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Abstract. In the paper, we prove a joint universality theorem for the Riemann zeta-function and
a collection of Lerch zeta-functions with parameters algebraically independent over the field of
rational numbers.
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1 Introduction

Let λ ∈ R and α, 0 < α 6 1, be fixed parameters. The Lerch zeta-function L(λ, α, s),
s = σ + it, is defined, for σ > 1, by

L(λ, α, s) =

∞∑
m=0

e2πiλm

(m+ α)s
.

For λ ∈ Z, the function L(λ, α, s) reduces to the Hurwitz zeta-function ζ(s, α) which
is a meromorphic function with a unique simple pole at the point s = 1 with residue 1.
If λ /∈ Z, then the Lerch zeta-function has analytic continuation to an entire function. In
view of the periodicity of e2πiλm, we can suppose that 0 < λ 6 1.

It is well known that the Lerch zeta-function L(λ, α, s) with transcendental parameter
α is universal (see [1], also [2]). Let D = {s ∈ C: 1/2 < σ < 1}. Denote by K the class
of compact subsets of the strip D with connected complements, and, for K ∈ K, denote
by H(K) the set of continuous functions on K which are analytic in the interior of K.
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Moreover, we use the notation meas{A} for the Lebesgue measure of a measurable set
A ⊂ R. Then the universality of L(λ, α, s) is contained in the following theorem.

Theorem 1. Suppose that α is transcendental. Let K ∈ K and f(s) ∈ H(K). Then, for
every ε > 0,

lim inf
T→∞

1

T
meas

{
τ ∈ [0, T ]: sup

s∈K

∣∣L(λ, α, s+ iτ)− f(s)
∣∣ < ε

}
> 0.

Thus, the universality of L(λ, α, s) means that the shifts L(λ, α, s+ iτ) approximate
with a given accuracy a wide class of analytic functions.

The functions ζ(s, α), α 6= 1, 1/2, and L(λ, α, s) with rational λ are also universal
in the above sense with rational parameter α. The case of ζ(s, α) has been examined
in [3]. The universality of L(λ, α, s) follows from its expression by a linear combination
of Hurwitz zeta-functions.

Also, in [4–6] and [7], the joint universality of Lerch zeta-functions has been consid-
ered. We state a general result from [7].

Theorem 2. Suppose that the numbers α1, . . . , αr are algebraically independent over
the field of rational numbers Q. For j = 1, . . . , r, let λj ∈ (0, 1], Kj ∈ K, and fj(s) ∈
H(Kj). Then, for every ε > 0,

lim inf
T→∞

1

T
meas

{
τ ∈ [0, T ]: sup

16j6r
sup
s∈Kj

∣∣L(λj , αj , s+ iτ)− fj(s)
∣∣ < ε

}
> 0.

We note that the algebraic independence of the numbers α1, . . . , αr can be replaced
by a more general hypothesis that the set

L(α1, . . . , αr) =
{

log(m+ αj): m ∈ N0 = N ∪ {0}, j = 1, . . . , r
}

is linearly independent over Q. In the case λj ∈ Z, j = 1, . . . , r, this was done in [8].
In [9], a joint universality theorem for the Riemann zeta-function ζ(s) and periodic

Hurwitz zeta-functions has been obtained. Let A = {am: m ∈ N0} be a periodic
sequence of complex numbers with minimal period k ∈ N. We remind that the periodic
Hurwitz zeta-function ζ(s, α;A) with parameter α, 0 < α 6 1, is defined, for σ > 1, by
the Dirichlet series

ζ(s, α;A) =

∞∑
m=0

am
(m+ α)s

,

and is meromorphically continued to the whole complex plane with a unique possible
pole at the point s = 1 with residue

a
def
=

1

k

k−1∑
m=0

am.

If a = 0, then ζ(s, α;A) is an entire function.
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For j = 1, . . . , r, let lj ∈ N. In [9], the joint universality for the functions

ζ(s), ζ(s, α1;A11), . . . , ζ(s, α1;A1l1), . . . , ζ(s, αr;Ar1), . . . , ζ(s, αr;Arlr ) (1)

has been proved. Here a collection of periodic sequences Ajl, Ajl = {amjl: m ∈ N0},
with minimal period kjl ∈ N, l = 1, . . . , lj , corresponds the parameter αj , 0 < αj 6 1,
j = 1, . . . , r. For K ∈ K, denote by H0(K) the class of continuous non-vanishing
functions on K which are analytic in the interior of K. Let kj be the least common
multiple of the periods kj1, . . . , kjlj , and

Aj =


a1j1 a1j2 . . . a1jlj
a2j1 a2j2 . . . a2jlj
. . . . . . . . . . . .
akjj1 akjj2 . . . akjjlj

 , j = 1, . . . , r.

Then the main result of [9] is of the form.

Theorem 3. Suppose that the numbers α1, . . . , αr are algebraically independent over Q,
and that rank(Aj) = lj , j = 1, . . . , r. For j = 1, . . . , r and l = 1, . . . , lj , let Kjl ∈ K
and fjl ∈ H(Kjl). Moreover, let K ∈ K and f(s) ∈ H0(K). Then, for every ε > 0,

lim inf
T→∞

1

T
meas

{
τ ∈ [0;T ]: sup

16j6r
sup

16l6lj
sup
s∈Kjl

∣∣ζ(s+ iτ, αj ;Ajl)− fjl(s)
∣∣ < ε,

sup
s∈K

∣∣ζ(s+ iτ)− f(s)
∣∣ < ε

}
> 0.

We call the approximation property of the functions (1) in Theorem 3 a mixed joint
universality because the function ζ(s) and the functions ζ(s, αj ;Ajl) are of different
types: the function ζ(s) has Euler product, while the functions ζ(s, αj ;Ajl) with tran-
scendental αj do not have Euler product over primes. This is reflected in the approximated
functions: the function f(s) must be non-vanishing on K, while the functions fjl are
arbitrary continuous functions on Kjl.

The first mixed joint universality theorem has been obtained by Mishou [10] for the
Riemann zeta-function and Hurwitz zeta-function ζ(s, α) with transcendental parame-
ter α. This result in [11] has been generalized for a periodic zeta-function and a periodic
Hurwitz zeta-function. In [12], the latter mixed joint universality theorem has been ex-
tended for several periodic zeta-functions and periodic Hurwitz zeta-functions.

Universality theorems for zeta-functions have a series of interesting applications.
From them, for example, various denseness results of Bohr’s type for values of zeta-
functions follow. The universality implies the functional independence of zeta-functions.
This property of zeta-functions is applied to the zero-distribution of those zeta-functions.
In [13], the universality has been applied to the famous class number problem. Univer-
sality theorems find applications even in solving some problems of physics [14]. For
the above mentioned and other facts related to universality and references, we refer to
[2, 15–20].
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Thus, the universality of zeta-functions is a very interesting and useful property which
motivates to continue investigations in the field.

The aim of this paper is to replace the zeta-functions ζ(s, αj ;Ajl) with periodic
coefficients in Theorem 3 by Lerch zeta-functions L(λj , αj , s) with arbitrary λj ∈ (0, 1]
whose coefficients, in general, are not periodic. This is the novelty of the paper.

Theorem 4. Suppose that the numbers α1, . . . , αr are algebraically independent over Q.
For j = 1, . . . , r, let λj ∈ (0, 1], Kj ∈ K and fj ∈ H(Kj). Moreover, let K ∈ K and
f(s) ∈ H0(K). Then, for every ε > 0,

lim inf
T→∞

1

T
meas

{
τ ∈ [0;T ]: sup

16j6r
sup
s∈Kj

∣∣L(λj , αj , s+ iτ)− fj(s)
∣∣ < ε,

sup
s∈K

∣∣ζ(s+ iτ)− f(s)
∣∣ < ε

}
> 0.

We note that the linear independence of the set L(α1, . . . , αr) is not sufficient for the
proof of Theorem 4 because we need the linear independence of the set

L
def
=
{

(log p: p ∈ P),L(α1, . . . , αr)
}
,

where P is the set of all prime numbers. This set consists of logarithms of all prime
numbers and of all logarithms log(m+αj), m ∈ N, j = 1, . . . , r. Really, L is a multiset.
For example, if L has two identical elements, then it is linearly dependent over Q. The
proof of Theorem 4 is based on a joint limit theorem on weakly convergent probability
measures in the space of analytic functions.

2 Joint limit theorem

Denote by B(S) the σ-field of Borel sets of the space S, and by γ the unit circle on the
complex plane. Define

Ω̂ =
∏
p

γp and Ω =

∞∏
m=0

γm,

where γp = γ for all p ∈ P , and γm = γ for all m ∈ N0. By the Tikhonov theorem,
with the product topology and pointwise multiplication the tori Ω̂ and Ω are compact
topological Abelian groups. Moreover, let

Ω = Ω̂ ×Ω1 × · · · ×Ωr,

where Ωj = Ω for all j = 1, . . . , r. Then Ω again is a compact topological Abelian
group. This gives the probability spaces (Ω̂,B(Ω̂), m̂H), (Ωj ,B(Ωj),mjH) and
(Ω,B(Ω),mH), where m̂H , mjH and mH are the probability Haar measures on
(Ω̂,B(Ω̂)), (Ωj ,B(Ωj)) and (Ω,B(Ω)), respectively, j = 1, . . . , r. We note that the
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measure mH is the product of the measures m̂H ,m1H , . . . ,mrH . Denote by ω̂(p) the
projection of ω̂ ∈ Ω̂ to γp, p ∈ P , and by ωj(m) the projection of ωj ∈ Ωj to
γm, m ∈ N0. For brevity, we set α = (α1, . . . , αr), λ = (λ1, . . . , λr) and ω =
(ω̂, ω1, . . . , ωr) ∈ Ω.

Let H(D) be the space of analytic functions on D endowed with the topology of
uniform convergence on compacta, and let r1 = r + 1. On the probability space
(Ω,B(Ω),mH), define the Hr1(D)-valued random element ζ(s, α, λ, ω) by the formula

ζ(s, α, λ, ω) =
(
ζ(s, ω̂), L(λ1, α1, s, ω1), . . . , L(λr, αr, s, ωr)

)
,

where

ζ(s, ω̂) =
∏
p

(
1− ω̂(p)

ps

)−1
and

L(λj , αj , s, ωj) =

∞∑
m=0

e2πiλjmωj(m)

(m+ αj)s
, j = 1, . . . , r.

Let Pζ stand for the distribution of the random element ζ(s, α, λ, ω), i.e., Pζ is the
probability measure on (Hr1(D),B(Hr1(D))) given by

Pζ(A) = mH

(
ω ∈ Ω: ζ(s, α, λ, ω) ∈ A

)
.

We set
ζ(s, α, λ) =

(
ζ(s), L(λ1, α1, s), . . . , L(λr, αr, s)

)
.

Now we state a limit theorem on the space (Hr1(D),B(Hr1(D))).

Theorem 5. Suppose that the numbers α1, . . . , αr are algebraically independent over Q,
and λj ∈ (0, 1], j = 1, . . . , r. Then

PT (A)
def
=

1

T
meas

{
τ ∈ [0, T ]: ζ(s+ iτ, α;λ) ∈ A

}
, A ∈ B

(
Hr1(D)

)
,

converges weakly to the measure Pζ as T →∞.

We divide the proof of Theorem 5 into lemmas. The first lemma is a limit theorem on
the torus Ω. For A ∈ B(Ω), define

Q(A) =
1

T
meas

{((
p−iτ : p ∈ P

)
,
(
(m+ αj)

−iτ : m ∈ N0, j = 1, . . . , r
))
∈ A

}
.

Lemma 1. Suppose that the numbers α1, . . . , αr are algebraically independent over Q.
Then QT converges weakly to the Haar measure mH as T →∞.

Proof. The proof of the lemma is given in [9, Lemma 1].
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Let σ1 > 1/2 be a fixed number, and

un(m) = exp

{
−
(
m

n

)σ1
}
, m, n ∈ N,

un(m,αj) = exp

{
−
(
m+ αj
n+ αj

)σ1
}
, m ∈ N0, n ∈ N.

Define the series

ζn(s) =

∞∑
m=1

un(m)

ms
,

and

Ln(λj , αj , s) =

∞∑
m=0

e2πiλjmun(m,αj)

(m+ αj)s
, j = 1, . . . , r,

and, for ω ∈ Ω,

ζn(s, ω̂) =

∞∑
m=1

ω̂(m)un(m)

ms
,

Ln(λj , αj , ωj , s) =

∞∑
m=0

e2πiλjmωj(m)un(m,αj)

(m+ αj)s
, j = 1, . . . , r.

It is known, see, for example, [2, 16], that all above series converge absolutely for
σ > 1/2. Let

ζ
n
(s, α, λ) =

(
ζn(s), Ln(λ1, α1, s), . . . , Ln(λr, αr, s)

)
and

ζ
n
(s, α, λ, ω) =

(
ζn(s, ω̂), Ln(λ1, α1, ω1, s), . . . , Ln(λr, αr, ωr, s)

)
.

Lemma 2. Suppose that the numbers α1, . . . , αr are algebraically independent over Q,
and ω ∈ Ω. Then

1

T
meas

{
τ ∈ [0, T ]: ζ

n
(s+ iτ, α, λ) ∈ A

}
, A ∈ B

(
Hr1(D)

)
,

and
1

T
meas

{
τ ∈ [0, T ]: ζ

n
(s+ iτ, α, λ, ω) ∈ A

}
, A ∈ B

(
Hr1(D)

)
,

converges weakly to the same probability measure Pn on (Hr1(D),B(Hr1(D))) as
T →∞.

Proof. The proof uses Lemma 1 and does not depend on the coefficients of the functions
Ln(λj , αj , s), j = 1, . . . , r. Therefore, it coincides with the proof of [9, Lemma 2].
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Now we define a metric on Hr1(D) which induces the topology of uniform conver-
gence on compacta. For g1, g2 ∈ H(D), we define

ρ(g1, g2) =

∞∑
m=1

2−m
sups∈Km |g1(s)− g2(s)|

1 + sups∈Km |g1(s)− g2(s)|
,

where {Km: m ∈ N} is a sequence of compact subsets of the strip D such that

D =

∞⋃
m=1

Km,

Km ⊂ Km+1 for all m ∈ N, and, if K ⊂ D is a compact set, then K ⊂ Km for
some m ∈ N. The existence of the sequence {Km} follows from a general theorem,
see, for example, [21], however, in the case of the region D, it is easily seen that we
can take closed rectangles. Clearly, ρ is a metric on H(D) inducing its topology. For
g
j

= (gj , gj1, . . . , gjr) ∈ Hr1(D), j = 1, 2, we put

ρ(g
1
, g

2
) = max

(
ρ(g1, g2), max

16j6r
ρ(g1j , g2j)

)
.

Then we have that ρ is a desired metric on Hr1(D). Using this metric, we approximate
ζ(s, α, λ) and ζ(s, α, λ, ω) by ζ

n
(s, α, λ) and ζ

n
(s, α, λ, ω), respectively.

Lemma 3. We have

lim
n→∞

lim sup
T→∞

1

T

T∫
0

ρ
(
ζ(s+ iτ, α, λ), ζ

n
(s+ iτ, α, λ)

)
dτ = 0.

Moreover, suppose that the numbers α1, . . . , αr are algebraically independent over Q.
Then, for almost all ω ∈ Ω,

lim
n→∞

lim sup
T→∞

1

T

T∫
0

ρ
(
ζ(s+ iτ, α, λ, ω), ζ

n
(s+ iτ, α, λ, ω)

)
dτ = 0.

Proof. In [16], it is proved that

lim
n→∞

lim sup
T→∞

1

T

T∫
0

ρ
(
ζ(s+ iτ), ζn(s+ iτ)

)
dτ = 0,

and, for almost all ω̂ ∈ Ω̂

lim
n→∞

lim sup
T→∞

1

T

T∫
0

ρ
(
ζ(s+ iτ, ω̂), ζn(s+ iτ, ω̂)

)
dτ = 0.
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Since the numbers α1, . . . , αr are algebraically independent over Q, each number αj is
transcendental. Therefore, in [2], it was obtained that, for j = 1, . . . , r,

lim
n→∞

lim sup
T→∞

1

T

T∫
0

ρ
(
L(λj , αj , s+ iτ), Ln(λj , αj , s+ iτ)

)
dτ = 0,

and, for almost all ωj ∈ Ωj ,

lim
n→∞

lim sup
T→∞

1

T

T∫
0

ρ
(
L(λj , αj , ωj , s+ iτ), Ln(λj , αj , ωj , s+ iτ)

)
dτ = 0.

All these equalities together with the definition of the metric ρ prove the lemma.

On (Hr1(D),B(Hr1(D))), define one more probability measure

P̂T (A) =
1

T
meas

{
τ ∈ [0, T ]: ζ(s+ iτ, α, λ, ω) ∈ A

}
.

Lemma 4. Suppose that the numbers α1, . . . , αr are algebraically independent over Q.
Then PT and P̂T both converge weakly for almost all ω ∈ Ω to the same probability
measure P on (Hr1(D),B(Hr1(D))) as T →∞.

Proof. We give a shortened proof because we apply similar arguments as in [9]. Let θ
be a random variable defined on a certain probability space (Ω0,A,P) and uniformly
distributed on [0, 1]. Let

XT,n(s) = ζ
n
(s+ iθT, α, λ). (2)

Then, in view of Lemma 2, XT,n
D−−−−→

T→∞
Xn, where Xn is the random element with the

distribution Pn (Pn is the limit measure in Lemma 2), and D→ denotes the convergence
in distribution. Using the absolute convergence of series for ζn(s) and Ln(λj , αj , s),
j = 1, . . . , r, we prove without difficulties that the family of probability measures {Pn:
n ∈ N} is tight. Hence, by the Prokhorov theorem, this family is relatively compact.
Thus, we have a subsequence {Pnk} such that Pnk converges weakly to some probability
measure P as k →∞. Hence,

Xnk

D−−−−→
k→∞

P.

Define
XT (s) = ζ(s+ iθT, α, λ). (3)

Then Lemma 3 implies that, for every ε > 0,

lim
n→∞

lim sup
T→∞

P
(
ρ
(
XT (s), XT,n(s)

)
> ε
)

= 0.

This, (2), (3) and Theorem 4.2 of [22] show that

XT
D−−−−→

T→∞
P,

and this is equivalent to the weak convergence of PT to P as T →∞.
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Repeating the above arguments for the random elements

X̂T,n(s) = ζ
n
(s+ iθT, α, λ, ω)

and
X̂T (s) = ζ(s+ iθT, α, λ, ω),

and using Lemmas 2 and 3, we find that the measure P̂T also converges weakly to P as
T →∞ for almost all ω ∈ Ω.

Proof of Theorem 5. In virtue of Lemma 4, it suffices to check that the measure P in
Lemma 4 coincides with Pζ .

Let, for τ ∈ R,

aτ =
((
p−iτ : p ∈ P),

(
(m+ αj)

−iτ : m ∈ N0, j = 1, . . . , r
))
,

and
Φτ (ω) = aτω, ω ∈ Ω.

Then {Φτ : τ ∈ R} is an ergodic group of measurable measure preserving transformations
on Ω (see [12]).

Let ξ be a random variable on (Ω,B(Ω),mH) given by

ξ(ω) =

{
1 if ζ(s, α, λ, ω) ∈ A,
0 if ζ(s, α, λ, ω) /∈ A,

where A is a fixed continuity set of the measure P .
By Lemma 4, for almost all ω ∈ Ω,

lim
T→∞

1

T
meas

{
τ ∈ [0, T ]: ζ(s+ iτ, α, λ, ω) ∈ A

}
= P (A). (4)

The ergodicity of the group {Φτ : τ ∈ R} implies that of the process ξ(Φτ (ω)). There-
fore, the classical Birkhoff–Khintchine theorem shows that, for almost all ω ∈ Ω,

lim
T→∞

1

T

T∫
0

ξ
(
Φτ (ω)

)
dτ = Eξ, (5)

where Eξ denotes the expectation of ξ. The definitions of ξ and of Φτ give the equalities

Eξ =

∫
Ω

ξ dmH = mH

(
ω ∈ Ω: ζ(s, α, λ, ω) ∈ A

)
= Pζ(A), (6)

1

T

T∫
0

ξ
(
Φτ (ω)

)
dτ =

1

T
meas

{
τ ∈ [0, T ]: ζ(s+ iτ, α, λ, ω) ∈ A

}
.
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Thus, by (5) and (6),

lim
T→∞

1

T
meas

{
τ ∈ [0, T ]: ζ(s+ iτ, α, λ, ω) ∈ A

}
= Pζ(A).

This and (4) show that P (A) = Pζ(A) for all continuity sets of P . Hence, P = Pζ . The
theorem is proved.

3 Support

A proof of Theorem 4 is based on Theorem 5 and the support of the limit measure Pζ in
it. We remind that the support of Pζ is a minimal closed set SPζ ⊂ Hr1(D) such that
Pζ(SPζ ) = 1. The set SPζ consists of all elements g ∈ Hr1(D) such that, for every open
neighbourhood G of g, the inequality Pζ(G) > 0 is satisfied.

Define
S =

{
g ∈ H(D): g(s) 6= 0 or g(s) ≡ 0

}
.

Theorem 6. The support of the measure Pζ is the set S = S ×Hr(D).

Proof. We write
Hr1(D) = H(D)×H(D)× · · · ×H(D)︸ ︷︷ ︸

r

.

The space H(D) is separable, therefore, it follows from [22] that

B(Hr1(D)) = B(H(D))× B
(
H(D)

)
× · · · × B

(
H(D)

)︸ ︷︷ ︸
r

.

Thus, it suffices to consider the measure Pζ on the sets of the form

B = A×A1 × · · · ×Ar, A,Aj ∈ B
(
H(D)

)
, j = 1, . . . , r.

Since the measure mH is the product of the measures m̂H , m1H , . . . ,mrH , the definition
of Pζ gives the equality

Pζ(B) = mH(A×A1 × · · · ×Ar) = m̂H(A)m1H(A1) · · ·mrH(Ar). (7)

In [16], it is proved that the support of the random element ζ(s, ω̂) is the set S. The al-
gebraic independence of the numbers α1, . . . , αr implies their transcendence. Therefore,
by [2] the support the random element L(λj , αj , s, ωj) is the space H(D), j = 1, . . . , r.
On the other hand, the distribution Pζ of ζ(s, ω̂) is

Pζ(A) = m̂H

(
ω̂ ∈ Ω̂: ζ(s, ω̂) ∈ A

)
, A ∈ B

(
H(D)

)
,

and the distribution PLj of L(λj , αj , s, ωj), j = 1, . . . , r, is

PLj (Aj) = mjH

(
ωj ∈ Ωj : L(λj , αj , s, ωj) ∈ Aj

)
, Aj ∈ B

(
H(D)

)
.
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In view of (7),
Pζ(B) = Pζ(A)PL1(A1) · · ·PLr (Ar).

Hence, obviously, Pζ(S) = 1. Moreover, if A ∈ B(H(D)) with A * S, or Aj ∈
B(H(D)) with Aj * H(D), for some j, then, in view of the minimality of S and H(D)
for Pζ(A) and PLj (Aj), respectively, we have that Pζ(A) < 1 or PLj (Aj) < 1. Thus,
then Pζ(B) < 1. Hence, the minimality of S follows.

4 Universality theorem

In this section, we will prove Theorem 4. Its proof is based on Theorems 5 and 6 as well
as on the Mergelyan theorem on the approximation of analytic functions by polynomials.
We state this theorem as the next lemma.

Lemma 5. Let K ⊂ C be a compact set with connected complement, and f(s) be a
continuous function on K which is analytic in the interior of K. Then, for every ε > 0,
there exists a polynomial p(s) such that

sup
s∈K

∣∣f(s)− p(s)
∣∣ < ε.

Proof. The proof of the lemma can be found in [23], see also [24].

Proof of Theorem 4. By Lemma 5, there exists a polynomial p(s) such that

sup
s∈K

∣∣f(s)− p(s)
∣∣ < ε

4
. (8)

Since f(s) 6= 0 on K, p(s) 6= 0 on K as well provided ε is small enough. Thus, we can
define on K a continuous branch of log p(s) which will be analytic in the interior of K.
Applying Lemma 5 once more, we obtain that there exists a polynomial q(s) such that

sup
s∈K

∣∣p(s)− eq(s)
∣∣ < ε

4
.

This together with (8) shows that

sup
s∈K

∣∣f(s)− eq(s)
∣∣ < ε

2
. (9)

Again, by Lemma 5, there exist polynomials pj(s) such that

sup
16j6r

sup
s∈Kj

∣∣fj(s)− pj(s)∣∣ < ε

2
. (10)

Define

G =

{
(g, g1, . . . , gr) ∈ Hr1(D): sup

s∈K

∣∣g(s)− eq(s)
∣∣ < ε

2
,

sup
16j6r

sup
s∈Kj

∣∣gj(s)− pj(s)∣∣ < ε

2

}
.
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Then G is an open set, and, in view of Theorem 6, eq(s), p1(s), . . . , pr(s)) is an element
of the support of the measure Pζ . Therefore, an equivalent of the weak convergence
of probability measures in terms of open sets, see Theorem 2.1 of [22], together with
Theorem 5 and properties of the support give the inequality

lim inf
T→∞

1

T
meas

{
τ ∈ [0, T ]: ζ(s+ iτ, α, λ) ∈ G

}
> Pζ(G) > 0.

Hence, by the definition of G, we find that

lim inf
T→∞

1

T
meas

{
τ ∈ [0, T ]: sup

s∈K

∣∣ζ(s+ iτ)− eq(s)
∣∣ < ε

2
,

sup
16j6r

sup
s∈Kj

∣∣L(λj , αj , s+ iτ)− pj(s)
∣∣ < ε

2

}
> 0. (11)

Inequalities (9) and (10) show that{
τ ∈ [0, T ]: sup

s∈K

∣∣ζ(s+ iτ)− eq(s)
∣∣ < ε

2
,

sup
16j6r

sup
s∈Kj

∣∣L(λj , αj , s+ iτ)− pj(s)
∣∣ < ε

2

}
⊂
{
τ ∈ [0, T ]: sup

s∈K

∣∣ζ(s+ iτ)− f(s)
∣∣ < ε,

sup
16j6r

sup
s∈Kj

∣∣L(λj , αj , s+ iτ)− fj(s)
∣∣ < ε

}
.

Combining this with (11) gives the assertion of the theorem.

Acknowledgment. The authors thank the anonymous referees for remarks and sugges-
tions.
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