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Abstract. In the peresent paper, we give a common fixed point theorem for four weakly compatible
mappings on non-complete partial metric spaces. Some supporting examples are provided.
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1 Introduction

Partial metric spaces were introduced by Matthews [1] to the study of denotational seman-
tics of dataflow networks. In particular, he proved a partial metric version of the Banach
contraction principle. Later, Valero [2] and Oltra and Valero [3] gave some generalizations
of the result of Matthews. In fact, the study of fixed point theorems on partial metric metric
spaces has received a lot of attention in the last three years (see, for instance, [4—17]
and their references). Almost all of these papers offer fixed point or common fixed point
results on complete partial metric spaces. In this paper, we present a common fixed point
theorem without completeness of the space.

Now, we recall some definitions and results needed in the sequel. A partial metric on
anonempty set X is a mapping p : X x X — [0, 00) such that

(pl) = = yifand only if p(x,z) = p(z,y) = p(y, y),
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(p2) p(z,x) < p(z,y),
(3) p(z,y) = p(y, z),
(P4 p(z,y) <plx,2) +p(z,y) —p(2,2)

forall ,y,z € X. A partial metric space is a pair (X, p) such that X is a nonempty set
and p is a partial metric on X. It is clear that, if p(x,y) = 0, then from (p1) and (p2)
x =y. Butif x = y, p(x,y) may not be 0. A basic example of a partial metric space is
the pair (X, p), where X = [0, 00) and p(x,y) = max{z,y} forall z,y € X.

Example 1. Let (X, d) and (X, p) be a metric space and partial metric space, respectively.
Mappings p; : X x X — [0,00) (i € {1,2,3}) defined by

p1(x,y) = d(x,y) —l—p(x,y),
p2(z,y) = d(z,y) + max{w(z), w(y)},
p3(x,y) =d(z,y) +a

define partial metrics on X, where w : X — [0, 00) is an arbitrary function and a > 0.

Other examples of the partial metric spaces which are interesting from a computa-
tional point of view may be found in [1, 18, 19].
Each partial metric p on X generates a T topology 7, on X which has a family of
open p-balls
{Bp(z,e): € X,e >0},

as a base, where B (z,¢) = {y € X: p(x,y) < p(z,z) + e} forallz € X ande > 0.

It is easy to see that, a sequence {z,,} in a partial metric space (X, p) converges with
respect to 7, to a point z € X if and only if p(z, z) = lim,,—, o p(z, ). By L(z,,), we
denote the set of z € X, which the sequence {z,, } converges to = with respect to 7,,. That
is, L(zyp) = {z € X : x,, — x w.r.t. 7, }. If p is a partial metric on X, then the functions
p,p™: X x X — [0,00) given by

p*(z,y) = 2p(z,y) — p(z, ) — p(y,y)
and

p"(x,y) = max{p(z,y) — p(z,z), p(z,y) —p(y.y)}
= p(z,y) —min{p(z,z),p(y,y)}

are equivalent metrics on X.

Remark 1. Let {x,,} be a sequence in a partial metric space (X, p) and = € X, then

lim p°(2,,z) =0

n—o0
if and only if
p(x,x) = lim p(e,,z) = ny}rllgloop(xn,xm)-
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Definition 1. Let (X, p) be a partial metric space.
(i) A sequence {x,} in X is called Cauchy whenever lim,, ;00 P(Zp, T, ) eXists
(and finite);
(i) (X,p) is said to be complete if every Cauchy sequence {z,} in X converges with
respect to 7, to a point x € X, that is, lim,, 1, , oo D(Tn, Tm) = p(, ).

The following example shows that a convergent sequence {z,} in a partial metric
space X may not be Cauchy. In particular, it shows that the limit of a convergent sequence
is not unique.

Example 2. Let X = [0, 00) and p(x,y) = max{x, y}. Let

0, n =2k,
Ty =
1, n=2k+1.

Then it is easy to see that L(x,,) = [1,00). But lim p(z,,x,,) does not exist.
n,M—00

The following Lemma shows that under certain conditions the limit is unique.
Lemma 1. (See [20].) Let {x,, } be a convergent sequence in partial metric space X such
that x,, — x and x,, = y. If

lim p(an, xn) = p(xa Sﬂ) = p(yv y)a

n—0oo

then x = y.

Lemma 2. (See [20,21].) Let {x,} and {y,} be two sequences in partial metric space
X such that

Jim p(zn, 2) = lim p(zn,z,) = p(z, )
and

lim p(yn, y) = 711L120p(yn7yn) = p(y>y)’

n—oo

then limy, s oo P(Tn, yn) = p(x,y). In particular, lim,_ p(x,, 2) = p(x, 2) for every
z e X.

Lemma 3. (See [1,3].) Let (X, p) be a partial metric space.
(i) {zn} is a Cauchy sequence in (X, p) if and only if it is a Cauchy sequence in the
metric space (X, p®).
(ii) A partial metric space (X, p) is complete if and only if the metric space (X, p®) is
complete.

In the proofs of many fixed-point theorems on Partial metric space, using the met-
ric p°, the operations are done in the metric space (X, p®), and then taking into account
Lemma 3, again returns to the partial metric space (X, p). However, in their recent paper
Haghi et al. [22] have done the proof completely on a metric space using another metric,
which is obtained from the partial metric p, instead of p®. In this paper, we do not use the
technique of Haghi et al. [22], because of our contractive condition is given by implicit
relation.
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2 Main results

In the following we deal with the class ¥ of all functions 9 : [0,00)% — R with the
property:
(x1) Forw < wandv > 0,

1/1(u,v,v,u,u+v,w)<0 or ¢(uav7u7v7w7u+v)<0

implies that u < v,
(12) (t1,ta,ts,ta,ts5,te) is non-increasing in ts, te,

(3) for every w,w’ < u,
¢(u,u7w,w'7u,u) < 07 w(U,O,O,U7U,U1) < 0 and w(u707ua07w7u) < 0

implies that u = 0,

(¥4) 1 is continuous in any coordinates.

Two basic examples of v are:

1. w(tl,tg,tg,t4,t5,t6) =1 — )\max{tg,tg,t4, (1/2)t5, (1/2)75(3} for0 < A <1,

2. (ty, ta, ta,ty, ts,t) = fgl o(s)ds — hmax{fgi ¢(s)ds} fori = 2,3,4, where
0<h<1land¢:R" — R is a continuous map.

Let f and S be two self maps of a partial metric space (X, p), then we define a set
E(f,S) by
E(f,S) = {p(fz,Sz): x € X}.
It is clear that inf E(f,.S) is exist, but may not be belong to E(f,.S).

It is well known that f and S are weakly compatible [23] if they are commute at their
coincidence point, that is, fo = Sx implies that fSz = Sfz.

Theorem 1. Let (X, p) be a partial metric space and f,g,S,T : X — X are four
mappings such that f(X) C T(X) and g(X) C S(X). Suppose forall z,y € X

& (p(fz,9y),p(Sz, Ty), p(Sz, fx), plgy, Ty), p(Sz, gy), p(Ty, fx)) <0, (1)

where v € W. If inf E(f,S) € E(f,5), f and S as well as g and T are weakly
compatible, then f, g, S and T have a unique common fixed point z in X. Moreover

p(z,2) =0.

Proof. Since inf E(f,S) € E(f,S), hence if put « = inf E(f,S), then there exists
u € X such that o = p(fu, Su). Since fu € f(X) C T(X), hence there exists v € X
such that fu = Tw. Thus

a = p(fu, Su) = p(Tv, Su).
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We prove that o = 0. Let > 0, from (1) we get

¥ (p(fu, gv), p(Su, Tv), p(Su, fu), p(gv, Tv), p(Su, gv), p(Tw, fu)) < 0.

Since,

p(Su, fu) + p(fu, gv) — p(fu, fu)
p(Su, fu) + p(fu, gv),

p(Su, gv) <
<

by above inequality and (¢/2) it follows that

b(p(fu, gv), @, . pgv, fu), e+ p(fu, gv), p(fu, fu)) <O0.
By (¢1), p(Tv, gv) = p(fu,gv) < a = p(fu, Su). Since gv € g(X) C S(X), hence
there exists w € X such that Sw = gv. Similarly, from (1) we get

¥ (p(fw, gv), p(Sw, Tv), p(Sw, fw), p(gv, Tv), p(Sw, gv), p(Tv, fw)) < 0.

Since,

p(fw, Tv) < p(fw, Sw) + p(Sw, Tv) — p(Sw, Sw)

<
< p(fw, Sw) + p(Sw, Tv),

by above inequality and (/2) it follows that

¥ (p(fw, Sw), p(gv, Tv), p(Sw, fw), p(gv, Tv), p(Sw, Sw), p(fw, Sw) + p(gv, Tv))
< 0.

If p(gv, Tv) = 0, then by (¢p1) we get p(fw, Sw) = 0. Thus, by the definition of a, we
have
a = p(fu, Su) < p(fw,Sw) =0,

which is a contradiction. So, it follows that p(gv,Tv) > 0, hence by (¢/1), we get
p(fw, Sw) < p(gv, Tv). Thus,

a = p(fu, Su) < p(fw, Sw) < p(gv, Tv) < p(fu, Su) = a,

which is a contradiction. Hence o = 0. This implies that fu = Su = T'v. Now we prove
that gv = T. If gv # T'v, then by (1) and (12), we get
w(p(Tv, gv), p(Tv, Tv), p(Tv, Tv), p(gv, Tv), p(Tv, Tv) + p(Tv, gv), p(Tv, Tv))
= P(p(fu, gv), p(Su, Tv), p(Su, fu),p(gv, Tv), p(Su, Tv)+p(Su, gv),p(Tv, fu))
<Y (p(fu, gv), p(Su, Tv), p(Su, fu), p(gv, Tv), p(Su, gv),p(Tv, fu)) <0,
from (¢1) it follows that, p(T'v, gv) = 0 and so Tv = gv, because o = p(Tv, Tv) = 0.

Hence,
Tv=gv=fu=Su=z.
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By weak compatibility of g and 7" and f and .S we have gz = Tz and fz = Sz. Now, we
prove that fz = z. In fact by (1), we have

¥(p(fz,9v),p(Sz,Tv), p(Sz, fz), p(gv, Tv), p(Sz, gv),p(Tv, fz)) <0

or
U(p(fz,2),p(f22),0(fz, f2),p(2,2),p(f2 2),p(2, f2)) <O.
By (¢03), we have p(fz,2) = 0 and so fz = z. Therefore,
fz=8z2==z.
Similarly by (1) we have

¥(p(z,92),p(2,92),0(f 2, f2), (92, 92),p(2, 92), p(2, g2))
= w(p(fz7gz)7p(5z,Tz),p(Sz, fz),p(gz7Tz),p(Sz,gz),p(Tz, fZ)) <0.

By (¥3), we have p(z, gz) = 0 and so gz = z. Therefore,
gz =Tz = z.

i.e., z is a common fixed point of f, g, S and T.. Moreover p(z, z) = p(fu, Su) = a = 0.
Now we show that the common fixed point is unique. If x and y are two common
fixed points of f, g, .S and 7', then from (1), we have

Y(p(x,y), p(z,y),p(x,2),p(y, y), p(x,9), p(y, z))
= (p(fz,gy), p(Sz,Ty), p(Sz, fz),p(Sy, Ty), p(Sz, gy), p(Ty, fz)) <O0.
By (¢)3) implies that p(z,y) = 0 and so z = y. O

Remark 2. In Theorem 1, the condition inf E(f,S) € E(f,S) can be replaced by
inf E(g,T) € E(g,T).

Corollary 1. Let f;, g;, T and S (i,j € N) be self-mappings of a partial metric space
(X, p) such that f;,(X) C T(X), and g;,(X) C S(X) for some iy, jo € N. Suppose for
allx,y € Xandi,j € N

¥ (p(fiz, g;9), p(Sz, Ty), p(Sz, fix),p(g;y. Ty), p(Sz, 9;9),p(Ty, fz)) <0,

where i € W. Ifinf E(f;,,S) € E(fi,,S), fi, and S as well as g;, and T are weakly
compatible, then f;, g;, S and T have a unique common fixed point z in X. Moreover

p(z,2) =0.

Proof. By Theorem 1, S, T, f;, and g;, have a unique common fixed point z in X.
Moreover p(z, z) = 0. That is, there exists a unique z € X such that

Sz =Tz = fi,z = gj,z = 2.

Nonlinear Anal. Model. Control, 2013, Vol. 18, No. 4, 466475



472 S. Sedghi et al.

Now for every 5 € N, we have from (1)

w(p(z,ng),p(Z,Z),p(Z,Z),p(ng,Z),p(Z,ng) —‘y—p(Z,Z),p(Z,Z))
= 1/;(p(z,gjz),p(z,z),p(z,z),p(gjz,z),p(z,gjz),p(z,z))
= ¢(p(fioz,ng),p(Sz,Tz),p(Sz,fioz),p(gjz,TZ),p(Sz,gjz),p(Tz, fioz)) < 0.

By (11), it follows that p(g;z,z) = 0. Hence, for every j € N, we have g;z = z.
Similarly, for every i € N, we get f;z = z. Therefore, for every i, j € N, we have

fiz=gjz2=92=Tz==z O
We can obtain the following corollaries from Theorem 1, by the choosing some special
function ).
Corollary 2. Let (X,p) be a partial metric space and f,g,S,T : X — X are four
mappings such that f(X) C T(X) and g(X) C S(X). Suppose for all z,y € X

p(fr,gy) < AmaX{p(Sm,Ty)vp(Sw, fx),p(gy, Ty), %p(vagy), %p(T% f:c)}7

where A € (0,1). Ifinf E(f,S) € E(f,S), f and S as well as g and T are weakly

compatible, then f, g, S and T have a unique common fixed point z in X. Moreover
p(z,2) =0.

Corollary 3. Let (X,p) be a partial metric space and f,g,S,T : X — X are four
mappings such that f(X) C T(X) and g(X) C S(X). Suppose forall z,y € X

p(fz,9y) p(Sz,Ty) p(Sz,fz) p(9y,Ty)
¢<s>ds<hmax{ [ ewas [ awas [ ¢<s>ds},
0 0 0 0

where 0 < h < 1 and ¢ : RT™ — R™ is a continuous map. If inf E(f,S) € E(f,S),
fand S as well as g and T are weakly compatible, then f, g, S and T have a unique
common fixed point z in X. Moreover p(z,z) = 0.

Corollary 4. Let (X,p) be a partial metric space and f,g,S,T : X — X are four
mappings such that f(X) C T(X) and g(X) C S(X). Suppose forall z,y € X

p(fx,gy) < Ap(Sz, Ty),

where A € (0,1). Ifinf E(f,S) € E(f,S), f and S as well as g and T are weakly
compatible, then f, g, S and T have a unique common fixed point z in X. Moreover

p(z,2) =0.

Now we give an illustrative example.
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Example 3. Let X = [0,00) and p(x,y) = max{x,y}, then (X, p) is a partial metric
space. Define self-maps f, g, S and T on X as follows:
fr=z, gr=e¢"—1, Sr=2z and Tz =e>* -1

for any « € X. Hence, inf E(f, S) = inf{p(fz,Sz): x € X} =0€ E(f,S) and

p(fz,gy) max{x, e¥ — 1} < max{x,ey coshy — 1}

1 ) 1
imax{Zx,e v—1} = ip(Sx,Ty)

for every x,y in X. Also, f and S as well as g and T are weakly compatible and f(X) =
T(X) and g(X) = S(X). Therefore, all conditions of Corollary 4 are holds, and z = 0
is unique common fixed point of f, g, S, T

The following example shows that condition inf E(f, S) € E(f, S) can not be omitted.

Example 4. Let X = (0,00) and p(z,y) = max{z,y}, then (X, p) is a partial metric
space. Define self-maps f, g, S and 7" on X as follows:

fr =gz =)z, Sr=Tx==x
for any x € X, where A € (0,1). Hence,
p(fz,gy) = max{\z, \y} = Amax{z,y} = Ap(Sz, Ty)

for every x,y in X. Also, f and S as well as g and T are weakly compatible, f(X) =
T(X) and g(X) = S(X). But f, g, S, T have not a common fixed point in X . Note that

inf E(f,S) = inf{p(fz,Sz):x € X} =0¢ E(f,5).

Example 5. Let X = [0, 00) N Q, where by Q we denote the set of rational numbers and
p(z,y) = max{z,y}, then (X, p) is a non-complete partial metric space. If we define
self-maps f, g, S and T on X as in Example 4 with A € (0,1) N @, then all conditions of
Corollary 4 are holds and z = 0 is unique common fixed point of f, g, S, T

Acknowledgment. The authors are grateful to the referees for their valuable comments
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