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Abstract. We introduce a new variant of cyclic contractive mapping in a metric space and originate
existence and uniqueness results of fixed points for such mappings. Examples are given to support
the usability of our results. After these results, an application to integro-differential equations is
given.
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1 Introduction and preliminaries

The Banach Contraction Principle (BCP) is a very popular tool which is used to solve
existence problems in many branches of Mathematical Analysis and its applications.
There is a great number of generalizations of this fundamental principle. In particular,
obtaining the existence and uniqueness of fixed points for self-maps on a metric space
by altering distances between the points with the use of a certain control function is an
interesting aspect. In this direction, Khan et al. [1] addressed a new category of fixed point
problems for a single self-map with the help of a control function which they called an
altering distance function.

Definition 1. (See [1].) A function ϕ : [0,+∞)→ [0,+∞) is called an altering distance
function if the following properties are satisfied:
(a) ϕ is continuous and non-decreasing, and
(b) ϕ(t) = 0⇔ t = 0.

Rhoades [2] extended BCP by introducing weakly contractive mappings in complete
metric spaces.

1The author is grateful to the Ministry of Education, Science and Technological Development of Serbia.
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Definition 2. (See [2].) Let (X , d) be a metric space. A mapping T : X → X is called
weakly contractive if

d
(
T x, T y

)
6 d(x, y)− ϕ

(
d(x, y)

)
for all x, y ∈ X , where ϕ is an altering distance function.

Theorem 1. (See [2, Thm. 2].) Let (X , d) be a complete metric space. If T : X → X is
a weakly contractive mapping, then T has a unique fixed point.

Dutta and Choudhury in [3] obtained the following generalization of Theorem 1.

Theorem 2. (See [3, Thm. 2.1].) Let (X , d) be a complete metric space and T : X → X
satisfy that

ψ
(
d(T x, T y)

)
6 ψ

(
d(x, y)

)
− ϕ

(
d(x, y)

)
for all x, y ∈ X , where ψ and ϕ are altering distance functions. Then T has a unique
fixed point.

Weak inequalities of the above type have been used to establish fixed point results
in a number of subsequent works, some of which are noted in [4] and references cited
therein.

On the other hand, cyclic representations and cyclic contractions were introduced by
Kirk et al. [5].

Definition 3. (See [5, 11].) Let (X , d) be a complete metric space. Let p be a positive
integer,A1,A2, . . . ,Ap be nonempty subsets of X , Y =

⋃p
i=1Ai and T : Y → Y . Then

Y is said to be a cyclic representation of Y with respect to T if

(a) Ai, i = 1, 2, . . . , p, are nonempty closed sets, and

(b) T (A1) ⊆ A2, . . . , T (Ap−1) ⊆ Ap, T (Ap) ⊆ A1.

T is called a cyclic contraction if, moreover, there exists k ∈ (0, 1) such that d(T x, T y) 6
kd(x, y) for all x ∈ Ai and y ∈ Ai+1, i = 1, . . . , p.

Notice that although a contraction is continuous, cyclic contractions need not be. This
is one of the important gains of this approach.

Following [5], a number of fixed point theorems on cyclic contractions have appeared
(see, e.g., [6–14]).

In this paper, we introduce a new variant of cyclic contractive mappings, named as
weaker cyclic (ϕ, φ)-contractive mappings, modifying the conditions used in [9]. Then
we derive the existence and uniqueness of fixed points for such mappings. Our main
result generalizes and improves many existing theorems in the literature. Some exam-
ples are provided to demonstrate the validity of our results. Finally as an application of
the presented theorems, we obtain existence and uniqueness of solutions of an integro-
differential equation.
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2 Main results

All the way through this paper, by R+, we designate the set of all nonnegative real
numbers, while N is the set of all natural numbers.

We state the notion of weaker cyclic (ϕ, φ)-contraction mapping as follows:

Definition 4. Let (X , d) be a metric space. Let p be a positive integer, A1,A2, . . . ,Ap
be nonempty subsets of X and Y =

⋃p
i=1Ai. An operator T : Y → Y is called weaker

cyclic (ϕ, φ)-contractive (in short WCC), if
(a) Y =

⋃p
i=1Ai is a cyclic representation of Y with respect to T ,

(b) for any (x, y) ∈ Ai ×Ai+1, i = 1, 2, . . . , p (with Ap+1 = A1),

ϕ
(
d(T x, T y)

)
6 ϕ

(
Θ(x, y)

)
− φ

(
Θ(x, y)

)
, (1)

where

Θ(x, y) = max

{
d(x, y), d(x, T x), d(y, T y), 1

2

[
d(y, T x) + d(x, T y)

]}
, (2)

(c) ϕ : [0,+∞) → [0,+∞) is a nondecreasing function with ϕ(t) = 0 if and only if
t = 0,

(d) φ : [0,+∞) → [0,+∞) is a function with φ(t) = 0 if and only if t = 0, and
lim infn→∞ φ(αn) > 0 if limn→∞ αn = α > 0,

(e) φ(α) > ϕ(α)− ϕ(α−) for any α > 0, where ϕ(α−) is the left limit of ϕ at α.

Note that there exist examples of WCC type mappings which do not satisfy conditions
given in [9, Thm. 2.1] (see further Example 2).

Our main result is the following.

Theorem 3. Let (X , d) be a complete metric space, p ∈ N,A1,A2, . . . ,Ap be nonempty
closed subsets of X and Y =

⋃p
i=1Ai. Suppose T : Y → Y is a WCC mapping. Then

T has a unique fixed point. Moreover, the fixed point of T belongs to
⋂p
i=1Ai.

Proof. It should be noted that there exists the left limit of ϕ at a by the monotonicity of ϕ.
Let x0 ∈ A1 (such a point exists since A1 6= ∅). Define the sequence {xn} in X by

xn+1 = T xn, n = 0, 1, 2, . . . .

First, we will prove that
lim
n→∞

d(xn, xn+1) = 0. (3)

If for some k, we have xk+1 = xk, then (3) follows immediately. So, we can suppose that

Θ(xn, xn−1) > 0 (4)

for all n > 1. From condition (a), we observe that for all n, there exists i = i(n) ∈
{1, 2, . . . , p} such that (xn, xn+1) ∈ Ai ×Ai+1. Then, from condition (b), we have

ϕ
(
d(xn, xn+1)

)
6 ϕ

(
Θ(xn−1, xn)

)
− φ

(
Θ(xn−1, xn)

)
, n = 1, 2, . . . . (5)
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On the other hand, we have

Θ(xn−1, xn) = max

{
d(xn−1, xn), d(xn+1, xn),

1

2
d(xn−1, xn+1)

}
6 max

{
d(xn−1, xn), d(xn, xn+1)

}
.

Now we claim that
d(xn+1, xn) 6 d(xn, xn−1) (6)

for all n > 1. Suppose that max{d(xk−1, xk), d(xk, xk+1)} = d(xk, xk+1) for some
k ∈ N. Then Θ(xk−1, xk) = d(xk, xk+1), hence

ϕ
(
d(xk, xk+1)

)
6 ϕ

(
d(xk, xk+1)

)
− φ

(
Θ(xk−1, xk)

)
.

This implies φ(Θ(xk−1, xk)) = 0. By a property of φ, we have Θ(xk−1, xk) = 0,
which contradicts to (4). Therefore, (6) is true and so the sequence {d(xn+1, xn)} is
nonincreasing and bounded. Thus there exists ρ > 0 such that limn→∞ d(xn+1, xn) = ρ.
Therefore, by (2)

lim
n→∞

d(xn+1, xn−1)

= lim
n→∞

d
(
T (xn), T (xn−1)

)
6 lim
n→∞

Θ(xn, xn−1)

= lim
n→∞

max

{
d(xn, xn−1), d(xn, T xn), d(xn−1, T xn−1),

1

2

[
d(xn−1, T xn) + d(xn, T xn−1)

]}
= lim
n→∞

max

{
d(T xn−1, T xn−2), d(T xn−1, T xn),

1

2
d(T xn−2, T xn)

}
.

This implies ρ 6 limn→∞Θ(xn, xn−1) 6 ρ and so limn→∞Θ(xn, xn−1) = ρ. Now we
claim that ρ = 0. By (5), we have

ϕ
(
d(T xn, T xn−1)

)
6 ϕ

(
Θ(xn, xn−1)

)
− φ

(
Θ(xn, xn−1)

)
and taking limit as n→∞, we have

ϕ(ρ+) 6 ϕ(ρ+)− lim inf
n→∞

φ
(
Θ(xn, xn+1)

)
which is contradictory unless ρ = 0. Hence

ρ = 0 = lim
n→∞

d(xn+1, xn).

Next, we shall prove that {xn} is a Cauchy sequence in (X , d). Suppose to the
contrary, that {xn} is not a Cauchy sequence. Then there exists ε > 0 for which we
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can find two sequences of positive integers {m(k)} and {n(k)} such that for all positive
integers k,

n(k) > m(k) > k, d(xm(k), xn(k)) > ε, d(xm(k), xn(k)−1) < ε. (7)

Using (7) and the triangle inequality, we get

ε 6 d(xn(k), xm(k)) 6 d(xm(k), xn(k)−1) + d(xn(k)−1, xn(k))

< ε+ d(xn(k), xn(k)−1).

Thus we have
ε 6 d(xn(k), xm(k)) < ε+ d(xn(k), xn(k)−1).

Passing to the limit as k →∞ in the above inequality and using (3), we obtain

lim
k→∞

d
(
xn(k), xm(k)

)
= ε+. (8)

On the other hand, for all k, there exists j(k) ∈ {1, . . . , p} such that n(k)−m(k)+j(k) ≡
1[p]. Then xm(k)−j(k) (for k large enough, m(k) > j(k)) and xn(k) lie in different
adjacently labelled sets Ai and Ai+1 for certain i ∈ {1, . . . , p}. Using (1), we obtain

d(xm(k)−j(k)+1, xn(k)+1) 6 Θ(xm(k)−j(k), xn(k)) (9)

for all k, where

Θ(xm(k)−j(k), xn(k))

= max

{
d(xm(k)−j(k), xn(k)), d(xm(k)−j(k)+1, xm(k)−j(k)), d(xn(k)+1, xn(k)),

1

2

[
d(xm(k)−j(k), xn(k)+1) + d(xn(k), xm(k)−j(k)+1)

]}
,

for all k. Using the triangle inequality, we get∣∣d(xm(k)−j(k), xn(k))− d(xn(k), xm(k))
∣∣

6 d(xm(k)−j(k), xm(k)) 6
j(k)−1∑
l=0

d(xm(k)−j(k)+l, xm(k)−j(k)+l+1)

6
p−1∑
l=0

d(xm(k)−j(k)+l, xm(k)−j(k)+l+1)→ 0 as k →∞ (from (3)),

which, by (8), implies that

lim
k→∞

d(xm(k)−j(k), xn(k)) = ε. (10)

Using (3), we have
lim
k→∞

d(xm(k)−j(k)+1, xm(k)−j(k)) = 0
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and
lim
k→∞

d(xn(k)+1, xn(k)) = 0. (11)

Again, using the triangle inequality, we get∣∣d(xm(k)−j(k), xn(k)+1)− d(xm(k)−j(k), xn(k))
∣∣ 6 d(xn(k), xn(k)+1).

Passing to the limit as k →∞ in the above inequality, and using (11) and (10), we get

lim
k→∞

d(xm(k)−j(k), xn(k)+1) = ε.

Similarly, we have∣∣d(xn(k), xm(k)−j(k)+1)− d(xm(k)−j(k), xn(k))
∣∣ 6 d(xm(k)−j(k), xm(k)−j(k)+1).

Passing to the limit as k →∞, and using (3) and (10), we obtain

lim
k→∞

d(xn(k), xm(k)−j(k)+1) = ε. (12)

Similarly, we have
lim
k→∞

d(xm(k)−j(k)+1, xn(k)+1) = ε. (13)

Passing to the limit as k →∞ in (9), and using (12), (13), we obtain

ε 6 lim
k→∞

Θ(xm(k)−j(k), xn(k)) 6 ε,

and so
lim
k→∞

Θ(xm(k)−j(k), xn(k)) = ε.

If there exists a subsequence {k(p)} of {k} such that ε < d(xn(k(p)+1), xm(k(p)+1)) for
any p, then by (b) we get

ϕ(ε+) = lim sup
k→∞

ϕ
(
d(xn(k)+1, xm(k)+1)

)
= lim sup

k→∞
ϕ
(
d(T xn(k), T xm(k))

)
6 lim sup

k→∞
ϕ
(
d(T xn(k), T xn(k)+1) + d(T xn(k), T xm(k)−1)

)
= lim sup

k→∞
ϕ
(
d(T xn(k), T xm(k)−1)

)
6 lim sup

k→∞

[
ϕ
(
Θ(xn(k), xm(k)−1)

)
− φ

(
Θ(xn(k), xm(k)−1)

)]
= ϕ(ε+)− lim inf

k→∞
φ
(
Θ(xn(k), xm(k)−1)

)
,

which is a contradiction. We repeat the procedure if there exists a subsequence {k(p)} of
{k} such that ε < d(xn(k(p)+1), xm(k(p)+2)) for any p or ε < d(xn(k(p)+2), xm(k(p)+1))
for any p. Therefore, we can suppose that

d(xn(k(p)+1), xm(k(p)+1)) = ε, d(xn(k(p)+2), xm(k(p)+1)) 6 ε

d(xn(k(p)+1), xm(k(p)+2)) 6 ε
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for any k > k1. Then Θ(xn(k), xm(k)) = ε for k > k3 = max{k1, k2}, where k2 is such
that d(xk+1, xk+2) < ε for all k > k2. Substituting x = xn(k), x = xm(k) in (b), we
have

ϕ
(
d(xn(k)+2, xm(k)+2)

)
6 ϕ(ε)− φ(ε)

for any k > k2. Obviously d(xn(k)+2, xm(k)+2) < ε, otherwise we have φ(ε) = 0.
Letting k →∞ we obtain

ϕ(ε−) 6 ϕ(ε)− φ(ε),

which contradicts hypothesis (d). Thus {xn} is a Cauchy sequence in (X , d).
Since (X , d) is complete, there exists x∗ ∈ X such that

lim
n→∞

xn = x∗. (14)

We shall prove that

x∗ ∈
p⋂
i=1

Ai. (15)

From condition (a), and since x0 ∈ A1, we have {xnp}n>0 ⊆ A1. Since A1 is closed,
from (14), we get that x∗ ∈ A1. Again, from the condition (∗), we have {xnp+1}n>0 ⊆
A2. Since A2 is closed, from (14), we get that x∗ ∈ A2. Continuing this process, we
obtain (15).

Now, we shall prove that x∗ is a fixed point of T . Indeed, from (15), since for all n,
there exists i(n) ∈ {1, 2, . . . , p} such that xn ∈ Ai(n), applying (b) with x = x∗ and
y = xn, we obtain

ϕ
(
d(T x∗, xn+1)

)
= ϕ

(
d(T x∗, T xn)

)
6 ϕ

(
Θ(x∗, xn)

)
− φ

(
Θ(x∗, xn)

)
, (16)

for all n. On the other hand, we have

Θ(x∗, xn) = max

{
d(x∗, xn), d(x

∗, Tx∗), d(xn, xn+1),
d(x∗, xn+1) + d(xn, T x∗)

2

}
.

Passing to the limit as n→∞ in the above inequality and using (14), we obtain that

lim
n→∞

Θ(x∗, xn) = max

{
d(x∗, T x∗), 1

2
d(x∗, T x∗)

}
. (17)

Passing to the limit as n→∞ in (16), and using (17) and (14), we get

ϕ
(
d(x∗, T x∗)−

)
6 ϕ

(
max

{
d(x∗, T x∗), 1

2
d(x∗, T x∗)

})
−φ
(
max

{
d(x∗, T x∗), 1

2
d(x∗, T x∗)

})
.

Suppose that d(x∗, T x∗) > 0. In this case, we have

max

{
d(x∗, T x∗), 1

2
d(x∗, T x∗)

}
= d(x∗, T x∗),
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which implies that

ϕ
(
d(x∗, T x∗)−

)
6 ϕ

(
d(x∗, T x∗)

)
− φ

(
d(x∗, T x∗)

)
,

which contradicts hypothesis (d). Thus we have d(x∗, T x∗) = 0, that is, x∗ is a fixed
point of T .

Finally, we prove that x∗ is the unique fixed point of T . Assume that y∗ is another
fixed point of T , that is, T y∗ = y∗. By the condition (a), this implies that y∗ ∈

⋂p
i=1Ai.

Then we can apply (b) for x = x∗ and y = y∗. We obtain

ϕ
(
d(x∗, y∗)

)
= ϕ

(
d(T x∗, T y∗)

)
6 ϕ

(
Θ(x∗, y∗)

)
− φ

(
Θ(x∗, y∗)

)
.

Since x∗ and y∗ are fixed points of T , we can show easily that Θ(x∗, y∗) = d(x∗, y∗). If
d(x∗, y∗) > 0, we get

ϕ
(
d(x∗, y∗)

)
= ϕ

(
d(T x∗, T y∗)

)
6 ϕ

(
Θ(x∗, y∗)

)
− φ

(
Θ(x∗, y∗)

)
= ϕ

(
d(x∗, y∗)

)
− φ

(
d(x∗, y∗)

)
a contradiction unless d(x∗, y∗) = 0, that is, x∗ = y∗. Thus we have proved the
uniqueness of the fixed point.

This theorem generalizes, e.g., results from [6–16].
We present here a corollary concerning mappings satisfying a general contractive

condition of integral type in a complete metric space [17].

Corollary 1. Let T as well as ϕ, φ, Θ(x, y) satisfy the conditions of Theorem 3, except
that condition (b) is replaced by the following: there exists a nonnegative Lebesgue
integrable function u on R+ such that

∫ ε
0
u(t) dt > 0 for each ε > 0 and that

ϕ(d(T x,T y))∫
0

u(t) dt 6

ϕ(Θ(x,y))∫
0

u(t) dt−
φ(Θ(x,y))∫

0

u(t) dt. (18)

Then T has a unique fixed point. Moreover, the fixed point of T belongs to
⋂p
i=1Ai.

Proof. Define Λ : R+ → R+ by Λ(x) =
∫ x
0
u(t) dt. Then Λ is continuous and

nondecreasing with Λ(0) = 0. Condition (18) becomes

Λ
(
ϕ
(
d(T x, T y)

))
6 Λ

(
ϕ
(
Θ(x, y)

))
− Λ

(
φ
(
Θ(x, y)

))
,

which can be further written as

ϕ1

(
d(T x, T y)

)
6 ϕ1

(
Θ(x, y)

)
− φ1

(
Θ(x, y)

)
,

where φ1 = Λ ◦ φ and ϕ1 = Λ ◦ ϕ. Clearly, φ1, ϕ1 are control functions with φ1(0) =
0 = ϕ1(0). Hence by Theorem 3, T has a fixed point.
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3 Examples

The following example (which is inspired by [18]) demonstrates the validity of Theo-
rem 3.
Example 1. Let X = `1 be endowed with the standard metric

d
(
(xn), (yn)

)
=

∞∑
n=1

|xn − yn|.

Let α ∈ (0, 1) be fixed, denote 0 = (0)∞n=1 and consider the subsets A1 and A2 of X
defined by A1 = A′ ∪ {0}, A2 = A′′ ∪ {0}, where

A′ 3 xl = (xln)
∞
n=1 iff xln =

{
0, n < 2l ∨ n = 2k − 1, k ∈ N,
αn, n = 2k > 2l,

l = 1, 2, . . . ,

and

A′′ 3 xl = (xln)
∞
n=1 iff xln =

{
0, n < 2l − 1 ∨ n = 2k, k ∈ N,
αn, n = 2k − 1 > 2l − 1,

l = 1, 2, . . . .

Denote Y = A1 ∪ A2 (obviously A1 ∩ A2 = {0}).
Consider the mapping T : Y → Y given by:

T (0) = 0,

T
(
(0, . . . , 0︸ ︷︷ ︸

2l−1

, α2l, 0, α2l+2, 0, . . . )
)
=
(
0, . . . , 0︸ ︷︷ ︸

2l

, α2l+1, 0, α2l+3, 0, . . .
)
,

T
(
(0, . . . , 0︸ ︷︷ ︸

2l

, α2l+1, 0, α2l+3, 0, . . . )
)
=
(
0, . . . , 0︸ ︷︷ ︸

2l+1

, α2l+2, 0, α2l+4, 0, . . .
)
.

Obviously, T (A1) ⊂ A2 and T (A2) ⊂ A1, hence Y = A1∪A2 is a cyclic representation
of Y with respect to T .

Take ϕ(t) = kt, k > 0 and φ(t) = ht for some h > 0, h 6 k(1 − α). Let us check
the contractive condition (b) of Theorem 3. Take

x =
(
0, . . . , 0︸ ︷︷ ︸

2l−1

, α2l, 0, α2l+2, 0, . . .
)
∈ A1,

y =
(
0, . . . , 0︸ ︷︷ ︸

2m

, α2m+1, 0, α2m+3, 0, . . .
)
∈ A2

and assume, e.g., that l < m (the case l > m is treated similarly, as well as the case when
x or y is equal to 0). Then

d(x, y) = α2l + · · ·+ α2m−2 +
α2m

1− α
,

d(T x, T y) = α2l+1 + · · ·+ α2m−1 +
α2m+1

1− α
6
α2l+1

1− α
,
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d(x, T x) = α2l

1− α
, d(y, T y) = α2m+1

1− α
,

d(x, T y) = α2l + α2l+2 + · · ·+ α2m,

d(y, T x) = α2l+1 + α2l+3 + · · ·+ α2m−1,

Θ(x, y) =
α2l

1− α
.

Hence,

ϕ
(
d(T x, T y)

)
6 k

α2l+1

1− α
= kα

α2l

1− α
= kαΘ(x, y)

6 (k − h)Θ(x, y) = ϕ
(
Θ(x, y)

)
− φ

(
Θ(x, y)

)
.

Thus, all the conditions of Theorem 3 are satisfied. Obviously, T has a unique fixed
point 0.

The following example (inspired from [4]) demonstrates the validity of Theorem 3
when ϕ is nonlinear and discontinuous.
Example 2. Let X = [0, 1] be equipped with the standard metric and consider the
following mapping T : X → X and functions ϕ, φ : [0,+∞)→ [0,+∞):

T x =

{
1
2 , 0 6 x < 1,

0, x = 1,
ϕ(t) =


7
5 t, 0 6 t < 1

2 ,√
2
2 , t = 1

2 ,

2t+3
5 , 1

2 < t < +∞,

φ(t) =
1

10
t2.

Taking A1 = [0, 1/2] and A2 = [1/2, 1] we obtain a cyclic representation X = A1 ∪ A2

with respect to T . Conditions (c) and (d) of Definition 4 are obvious. The only point of
discontinuity of ϕ is 1/2 and it is φ(1/2) = 0.025 >

√
2/2− 0.7 = ϕ(1/2)− ϕ(1/2−),

hence condition (e) is also satisfied.
Since φ(t) 6 ϕ(t) for all t ∈ [0, 1], the only nontrivial case when the contractive

condition (b) has to be checked is when x ∈ [0, 1/2), y = 1 (or vice versa). Since
T x = 1/2, T y = 0 and Θ(x, y) = 1, it becomes

ϕ
(
d(T x, T y)

)
= ϕ

(
1

2

)
=

√
2

2
<

9

10
= ϕ(1)− φ(1) = ϕ

(
Θ(x, y)

)
− φ

(
Θ(x, y)

)
.

Thus, the conditions of Theorem 3 are fulfilled and the mapping T has a unique fixed
point (which is 1/2).

Note that this example is not covered by Theorem 2.1 of [9], since the function ϕ is
not right-continuous at the point 1/2.

4 An application to integro-differential equations

In this section we present examples of certain Volterra and Fredholm type integro-differential
equations. The examples are inspired by [19].
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Consider the nonlinear Volterra and Fredholm type integro-differential equations of
the forms

x(t) = g(t) +

t∫
a

f
(
t, s, x(s), x′(s)

)
ds, (19)

and

x(t) = g(t) +

b∫
a

f
(
t, s, x(s), x′(s)

)
ds, (20)

for −∞ < a 6 t 6 b <∞, where x, g, f are real functions. We shall denote J = [a, b].
The functions g(t) (t ∈ J) and f(t, s, u, v) (a 6 s 6 t 6 b, u, v ∈ R) are supposed to be
continuous and continuously differentiable with respect to t.

For a real-valued function x(t), t ∈ J , continuous together with its first derivative
x′(t) for t ∈ J , we denote |x(t)|1 = |x(t)|+ |x′(t)|. Denote by E the space of functions
which fulfill the condition ∣∣x(t)∣∣

1
= O

(
exp(λt)

)
, t ∈ J, (21)

where λ is a positive constant. Define the norm in the space E as

|x|E = max
t∈J

{∣∣x(t)∣∣
1
exp(−λt)

}
. (22)

It is easy to see that E with the norm defined in (22) is a Banach space. We note that the
condition (21) implies that there is a constant N > 0 such that |x(t)|1 6 N exp(λt),
t ∈ J . Using this fact in (22) we observe that

|x|E 6 N. (23)

Define a mapping T : E → E by

(T x)(t) = g(t) +

t∫
a

f
(
t, s, x(s), x′(s)

)
ds (24)

for x ∈ E . Note that, if u∗ ∈ E is a fixed point of T , then u∗ is a solution of the
problem (19). We shall prove the existence of a fixed point of T under the following
conditions.

(I) There exist (α, β) ∈ E2, (α0, β0) ∈ R2 such that

α0 6 α(t) 6 β(t) 6 β0, α0 6 α′(t) 6 β′(t) 6 β0, t ∈ J,

and for all t ∈ J , we have

α(t) 6 g(t) +

t∫
a

f
(
t, s, β(s), β′(s)

)
ds,

α′(t) 6 g′(t) + f
(
t, t, β(t), β′(t)

)
+

t∫
a

∂

∂t
f
(
t, s, β(s), β′(s)

)
ds, t ∈ J,
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and

β(t) > g(t) +

t∫
a

f
(
t, s, α(s), α′(s)

)
ds,

β′(t) > g′(t) + f(t, t, α(t), α′(t)) +

t∫
a

∂

∂t
f
(
t, s, α(s), α′(s)

)
ds, t ∈ J.

(II) f : J × J × R× R→ R is continuous and nonincreasing with respect to the third
and fourth variables, that is, for u, v ∈ E ,

u(t) > v(t) and u′(t) > v′(t) for t ∈ J
=⇒ f

(
t, s, u(s), u′(s)

)
6 f

(
t, s, v(s), v′(s)

)
and

∂

∂t
f
(
t, s, u(s), u′(s)

)
6

∂

∂t
f
(
t, s, v(s), v′(s)

)
, a 6 s 6 t 6 b.

(III) The function f and its derivative satisfy the conditions∣∣f(t, s, u, v)− f(t, s, u, v)∣∣ 6 h1(t, s)
[
|u− u|+ |v − v|

]
,∣∣∣∣ ∂∂tf(t, s, u, v)− ∂

∂t
f(t, s, u, v)

∣∣ 6 h2(t, s)
[
|u− u|+ |v − v|

]
,

for a 6 s 6 t 6 b, u, v, u, v ∈ E , where hi ∈ C(J2,R+) for i = 1, 2.

(IV) There exist nonnegative constants γ1, γ2 such that γ1 + γ2 < 1 and

t∫
a

h1(t, s) exp(λs) ds 6 γ1 exp(λt),

h1(t, t) exp(λt) +

t∫
a

h2(t, s) exp(λs) ds 6 γ2 exp(λt),

for t ∈ J , where λ is given in (21).

(V) There exist nonnegative constants δ1, δ2 such that

∣∣g(t)∣∣+ t∫
a

∣∣f(t, s, 0, 0)∣∣ds 6 δ1 exp(λt),

∣∣g′(t)∣∣+ ∣∣f(t, s, 0, 0)∣∣+ t∫
a

∣∣∣∣ ∂∂tf(t, s, 0, 0)
∣∣∣∣ds 6 δ2 exp(λt),

for a 6 s 6 t 6 b, where λ is given in (21).

We have the following result for the set

P =
{
u ∈ E : α(t) 6 u(t) 6 β(t), α′(t) 6 u′(t) 6 β′(t), t ∈ J

}
.
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Theorem 4. Under the assumptions (I)–(V), the integro-differential problem (19) has
a unique solution in the set P .

Proof. The proof of the theorem is divided into three parts.
(A) First we show that T maps E into itself.
Differentiating both sides of (24) with respect to t we get

(T x)′(t) = g′(t) + f
(
t, t, x(t), x′(t)

)
+

t∫
a

∂

∂t
f
(
t, s, x(s), x′(s)

)
ds. (25)

Evidently, T x, (T x)′ are continuous on J . We verify that (21) is fulfilled. From (22),
(25) and using conditions (IV), (V) and (23) we have

∣∣(T x)(t)∣∣ 6 ∣∣g(t)∣∣+ t∫
a

∣∣f(t, s, x(s), x′(s))− f(t, s, 0, 0) + f(t, s, 0, 0)
∣∣ds

6
∣∣g(t)∣∣+ t∫

a

∣∣f(t, s, 0, 0)|ds+ t∫
a

h1(t, s)
∣∣x(s)∣∣

1
ds

6 δ1 exp(λt) + |x|E

t∫
a

h1(t, s) exp(λs) ds

6 [δ1 +Nγ1] exp(λt), (26)

and ∣∣(T x)′(t)∣∣ 6 ∣∣g′(t)∣∣+ ∣∣f(t, t, x(t), x′(t))− f(t, t, 0, 0) + f(t, t, 0, 0)
∣∣

+

t∫
a

∣∣∣∣ ∂∂tf(t, s, x(s), x′(s))− ∂

∂t
f(t, s, 0, 0) +

∂

∂t
f(t, s, 0, 0)

∣∣∣∣ds
6
∣∣g′(t)∣∣+ ∣∣f(t, t, 0, 0)∣∣+ t∫

a

∣∣∣∣ ∂∂tf(t, s, 0, 0)
∣∣∣∣ds+ h1(t, t)

∣∣x(t)∣∣
1

+

t∫
a

h2(t, s)
∣∣x(s)∣∣

1
ds

6 δ2 exp(λt) + |x|Eh1(t, t) exp(λt) + |x|E

t∫
a

h2(t, s) exp(λs) ds

6 [δ2 +Nγ2] exp(λt). (27)

Combining (26) and (27) we get∣∣(T x)(t)∣∣
1
6
[
δ1 + δ2 +N(γ1 + γ2)

]
exp(λt). (28)
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It follows from (28) that T x ∈ E . This proves that T maps E into itself.

(B) Define closed subsets of E , A1 and A2 by

A1 =
{
u ∈ E : u(t) 6 β(t), u′(t) 6 β′(t) for t ∈ J

}
and

A2 =
{
u ∈ E : u(t) > α(t), u′(t) > α′(t) for t ∈ J

}
.

We shall prove that
T (A1) ⊆ A2 and T (A2) ⊆ A1. (29)

Let u ∈ A1, that is,

u(t) 6 β(t) and u′(t) 6 β′(t) for all t ∈ J.

Using condition (II), we obtain that

f
(
t, s, u(s), u′(s)

)
> f

(
t, s, β(s), β′(s)

)
(30)

and
∂

∂t
f
(
t, s, u(s), u′(s)

)
6

∂

∂t
f
(
t, s, β(s), β′(s)

)
(31)

for a 6 s 6 t 6 b. The inequality (30) with condition (I) imply that

(T u)(t) = g(t) +

t∫
a

f
(
t, s, u(s), u′(s)

)
ds > g(t) +

t∫
a

f
(
t, s, β(s), β′(s)

)
ds > α(t)

for all t ∈ J . The inequality (31) with condition (I) imply that

(T u)′(t) = g′(t) + f
(
t, t, u(t), u′(t)

)
+

t∫
a

∂

∂t
f
(
t, s, u(s), u′(s)

)
ds

> g′(t) + f
(
t, t, β(t), β′(t)

)
+

t∫
a

∂

∂t
f
(
t, s, β(s), β′(s)

)
ds > α′(t)

for all t ∈ J . Hence, we have T u ∈ A2.
Similarly, if u ∈ A2, it can be proved that T u ∈ A1 holds. Thus, (29) is fulfilled.

(C) We verify that the operator T is a WCC map.
Let (u, v) ∈ A1 ×A2, that is, for all t ∈ J ,

u(t) 6 β(t) 6 β0, u′(t) 6 β′(t) 6 β0,

v(t) > α(t) > α0, v′(t) > α′(t) > α0.
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Using the properties (24) and (25) of T and conditions (III), (IV) and (V), we conclude
that

∣∣(T u)(t)− (T v)(t)
∣∣ 6 t∫

a

∣∣f(t, s, u(s), u′(s))− f(t, s, v(s), v′(s))∣∣ds
6

t∫
a

h1(t, s)
∣∣u(s)− v(s)∣∣

1
ds

6 |u− v|E

t∫
a

h1(t, s) exp(λs) ds 6 |u− v|Eγ1 exp(λt), (32)

and∣∣(T u)′(t)− (T v)′(t)
∣∣ 6 ∣∣f(t, t, u(t), u′(t))− f(t, t, v(t), v′(t))∣∣

+

t∫
a

∣∣∣∣ ∂∂tf(t, s, u(s), u′(s))− ∂

∂t
f
(
t, s, v(s), v′(s)

)∣∣∣∣ds
6 h1(t, t)

∣∣u(t)− v(t)∣∣
1
+

t∫
a

h2(t, s)
∣∣u(s)− v(s)∣∣

1
ds

6 |u− v|Eh1(t, t) exp(λt) + |u− v|E

t∫
a

h2(t, s) exp(λs) ds

6 |u− v|Eγ2 exp(λt), (33)

for t ∈ J . Combining (32) and (33) we get∣∣(T u)(t)− (T v)(t)∣∣
1
6 |u− v|E(γ1 + γ2) exp(λt). (34)

From (34) we obtain (with k = γ1 + γ2 < 1)∣∣T u− T v∣∣E 6 k|u− v|E

6 kmax

{
|u− v|E , |u− T u|E , |v − T v|E ,

1

2

[
|u− T v|E + |v − T u|E

]}
.

Consider the functions ϕ, φ : [0,+∞)→ [0,+∞) defined by:

ϕ(t) = t and φ(t) = (1− k)t.

Then the contractive condition takes the form

ϕ
(
|T u− T v|E

)
6 ϕ

(
Θ(u, v)

)
− φ

(
Θ(u, v)

)
.

Using the same technique, we can show that the above inequality also holds if we take
(u, v) ∈ A2×A1. All other conditions of Theorem 3 are fulfilled for the complete metric
space (A1 ∪ A2, | · |E) and T restricted to A1 ∪ A2 (with p = 2).
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We conclude that the operator T has a unique fixed point u∗ and, hence, the integro-
differential equation (19) has a unique solution in the set P .

Remark 1. A similar result can be shown for equation (20).

Acknowledgment. The authors are indebted to the referees for careful reading and
suggestions that helped us to improve the text.
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