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Abstract. This paper investigates the asymptotic behavior for the tail probability of the randomly
weighted sums »_,'_, 0, X« and their maximum, where the random variables X and the random
weights 0, follow a certain dependence structure proposed by Asimit and Badescu [1] and Li et
al. [2]. The obtained results can be used to obtain asymptotic formulas for ruin probability in the
insurance risk models with discounted factors.
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1 Introduction

Let (X1,601),...,(Xn,0,) be n mutually independent random vectors, where X1, ...,
X,, are real-valued random variables (r.v.s) with distribution functions (d.f.s) Fi, ..., F},
respectively, and the random weights 61, ...,6, are nonnegative and nondegenerate
at zero r.v.s with d.f.s Gy,..., G, respectively. For each & = 1,...,n, X} and 64
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can be dependent. For n > 1, denote the randomly weighted sum and its maximum,
respectively, by

= 0pXp and M= max S}. (1)
k=

l\kgn

Such randomly weighted sums and their maximums are often encountered in actuarial
and financial situations. For instance, in a discrete-time risk model proposed by Nyrhinen

in [3] and in [4], the real-valued r.v. X} (k = 1,...,n) can be interpreted as the net loss
of an insurance company (i.e. the total claim amount minus the total premium income)
during period k, and the random weight 6, (K = 1,...,n) can be regarded as the

stochastic discount factor from time k to time 0. In this situation, the sum S? is the
present value of all net losses from time 0 to time n and the maximum M} is the maximal
discounted net loss of an insurance company during the first n periods.

In the present paper, we are interested in the asymptotic behavior (as x — c0) of tail
probabilities P(S? > x) and P(M¢ > z), where the last probability can be understood
as the probability of ruin during the first n periods with an initial capital reserve x.

In this paper, we use limit relationships only for  tending to infinity. For two positive
functions w(z) and v(z): we write u(z) ~ v(x) if limu(z)/v(xz) = 1 and write u(x) =
o(v(z)) if limu(z)/v(x) = 0. In addition, we denote by x+ = max{x,0} the positive
part of a real number z. For any distribution function V', we denote its tail by V (z) =
1 — V() for all . The indicator function of an event A we denote by 1 4.

Before discussing the asymptotic properties of probabilities P(S? > ) and
P(M? > x) we recall the definitions of some classes of heavy-tailed d.f.s. A d.f. V on
[0, 00) is called subexponential if V*2(x) ~ 2V (z), where V*? denotes the convolution
of V with itself. The class of all subexponential d.f.s, as usually, will be denoted by .&.
A df. V on [0,00) is said to belong to the class .Z of long-tailed d.f.s if for every
positive y, we have V(z + y) ~ V(z). A d.f. V supported on [0, 0) belongs to the
class 2 (has dominatingly varying tail) if limsup F'(zy)/F(z) < oo for every fixed

€ (0,1). Ifad.f. V is supported on R, then V belongs to some of classes .7, .Z, & if the
d.f. V(2)1{,>0y belongs to the corresponding class. It is known (see, e.g., [5, Chap. 1.4])
that

NycscC.

In the last years, a number of papers considering asymptotic behavior of P(SY > z)
and P(M? > z) have been contributed to the case where X1, ..., X,, are independent
identically distributed (i.i.d.) r.v.s, independent of 61, ..., 6,,, while there is no indepen-
dence assumption and distribution identity assumption on 61, ..., 6,,. For example, Tang
and Tsitsiashvili [6] considered the case where X7, ..., X, have common subexponential
d.f. and the random weights are two-sided bounded, i.e. P(a < 6, < b) = 1 for all
k=1,...,n,and some 0 < a < b < co. In [6], it was proved that for each n > 1

P(M) > ) ~P(S) > ) ~ > P(0h Xy > ). )
k=1
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Similar results can be found in [7-10], among others. In particular, Chen et al. [9]
obtained general result by considering nonidentically distributed r.v.s X} having long-
tailed d.f.s. Theorem 2.1 of [9] states that

P(M? > z) ~P(S° > z) ~P<Zekx,j >x> 3)

k=1
if the following conditions are satisfied: r.v.s Xi,..., X, are independent; F}, is long-
tailed for each k = 1,...,n; 601,...,0, are such that P(a < 0 < b) = 1 for k =
1,...,n and some 0 < a < b < oo; the sequences {X1,... X}, {01,...,0,} are

mutually independent. In addition, Theorem 2.2 of [9] shows that asymptotic relation (3)
still holds for bounded from above random weights, assuming some restriction on the
dependence structure of {61, ...,6,}.

In the present paper, motivated by the results in [9], we study asymptotic behavior
of r.v.s in the case of nonidentically distributed r.v.s X1,..., X,,. We also suppose that
random vectors (X1,61),...,(X,,6,) are mutually independent, whereas some depen-
dence structure exists between X}, and 6, for each k = 1, ..., n. For each pair (X, 0),
we use the dependence structure which was introduced by Asimit and Badescu [1], i.e.,
for each fixed k = 1,...,n, there exists a measurable function Ay : [0,00) — (0,00)
such that

P(Xy >a’:|9k=t)NFk($)hk(t) %)

uniformly for ¢ > 0, where the uniformity is understood as

lim sup P(X£>x‘9k:t) — 1] =0.
T=00 130 Fy(z)hi(t)

When ¢ is not a possible value of some 6}, the conditional probability in (4) is understood
as unconditional and therefore hy(t) = 1 for such ¢.

Some examples of the r.v.s satisfying dependence condition (4) can be found in [1]
and [2]. These examples are constructed using the Ali-Mikhail-Hagq, the Farlie—-Gumbel-
Morgenstern and the Frank copulas.

Note that Yang et al. [11] obtained relation (2) in the case of dependence (4), when
Xi,..., X, are i.i.d. real-valued r.v.s with common distribution F' € ., and 64, ...,6,
are bounded from above, i.e. P(0 < 0, < b) = 1forall k = 1,...,n and some
positive constant b. In this paper, we consider a more general case where F1, ..., F}, can
be different and 64, ..., 0, can be unbounded. We establish relation (3) as in [9] under
dependence relation (4) and the assumption that F1, ..., F, are in .Z. In the case when
Fy, ..., F, belong to the class .£ N 2, we obtain relation (2).

The following statement is the main result of the paper. We remark only that in this
main assertion, we suppose 61, .. ., 0, to be strictly positive.

Theorem 1. Suppose that (X1,61),...,(Xy,0,) are mutually independent random vec-
tors, where X1,...,X,, are real-valued rv.s with df.s F1,..., F,, respectively, and
01, ...,0, are positive rv.s with d.f.s G1,...,G,, respectively. Assume that, for each
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fixed k = 1,...,n, the pair (X, 0y) satisfies condition (4). If, for each k = 1,...,n,
Fy, € & (respectively, Fy, € £ N 2) and Gi(x) = o(Fi(cpx)) for some positive cx,
then relation (3) (respectively, (2)) holds.

In the insurance context, researchers are often interested in asymptotic behavior of
ruin probability P(M? > x). According to relation (3), in order to obtain asymptotics
for this probability, it suffices to find asymptotics of the tail P(Y"}_, 0, X7 > ). The-
orem 1 states that relation (3) holds in the case Fj, € £, k = 1,...,n, and dependence
structure (4). If, in addition, F, € XN P, k = 1,...,n, then due to relation (2) we
can obtain asymptotic formula of ruin probability from the asymptotics of discounted net
losses P(0x X > x), k = 1,...,n. In both cases, the required asymptotics depend on
dfs Fy, Gg, k=1,...,n,and on functions hy, k = 1,...,n, given in (4).

2 Proof of Theorem 1

The following lemmas will be used in the proof of Theorem 1. The first lemma is due to
Lemma 2.1 in [11].

Lemma 1. Let § be a real-valued r.v. with distribution F¢, and let n) be a nonnegative and
nondegenerate at zero r.v. with distribution I,. Assume that there exists a measurable
Sfunction h : [0,00) — (0, 00) such that

P(§>a|n=t)~ Fe(x)h(t) (5)

uniformly for all t € [0,00). If Fy € £ and F,(z) = o(F¢(cx)) for some ¢ > 0, then
the d.f. Fy¢, of the product n belongs to 2.

The second lemma shows that similar statement holds for the class of d.f.s with
dominatingly varying tails.

Lemma 2. Let § be a real-valued r.v. and 1) be a nonnegative and nondegenerate at zero
rv., such that relation (5) holds. If F¢ € 9 and F', () = o(F¢(x)), then Fe, € 2.

Proof. 1t suffices to prove that

Fey(22)
- > 0. (6)
Fen(x)

lim inf
According to (5) and definition of the class &, there exist ¢; > 0 and D > 2 such that
1— 3 _ _
3 Fe(z)h(t) <P(E>2z|n=1t) < B Fe(z)h(t) and F¢(22) = a1 Fe(2)

forall z > D/2and ¢ > 0.
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For x sufficiently large, the bounds above imply that
— 2z
Fa(n)= [ P(¢>""|n=y)drw)
@

> % / P(E > ?)h(y) dF,(y)

(0,2z/ D]
C
> 51 P> >h(y) dF,(y)
(0,2z/ D]
¢
>3 P£>‘n—y)an(y)
(0,22 /D]
cC .
- ?j(an(x) - / P< > 2= y> an(y)>
(22/D,00)

WV
w| 2
N

R
o
i\
&

|

Bl
3
N
STisy
~_
~_

T'herefore,
Fep(2
lim inf 75"( 7)

F,(2z/D)
an(x) )

> —|(1-—limsup
3 ( F&n( )

Hence, (6) will follow if we show that

Fy(2x/D) _

)
an( )

lim sup

The last relation can be proved in the same manner as relation (2.8) in [11]. Namely,
if n is bounded (and nondegenerate at zero according to conditions of the lemma), then
there exists ¢z > 0 such that E(h(n)1,.,}) is positive and thus by (5)

imsu M — lim su F. (2$/D)
1 b Fey(z) 1 pf(Ooo (€>a/y|n=y)dF,(y)
. F,(2z/D)
<hmsupf[6200 P> ajcy | 1 = y)dFy(y)
—hmsupf ,,(2:6/D) =0.

(x/CQ) f[CLOO) h(y)an(y)
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En is unbogded, then F,,(ac) > 0 for all x, and assumption (5) together with condition
F, () = o(F¢(x)) of the lemma imply

lim sup M < lim sup F,,(m)
Fen(zD/2) f[D/2,oo) P>z |n=y)dF,(y)
1 . F,(z)
= lim sup =2 =
E(h(n)1{>p/23) Fe(z)
for every fixed positive D. Hence, the estimate (7) holds in both cases and the lemma is
proved. O

The following statement is due to [12] and shows that the class . N Z is closed under
convolution of different d.f.s and has the max-sum equivalence property.

Lemma 3. (See [12, Thm. 2.1].) If d.f.s V1 € LND, Voe NG, thenVixVo € NG
and Vi x Va(x) ~ V() + Va(z).

The next lemma follows from Theorem 2.1 in [9].

Lemma 4. Assume that Y1,Y5, ... are independent real-valued r.v.s such that d.f. of Y},
is long-tailed for each k = 1,2, . ... Then, for eachn = 1,2, ..., it holds

P(Zyk>x>~P<ZY,j>x>. 8)
k=1 k=1

Proof of Theorem 1. First, consider the case where Fy, € £ forall k = 1,...,n. Since
SO < ME < ST, 0, X, it suffices to prove

P(Zekxk>x>~P<ZekX,j>x>. 9)
k=1

k=1

Relation (9) follows from Lemma 4, noting that (6, X;)" = OkX,j and that d.f. of 0, X},
belongs to £ by Lemma 1 foreach k = 1,...,n.

In the case F}, € £ N D, the result follows immediately from the obtained asymptotic
relations and Lemmas 1-3. Indeed, by Lemma 1 and Lemma 2, for each k, r.v. 8 X ,j
belongs to .£ N . Since vectors (X1,601),...,(X,,0,) are independent, Lemma 3

implies that
P<Zekx,j > :v) ~ Y P(0hX) > 1),
k=1 k=1

where P(0,X;" > x) = P(0;Xy; > z) for z > 0. This and obtained asymptotic
relation (3) proves (2) and, hence, the theorem. O
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