
i = 1, 2, where ci (ci > 0) is marginal production cost of ith enterprise.

2. We assume the amount of carbon dioxide each enterprise produces is linear with
his quantity Qi i.e. Ei = kiQi, i = 1, 2, where ki (ki > 0) denotes the emission
coefficient for Qi. The marginal abatement costs of each enterprise are βi, and we
set ei = εiEi (εi ∈ [0, 1]), so the abatement costs are Cei = βiεikiQi.

3. Based on output, emission permits that each enterprise initially allocated are free
of charge, that is y0, then the tradable emission permits each enterprise need is
E − e− y = ki(1− εi)Qi − y0, i = 1, 2.

Therefore, the profit of ith enterprise in a single period is give by

πi(p1, p2) = (pi − ci)Qi − βiεikiQi − pc
[
ki(1− εi)Qi − y0

]
, i = 1, 2. (1)

Then the marginal profit of the ith enterprise in one period is

∂πi
∂pi

=
1

1− d2
[
a(1−d)+ci+βiεiki+pcki(1−εi)−2pi+dpj

]
, i, j = 1, 2, i 6= j. (2)

We assume c′i = ci + βiεiki + pcki(1− εi) > 0, which are the total variable costs of
enterprises, and then Eq. (2) becomes

∂πi
∂pi

=
1

1− d2
[
a(1− d) + c′i − 2pi + dpj

]
, i, j = 1, 2, i 6= j. (3)

This optimization problem has unique solution in the form

pi =
1

2

[
a(1− d) + c′i + dpj

]
, (4)

which are called reaction function of ith enterprise to jth enterprise.
Expectations play an important role in making decision. In this work, we consider two

heterogeneous players, two enterprises think with different strategies for profit maximiza-
tion. The first enterprise uses bounded rational expectations and the other is an adaptive
player. For the bounded rational player, he does not have a complete knowledge of the
product market, and determines his price of product on the basis of the expected marginal
profit [16]. That is, if the marginal profit is positive (negative), he decides to increase (de-
crease) his price at next period. Thus, this dynamic adjustment mechanism is described by

p1(t+ 1) = p1(t) + αp1(t)
∂π1(pi, pj)

∂p1
, t = 0, 1, 2, . . . , (5)

where α is a positive parameter, which represents the relative speed of adjustment of
bounded rational player.
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However, for the adaptive player, he computes his price with weights between last
period’s price and his reaction function. Hence, the dynamic equation of the adaptive
player has the form

p2(t+ 1) = (1− ν)p2(t) + νr2
(
p1(t)

)
, t = 0, 1, 2, . . . , (6)

where ν ∈ [0, 1] is a speed of adjustment of adaptive player.
With above assumptions, the dynamic price competition model with two heteroge-

neous players is formed from inserting Eq. (3) in Eq. (5) and Eq. (4) in Eq. (6), then
combining Eqs. (5) and (6). Thus the dynamical system can be modeled as

p1(t+ 1) = p1(t) +
αp1(t)

1− d2
[
a(1− d) + c′1 − 2p1(t) + dp2(t)

]
,

p2(t+ 1) = (1− ν)p2(t) +
ν

2

[
a(1− d) + c′2 + dp1(t)

]
.

(7)

3 Equilibrium points and local stability

In order to study the dynamical behaviors of system (7), we define the equilibrium points
of the dynamical duopoly game as a nonnegative fixed point of system (7) and discuss
their stability. Equilibrium points are obtained by setting pi(t + 1) = pi(t), i = 1, 2, in
system (7). There are two fixed points of system (7):

E0

(
0,

1

2

[
a(1− d) + c′2

])
,

E∗

(
a(1− d)(d+ 2) + 2c′1 + dc′2

4− d2
,
a(1− d)(d+ 2) + dc′1 + 2c′2

4− d2

)
.

Obviously,E0 is a boundary equilibrium, and the fixed pointE∗ is a Nash equilibrium
and has economic meaning.

To investigate the local stability of the equilibrium pointsE0 andE∗, we must estimate
the Jacobian matrix of system (7) on the complex plane, which is given by

J(p1, p2) =

[
1 + α

1−d2 [a(1− d) + c′1 − 4p1 + dp2]
αdp1
1−d2

1
2νd 1− ν

]
. (8)

Theorem. The boundary equilibrium E0 of system (7) is an unstable equilibrium point.

Proof. In order to prove this result, we consider the eigenvalues of Jacobian matrix J at
E0, which take the form

J(E0) =

[
1 + α

1−d2 [a(1− d) + c′1 +
a(1−d)d+dc′2

2 ] 0
1
2νd 1− ν

]
, (9)

whose eigenvalues are

λ1 = 1 +
α

1− d2

[
a(1− d) + c′1 +

a(1− d)d+ dc′2
2

]
, λ2 = 1− ν.
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From the conditions that a,c′i > 0, 0 6 d 6 1, α are positive and ν ∈ [0, 1], we have that
|λ1| > 1 and |λ2| 6 1. Thus E0 is an unstable equilibrium point.

Therefore, the boundary equilibrium E0 is a non-hyperbolic point if ν = 0. E0 is
a saddle point if 0 < ν 6 1.

Now we investigate the local stability of Nash equilibrium point E∗. The Jacobian
matrix J at E∗ is

J(E∗) =

[
1− 2αp∗1

1−d2
αdp∗1
1−d2

1
2νd 1− ν

]
, (10)

where

p∗1 =
a(1− d)(d+ 2) + 2c′1 + dc′2

4− d2
.

The characteristic equation of the matrix J(E∗) has the form

f(λ) = λ2 − Tr(J)λ+Det(J) = 0,

where Tr(J) is the trace and Det(J) is the determinant of the Jacobian matrix J(E∗),
which are given by

Tr(J) = 2− ν − 2αp∗1
1− d2

, Det(J) = (1− ν)
(
1− 2αp∗1

1− d2

)
− ανd2p∗1

2(1− d2)
.

Since

Tr2(J)− 4Det(J) =

(
ν − 2αp∗1

1− d2

)2

+
2ανd2p∗1
1− d2

.

It is clear that Tr2(J) − 4Det(J) > 0, we deduce that the eigenvalues of Nash
equilibrium are real.

The local stability conditions of Nash equilibrium are given by using Jury’s condi-
tions [17], which are the sufficient and necessary conditions for |λi| < 1, i = 1, 2:

1− Tr(J) + Det(J) =
ανp∗1
1− d2

(
2− 1

2
d2
)
> 0, (111)

1 + Tr(J) + Det(J) = 2(2− ν)
(
1− αp∗1

1− d2

)
− ανd2p∗1

2(1− d2)
> 0, (112)

1−Det(J) =
2αp∗1
1− d2

(1− ν) + ν +
ανd2p∗1
2(1− d2)

> 0. (113)

The first condition is always satisfied, whereas the other two conditions (112) and
(113) define a bounded region of stability in the parameters space (α, ν). Then we can get
the necessary and sufficient conditions of the stability region in the plane of the speeds of
adjustment (α, ν), which is defined by two inequalities, i.e.

2(2− ν)
(
1− αp∗1

1− d2

)
− ανd2p∗1

2(1− d2)
> 0,

2αp∗1
1− d2

(1− ν) + ν +
ανd2p∗1
2(1− d2)

> 0.

(12)
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For the values of (α, ν) inside the stability region defined by Eq. (12), the Nash
equilibrium point E∗ is a stable node (a sink point). But if α, ν have gone beyond this
area, E∗ will become unstable. Besides, from these results, we obtain information that
the systematic parameters have effect on the local stability of Nash equilibrium E∗. The
stability of the system in Nash equilibrium point is not only decided by α, ν, but also by
other parameters presented in Eq. (12), namely, by the influence of every parameter in
Eq. (12).

According to reference [18], the sufficient and necessary conditions that Nash equi-
librium point is a saddle point are

f(−1) = 2(2− ν)
(
1− αp∗1

1− d2

)
− ανd2p∗1

2(1− d2)
< 0.

The sufficient and necessary conditions that Nash equilibrium point is a source point
are

f(−1) = 2(2− ν)
(
1− αp∗1

1− d2

)
− ανd2p∗1

2(1− d2)
> 0,

Det(J)− 1 = − 2αp∗1
1− d2

(1− ν)− ν − ανd2p∗1
2(1− d2)

> 0.

The sufficient and necessary conditions that Nash equilibrium point is a non-hyperbolic
point are

f(−1) = 2(2− ν)
(
1− αp∗1

1− d2

)
− ανd2p∗1

2(1− d2)
= 0,

Tr(J) = 2− ν − 2αp∗1
1− d2

6= 0,−2.

4 Numerical simulations

To understand the dynamic behaviors of system (7) better and briefly, in this section,
we present various numerical simulations to show its complexity, including bifurcations
diagrams, strange attractors, Lyapunov exponents, and sensitive dependence on initial
conditions. In order to study the local stability properties of the equilibrium points, it is
convenient to take the parameters’ values as follows: a = 3, d = 0.1, c1 = 0.2, c2 = 0.4,
k1 = 0.1, k2 = 0.2, β1 = 0.4, β2 = 0.7, ε1 = 0.3, ε2 = 0.5, pc = 1.

4.1 Period doubling bifurcations and chaotic behaviors

Figs. 1 and 2 show the bifurcation diagrams with respect to the parameter α while ν =
0.3, 0.8, respectively. In all these figures the Nash equilibrium E∗ is locally stable for
small values of the parameter α. If α increases, the Nash equilibrium point E∗ will
become unstable, then period-doubling bifurcations appear and finally chaotic behaviors
occur.
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Fig. 1. Bifurcation diagram for ν = 0.3. Fig. 2. Bifurcation diagram for ν = 0.8.

Fig. 3. Bifurcation diagram for α = 0.5. Fig. 4. Maximal Lyapunov exponent for ν = 0.3.

Fig. 3 shows a one-parameter bifurcation diagram with respect to ν while α = 0.5.
From this figure, one observes that there is no period-doubling bifurcation for α = 0.5,
stable Nash equilibrium point for 0 < ν < 1.

In order to detect chaos, the maximal Lyapunov exponents corresponding to Fig. 1
are drawn in Fig. 4. This figure displays the related maximal Lyapunov exponents as
a function of α. According to Fig. 4, one can easily find that the Lyapunov exponents are
negative for different values of α ∈ (0, 0.6279), corresponding to a stable coexistence of
the system. When α = 0.6279, the value of maximal Lyapunov is zero. With the increase
of α, the Nash equilibrium becomes unstable. Period doubling bifurcations appears and
finally when the value of maximal Lyapunov is larger than zero, chaotic behaviors occur.

The phase portraits corresponding to Fig. 1 and 2 are shown in Fig. 5 for showing the
strange attractors at different values of α.

Nonlinear Anal. Model. Control, 2014, Vol. 19, No. 1, 118–131



126 L. Zhao, J. Zhang

Fig. 5. Strange attractors for ν = 0.3, 0.8.

Fig. 6. Shows sensitive dependence on initial conditions, the two orbits of p1-coordinates at the parameters’
values (α, ν) = (0.857, 0.3) and (p10, p20) = (1.1, 1.3).

From these numerical simulations, we conclude that the speed of adjustment of
bounded rational player may change the stability of the Nash equilibrium and cause
the system to behave chaotically. But, with the speed of adjustment of adaptive player
varying, the structure market of the duopoly game is stable and Nash equilibrium becomes
asymptotically stable. Hence, the complex dynamics of the duopoly game depends on the
parameter α.

To demonstrate the sensitivity to initial conditions of the system (7), we compute two
orbits with initial points (p10, p20) and (p10 + 0.00001, p20) at the parameters’ values
α = 0.857, ν = 0.3, respectively. The corresponding results are shown in Fig. 6. From
these two figures, it is clear that the results are indistinguishable at the beginning, but after
a number of iterations, the difference between them builds up rapidly.
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4.2 The impacts of carbon emission trading on the duopoly game

When participating in carbon emission trading, enterprises have to consider its impacts on
their products. Relatively, emission coefficient ki and the marginal abatement costs βiare
determinated by enterprise’s technology and equipment, which don’t change in the short
run. And the amount of carbon abatement depends on whether their marginal abatement
costs are higher than the price of emission permits. If so, enterprises will buy additional
permits; otherwise they choose to reduce their carbon emission. Therefore, it is only the
price of emission permits that affects the duopoly game.

Inequalities (12) define the region of stability in the plane of the speed of adjustments
(α, ν). We set all parameters in the initial values, and then we can get the region of stabil-
ity of Nash equilibrium point, which is shown in Fig. 7(a). When all other parameters are
fixed, the price of emission permits pc varies to pc = 5 from pc = 1, we could see that the
stable area decreases in the direction of α as shown in Fig.7(b). It proves that the system’s
stability will decrease by the increase of pc. What’s more with the rise of pc, the Nash
equilibrium point E∗ increases from E∗(1.58, 1.71) to E∗(1.73, 1.92), which means the
price of each enterprise increases with the addition of pc.

Fig. 8 shows the bifurcation diagrams with respect to the parameter pc while α =
0.4 and ν = 0.3. With the rise of price of emission permits pc, the Nash equilibrium
point E∗ increases gradually, and is locally stable for small values of the parameter pc. As
pc increases, the Nash equilibrium point E∗ becomes unstable and one observes complex
dynamic behavior such as cycles of high order and chaos.

Appearance of such phenomenon is because carbon emission trading increases the
total variable costs of enterprises. When participating in carbon emission trading, carbon
emission becomes a part of total costs of product so that the marginal costs of enterprises
increase. To maximize profit, enterprises could use their market power in the product
market to transfer their costs to customers, which makes the price of each enterprise add.

(a) (b)

Fig. 7. Region of stability of Nash equilibrium.
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Fig. 8. Bifurcation diagram for α = 0.4 and ν = 0.3.

The higher the price of emission permits is, the higher the price of each enterprise will
become. If the price of emission permits is high enough that crosses the boundary of
stable region, the price of each enterprise would become unpredictable and get into chaos
through period-doubling bifurcations.

It is obvious from the above figures and analysis that the price of emission permits
plays an important role in the duopoly game: it not only influences the system’s stability,
but also has an effect on the Nash equilibrium point.

5 Chaos control

From last section, we know the market is irregular when chaos occurs, which is harmful
for each enterprise. In the chaotic market, nobody could predict the development of
market and a little adjustment of the initial price that each enterprise make might result in
great variation of price. It is necessary for enterprises to control chaos.

To control chaos, a number of methods have been proposed. Delay feedback control
method, which was proposed by Pyragas [19], is one of most effective methods for
controlling chaos in oligopoly models. Elabbasy et al. [20] and Ding et al. [21] have
applied the delay feedback control method to control chaos in two economic models.
In this section, we apply this method to control chaotic behavior of the duopoly game
with heterogeneous players participating in carbon emission trading. We modify the first
equation of system (7) in the same way as Elabbasy et al. [20] did, so the controlled
system is given by

p1(t+ 1) = p1(t) +
αp1(t)

1− d2
[
a(1− d) + c′1 − 2p1(t) + dp2(t)

]
+K

(
p1(t+ 1− T )− p2(t+ 1)

)
,

p2(t+ 1) = (1− ν)p2(t) +
ν

2

[
a(1− d) + c′2 + dp1(t)

]
,

(13)

where K is the controlling factor and T is the time delay.
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Fig. 9. Bifurcation diagram with respect to the
controlling factor K.

Fig. 10. Stabilization of Nash equilibrium with
K = 0.6.

By choosing T = 1, the controlled system (13) becomes

p1(t+ 1) = p1(t) +
αp1(t)

(1− d2)(K + 1)

[
a(1− d) + c′1 − 2p1(t) + dp2(t)

]
,

p2(t+ 1) = (1− ν)p2(t) +
ν

2

[
a(1− d) + c′2 + dp1(t)

]
.

(14)

And the Jacobian matrix of (14) takes the form

J(p1, p2) =

[
1 + α

(1−d2)(K+1) [a(1− d) + c′1 − 4p1 + dp2]
αdp1

(1−d2)(K+1)
1
2νd 1− ν

]
. (15)

We know the system (7) is chaotic for the initial parameter values and (α, ν) =
(0.857, 0.3). Substituting by the Nash equilibrium point into (15) and using the initial
values of parameters the Jacobian matrix (15) has the form

J(p1, p2) =

[
(−1.7415343+K)

K+1
0.1367737
K+1

0.015 0.7

]
. (16)

By applying Jury condition (11) on the matrix (16) has eigenvalues with an absolute less
than one when K > 0.3702. Hence, when K > 0.3702, the controlled system (14) is
stable around the Nash equilibrium point.

Figure 9 shows the bifurcation diagram with respect to the controlling factor K when
other parameters take the initial values and (α, ν) = (0.857, 0.3). From this figure, we can
see that with the control factor K increasing, the system gets rid of chaotic behaviors and
is controlled to a stable state when K > 0.37. Shown in Fig. 10 is the stable behavior of
the controlled system whenK = 0.6 starts from initial values (p1(0), p2(0)) = (0.1, 0.2).

Nonlinear Anal. Model. Control, 2014, Vol. 19, No. 1, 118–131
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6 Conclusions

In this paper, we analyze the dynamics of a price competition model, which contains two
enterprises using heterogeneous expectations rules while participating in carbon emission
trading. The stability conditions of the equilibrium points of this system are discussed.
Through the discussion, we know that the stability of the system in Nash equilibrium
point depends on all systematic parameters. Numerical simulations are used to show
bifurcation diagrams, strange attractors, Lyapunov exponents, and sensitive dependence
on initial conditions. We find the complex dynamics of the duopoly game depends on
the parameter α (the speed of adjustment of bounded rational player), and the speed of
adjustment of adaptive player ν has a stabilization effect on the system. The speed of
adjustment of bounded rational player may change the stability of the Nash equilibrium
and cause the system to behave chaotically. For the low speed of adjustment of bounded
rational player, the system is stable. However, with the increase of the speed of adjustment
of bounded rational player, the system will be unstable and moves towards chaos from
double periodical bifurcation.

Moreover, we reveal that the price of emission permits plays an important role in the
duopoly game. It not only influences the system’s stability, but also has an effect on the
Nash equilibrium point. The higher the price of emission permits is, the higher the price
of each enterprise will become. When the price of emission permits is too high, then Nash
equilibrium will become unstable and the system gets into chaos through period-doubling
bifurcations. At last, we apply the delay feedback control method to control the system in
chaos state on the Nash equilibrium point.
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