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Abstract. In the paper, we prove a joint universality theorem for the Riemann zeta-function and
a collection of Lerch zeta-functions with parameters algebraically independent over the field of
rational numbers.
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1 Introduction

Let A € Rand a, 0 < « < 1, be fixed parameters. The Lerch zeta-function L(\, «, ),
§ = 0 + it, is defined, for ¢ > 1, by

27iAm

L\ a,s) = Z 67)

m:O(erozS'

For A\ € Z, the function L(), o, s) reduces to the Hurwitz zeta-function ((s, «) which
is a meromorphic function with a unique simple pole at the point s = 1 with residue 1.
If A ¢ Z, then the Lerch zeta-function has analytic continuation to an entire function. In
view of the periodicity of 2™ we can suppose that 0 < A < 1.

It is well known that the Lerch zeta-function L(\, v, s) with transcendental parameter
« is universal (see [1], also [2]). Let D = {s € C: 1/2 < o < 1}. Denote by K the class
of compact subsets of the strip D with connected complements, and, for K € K, denote
by H(K) the set of continuous functions on K which are analytic in the interior of K.
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Joint universality of the Riemann zeta-function and Lerch zeta-functions 315

Moreover, we use the notation meas{ A} for the Lebesgue measure of a measurable set
A C R. Then the universality of L(\, «, s) is contained in the following theorem.

Theorem 1. Suppose that o is transcendental. Let K € K and f(s) € H(K). Then, for
every € > (),

hmmf—meas{r €[0,7): sup |L(\, o, s +ir) — f(s)| < e} > 0.
T—o0 T seK

Thus, the universality of L(\, «, s) means that the shifts L(\, «, s + ir) approximate
with a given accuracy a wide class of analytic functions.

The functions ((s, «), a # 1,1/2, and L(\, «, s) with rational \ are also universal
in the above sense with rational parameter «. The case of ((s,«) has been examined
in [3]. The universality of L(\, «, s) follows from its expression by a linear combination
of Hurwitz zeta-functions.

Also, in [4-6] and [7], the joint universality of Lerch zeta-functions has been consid-
ered. We state a general result from [7].

Theorem 2. Suppose that the numbers o, . .., a,. are algebraically independent over
the field of rational numbers Q. For j = 1,...,r, let \; € (0,1], K; € K, and f;(s) €
H(Kj). Then, for every e > 0,

1
lim inf —meas{T €1[0,T]: sup sup ’L Aj, 0,8 +1T) — fj(s)’ < 6} > 0.
T—oo T 1<j<r s€K; |

We note that the algebraic independence of the numbers a4, . .., a, can be replaced
by a more general hypothesis that the set

L(ai,...,ap) = {log(m +a;): me Ng=NU{0}, j=1,...,r}

is linearly independent over Q. In the case \; € Z, j = 1,...,, this was done in [8].
In [9], a joint universality theorem for the Riemann zeta-function ((s) and periodic
Hurwitz zeta-functions has been obtained. Let 2 = {a,,: m € Ny} be a periodic

sequence of complex numbers with minimal period ¥ € N. We remind that the periodic
Hurwitz zeta-function ((s, «; ) with parameter o, 0 < « < 1, is defined, for o > 1, by
the Dirichlet series

C(s,a;Ql) = 3 a7m57
2t

and is meromorphically continued to the whole complex plane with a unique possible
pole at the point s = 1 with residue

def 1 Z
aﬂ’L

If a = 0, then (s, a; ) is an entire function.

Nonlinear Anal. Model. Control, 2013, Vol. 18, No. 3, 314-326



316 A. Laurinc¢ikas, R. Macaitiené

Forj=1,...,r letl; € N. In[9], the joint universality for the functions

C(S)a C(Sa al;mll); ey C(S7 al;mlh)a ey C(SvaT;mrl)y ey C(57a’r;§217‘lr) (1)

has been proved. Here a collection of periodic sequences 2;;, 2;; = {am;i: m € No},
with minimal period k;; € N, [ = 1,...,l;, corresponds the parameter o;, 0 < a; < 1,
j=1,...,r. For K € K, denote by Hy(K) the class of continuous non-vanishing
functions on K which are analytic in the interior of K. Let k; be the least common
multiple of the periods kj1, ..., kji,, and

aiji Qe ... Gy
A = agjr Gy ... G2 R T
Okjj1  Okj52 - Qkyjl;
Then the main result of [9] is of the form.
Theorem 3. Suppose that the numbers o, . . . , a,. are algebraically independent over Q)

and that rank(A;) =l;, j=1,...,r. Forj=1,...,randl =1,...,l;, let K;; € K
and f;;1 € H(Kj;). Moreover, let K € K and f(s) € Hyo(K). Then, for every e > 0,

1
liminf — meas{T €[0;T]: sup sup sup [((s+ir, ;%) — fuls)| <e,
T—oo 1 1<j<r 1ILL; s€K

sup ‘C(s +ir) — f(s)‘ < 6} > 0.
seK

We call the approximation property of the functions (1) in Theorem 3 a mixed joint
universality because the function ((s) and the functions ((s, c;;2;;) are of different
types: the function ¢(s) has Euler product, while the functions ((s, a;;2;;) with tran-
scendental a; do not have Euler product over primes. This is reflected in the approximated
functions: the function f(s) must be non-vanishing on K, while the functions f;; are
arbitrary continuous functions on K ;.

The first mixed joint universality theorem has been obtained by Mishou [10] for the
Riemann zeta-function and Hurwitz zeta-function ((s, «) with transcendental parame-
ter . This result in [11] has been generalized for a periodic zeta-function and a periodic
Hurwitz zeta-function. In [12], the latter mixed joint universality theorem has been ex-
tended for several periodic zeta-functions and periodic Hurwitz zeta-functions.

Universality theorems for zeta-functions have a series of interesting applications.
From them, for example, various denseness results of Bohr’s type for values of zeta-
functions follow. The universality implies the functional independence of zeta-functions.
This property of zeta-functions is applied to the zero-distribution of those zeta-functions.
In [13], the universality has been applied to the famous class number problem. Univer-
sality theorems find applications even in solving some problems of physics [14]. For
the above mentioned and other facts related to universality and references, we refer to
[2,15-20].
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Thus, the universality of zeta-functions is a very interesting and useful property which
motivates to continue investigations in the field.

The aim of this paper is to replace the zeta-functions ((s,a;;%;;) with periodic
coefficients in Theorem 3 by Lerch zeta-functions L(\;, o, s) with arbitrary \; € (0, 1]
whose coefficients, in general, are not periodic. This is the novelty of the paper.

Theorem 4. Suppose that the numbers o, . . . , . are algebraically independent over Q.
Forj=1,...,r,let \; € (0,1, K; € Kand f; € H(K;). Moreover, let K € K and
f(s) € Hy(K). Then, for every ¢ > 0,

1
liminf — meas{T €[0;T): sup sup |L(Aj,qj,s+i7) = fi(s)| <e,
T—oo T 1<j<r s€K;

sup [((s +i7) = f(s)| < e} > 0.
seK

We note that the linear independence of the set L(a, . .., a,.) is not sufficient for the
proof of Theorem 4 because we need the linear independence of the set

L= {(ogp: p € P). Lias, .., ar)},

where P is the set of all prime numbers. This set consists of logarithms of all prime
numbers and of all logarithms log(m +«;), m € N, j = 1,...,r. Really, L is a multiset.
For example, if L has two identical elements, then it is linearly dependent over Q. The
proof of Theorem 4 is based on a joint limit theorem on weakly convergent probability
measures in the space of analytic functions.

2 Joint limit theorem

Denote by B(.S) the o-field of Borel sets of the space S, and by ~ the unit circle on the
complex plane. Define

Q:HVP and Q:ﬁ'}/’rru

p m=0

where v, = v forall p € P, and 7, = v for all m € Ny. By the Tikhonov theorem,

with the product topology and pointwise multiplication the tori 2 and (2 are compact
topological Abelian groups. Moreover, let

Q:QX-QlX"'XQr,

where (2; = {2 forall j = 1,...,r. Then {2 again is a compact topological Abelian
group. This gives the probability spaces (£2,B(£2),7mp), (2;,B(£2;),mjg) and
(£2,B(£2), my), where mpy, mjg and my are the probability Haar measures on
(92, B(2)), (22;,B(£2;)) and (£2, B(£2)), respectively, j = 1,...,r. We note that the
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318 A. Laurinc¢ikas, R. Macaitiené

measure m is the product of the measures 7, m1m, ..., m,.g. Denote by &(p) the
projection of @ € 2 to 7, p € P, and by w;(m) the projection of w; € 2; to
Ym,» m € Ng. For brevity, we set « = (a1,...,0;), A = (A1,...,\) and w =
(d),wl,...,wr) GQ.

Let H(D) be the space of analytic functions on D endowed with the topology of
uniform convergence on compacta, and let r; = r 4+ 1. On the probability space
(2,B(£2), myy), define the H™ (D)-valued random element {(s, o, A, w) by the formula

C(s,a, \w) = (C(S,w) L(A1, 01, 8,w1),- L()\,,A,ozr,s,w,«)),

where
- op)\ "
C(S,W) = H 1- s
p
p
and
> 6271'1/\]7” m) )
L()‘jaaj7s7wj n;) m+a] 5 ]:1,...,7".

Let Pg stand for the distribution of the random element ¢ (s,, A\, w), ie., Pg is the
probability measure on (H"* (D), B(H™ (D))) given by

We set
g(saga A) = (C(S)a L()‘la xq, 8)7 e 7L()‘T7 Qp, S))
Now we state a limit theorem on the space (H™ (D), B(H™ (D))).

Theorem 5. Suppose that the numbers o, . . . , a,. are algebraically independent over Q,
and \; € (0,1], j=1,...,7. Then

Pr(A) = %meas{T €0,T): {(s+ir,a;)) € A}, AeB(H™(D)),

converges weakly to the measure P as T — oo.

We divide the proof of Theorem 5 into lemmas. The first lemma is a limit theorem on
the torus £2. For A € B({2), define

Q(A) = %meas{((p_”: pe 79), ((m+ ozj)_”: m € Ny, j= 1,...,7“)) IS A}.

Lemma 1. Suppose that the numbers o, . . ., .. are algebraically independent over Q.
Then Q1 converges weakly to the Haar measure my as'T' — oo.

Proof. The proof of the lemma is given in [9, Lemma 1]. O
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Let 01 > 1/2 be a fixed number, and

Define the series

S
m=1 m
and
oo 2mwik;m
eIy, (M, o)
Lﬂ()‘jaajvs): (m+a); 3 ]*17- T
m=0 J
and, for w € {2,

0 2mid;m

e wj(m)un(mvaj)

Ln(Nj, 0, wj,8) = (m+ a;)°

m=0

, J=1,...,7

It is known, see, for example, [2, 16], that all above series converge absolutely for
o>1/2. Let

gn(svg7i) = (Cn(s)aLn(Ah 1, S)) .. ;Ln()\r; Qp, 5))
and
C (Sagvéag) = (Cn(s,w)7Ln(>\1,a1,W1,$), e 7Ln()\’r‘7a7‘7w?”73))'

Lemma 2. Suppose that the numbers o1, . . ., .. are algebraically independent over Q,
and w € (2. Then

%meas{T €10,7]: ¢ (s+ira,A) € A}, AeB(H™(D)),

and

%meas{T €0,T]: ¢ (s+ira,Aw) € A}, AeB(H™(D)),

converges weakly to the same probability measure P, on (H™(D),B(H™(D))) as
T — oo.

Proof. The proof uses Lemma 1 and does not depend on the coefficients of the functions
L,(\j,aj,8),j=1,...,r. Therefore, it coincides with the proof of [9, Lemma 2]. [
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320 A. Laurinc¢ikas, R. Macaitiené

Now we define a metric on H"*(D) which induces the topology of uniform conver-
gence on compacta. For g1, g2 € H(D), we define
oo
“m_ SWPser,, 191(8) — g2(s)|
p 91,92 — 2 m m ,
(.92 = 2 2" T o 10— 9

m=1

where {K,,: m € N} is a sequence of compact subsets of the strip D such that

D= G K,
m=1

K,, C Kpy1 forallm € N, and, if K C D is a compact set, then K C K, for
some m € N. The existence of the sequence {K,,} follows from a general theorem,
see, for example, [21], however, in the case of the region D, it is easily seen that we
can take closed rectangles. Clearly, p is a metric on H(D) inducing its topology. For

Qj = (gjvgjla"'ang) € Hrl(D)’j = 1,2,Weput

p(9,:9,) = maX(ﬁ(Qqu% 1rgja§p(glj,gzj)).

SIST

Then we have that p is a desired metric on H"* (D). Using this metric, we approximate
¢(s,a,A) and ((s,, A, w) by ¢ (s, a,A) and ¢ (s, @, A, w), respectively.

Lemma 3. We have

T
1
lim limsupf/g(g(s —i—iT,g,A),gn(s + iT,Q,A)) dr = 0.

Nn—0o0 T 4o

Moreover, suppose that the numbers «y, . .., «, are algebraically independent over Q.
Then, for almost all w € 2,

T
1
lim limsupf/p(C(s+i7’,g,g,g),§n(sJrir,g,g,g)) dr = 0.

Nn—00 T_ o -

Proof. In [16], it is proved that

T
1
lim limsup —/p({(s +i7),Cn(s + iT)) dr =0,
n—0o0 T 400 T
and, for almost all © € 9]

T
1
lim limsup — /p(C(s +i7,@), (s +im,@)) dr = 0.

n—o0 T 60 T

www.mii.Jt/NA
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Since the numbers a1, ..., o, are algebraically independent over QQ, each number «; is
transcendental. Therefore, in [2], it was obtained that, for j = 1,... 7,
T

1
lim limsupf/p(L()\j7aj,s+iT)7Ln()\j,ozj,s+iT)) dr =0,

n—=0 T 400

and, for almost all w; € £2;,
T

1
lim limsupf/p(L()\j,aj,wj,s—l—ir),Ln(/\j,aj,wj,s—|—i7')) dr =0.

n—oo T_yso

All these equalities together with the definition of the metric p prove the lemma. O

On (H™ (D), B(H™(D))), define one more probability measure
A 1
Pr(A) = ?meas{T €[0,T): {(s+ir,a, A\ w) € A}.

Lemma 4. Suppose that the numbers ., . . . , o are algebraically independent over Q.
Then Pr and Pr both converge weakly for almost all w € 2 to the same probability
measure P on (H™ (D), B(H™(D))) as T — oc.

Proof. We give a shortened proof because we apply similar arguments as in [9]. Let 0
be a random variable defined on a certain probability space ({29,.4, P) and uniformly
distributed on [0, 1]. Let

XT,n (S) = Qn (8 + IQT, (o) A) (2)

Then, in view of Lemma 2, X T L> X,,, where X, is the random element with the
distribution P,, (P, is the limit measure in Lemma 2), and g denotes the convergence
in distribution. Using the absolute convergence of series for ¢,(s) and L, (A}, a5, s),
j =1,...,r, we prove without difficulties that the family of probability measures {P,:
n € N} is tight. Hence, by the Prokhorov theorem, this family is relatively compact.
Thus, we have a subsequence { P,, } such that P,,, converges weakly to some probability
measure P as £k — oo. Hence,

x -2.p

B N
Define
Xr(s) =¢(s +10T, a, A). 3)

Then Lemma 3 implies that, for every € > 0,

lim limsup P (p(X7(s), X7,,(5)) =€) = 0.

n—=0 T 00

This, (2), (3) and Theorem 4.2 of [22] show that
Xy =P,
T— 00

and this is equivalent to the weak convergence of Pp to P asT — oc.
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Repeating the above arguments for the random elements

X, (s) = ¢ (s +10T, 0, A, w)

and

XT(S) = Q(S + 19T7 a, Av ﬂ)a

and using Lemmas 2 and 3, we find that the measure Py also converges weakly to P as
T — oo for almost all w € (2. O

Proof of Theorem 5. In virtue of Lemma 4, it suffices to check that the measure P in
Lemma 4 coincides with P¢.
Let, for 7 € R,
ar=((p"":peP),((m+a;) " meNy, j=1,...,7)),
and

¢ (w) = arw, wef

Then {®,: 7 € R} is an ergodic group of measurable measure preserving transformations
on {2 (see [12]).
Let ¢ be a random variable on ({2, B({2), my) given by

1 if((s,a, A\ w) € A,
§(w) = o
0 if¢(s,a,A\w) ¢ A,

where A is a fixed continuity set of the measure P.
By Lemma 4, for almost all w € {2,

lim %meaS{T €[0,T): {(s+ir,a, A w) € A} = P(A). 4)

T—o0

The ergodicity of the group {®,: 7 € R} implies that of the process &(®(w)). There-
fore, the classical Birkhoff-Khintchine theorem shows that, for almost all w € {2,

lim = / £(®,(w)) dr = B¢, 5)

E¢ = /fde =my(we 2: ((s,0, A\ w) € A) = P(A), (6)
2
T
1 Lo d _ 2 {r€[0,T): {(s+ir,a,A\w) € A}
T/{( T(g)) T = measyT TT: ¢ Lo W )
0
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Thus, by (5) and (6),

1
lim 7 meas {rel0,T]: {(s+ir,a,Aw)c A} = Pe(A).

T—o0

This and (4) show that P(A) = P¢(A) for all continuity sets of P. Hence, P = P. The

theorem is proved. O

3 Support

A proof of Theorem 4 is based on Theorem 5 and the support of the limit measure P, in
it. We remind that the support of P is a minimal closed set Sp, C H"* (D) such that
P¢(Sp.) = 1. The set Sp, consists of all elements g € H" (D) such that, for every open
neighbourhood G of g, the inequality P (G) > 0 is satisfied.
Define
S={ge€ H(D): g(s) #0org(s) =0}.

Theorem 6. The support of the measure P is the set S = S x H"(D).

Proof. We write
H™(D)=H(D)x H(D) x --- x H(D).

r

The space H (D) is separable, therefore, it follows from [22] that
B(H™ (D)) = B(H(D)) x B(H(D)) X oo X B(H(D)) .

T

Thus, it suffices to consider the measure Pg on the sets of the form
B=Ax Ay x---x A, AA;€BHD), j=1,...,r

Since the measure m; is the product of the measures g, mig, . . . , M, g, the definition
of P, gives the equality

Pc(B) :mH(A X A1 X oo X AT) = ﬁLH(A)mlH(Al) e ~’ITLTH(AT). (7)

In [16], it is proved that the support of the random element ((s, ) is the set S. The al-
gebraic independence of the numbers o, . . ., a,. implies their transcendence. Therefore,
by [2] the support the random element L(\;, o;, s, w;) is the space H(D), j =1,...,r.
On the other hand, the distribution P¢ of {(s,w) is

Pe(A) =1y (@0 € 2: ((s,0) € A), AeB(H(D)),
and the distribution Pr,; of L(\;, aj,s,w;), j =1,...,7,is

PL.(Aj) = MjH(Wj S jS L()\j,aj,s,wj) € Aj), Aj € B(H(D))

J
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324 A. Laurinc¢ikas, R. Macaitiené

In view of (7),
P((B) = P (A)Pr, (A1) - Pr,(Ay).

Hence, obviously, P;(S) = 1. Moreover, if A € B(H(D)) with A ¢ S, or A; €
B(H (D)) with A; ¢ H(D), for some j, then, in view of the minimality of S and H (D)
for P:(A) and Pr,(A;), respectively, we have that P:(A) < 1 or Pr,(A;) < 1. Thus,
then P (B) < 1. Hence, the minimality of S follows. O

4 Universality theorem

In this section, we will prove Theorem 4. Its proof is based on Theorems 5 and 6 as well
as on the Mergelyan theorem on the approximation of analytic functions by polynomials.
We state this theorem as the next lemma.

Lemma 5. Ler K C C be a compact set with connected complement, and f(s) be a
continuous function on K which is analytic in the interior of K. Then, for every ¢ > 0,
there exists a polynomial p(s) such that

sup |£(s) — p(s)] < e.

seK
Proof. The proof of the lemma can be found in [23], see also [24]. O
Proof of Theorem 4. By Lemma 5, there exists a polynomial p(s) such that
€
sup | f(s) = p(s)| < - ®)
seK

Since f(s) # 0on K, p(s) # 0 on K as well provided ¢ is small enough. Thus, we can
define on K a continuous branch of log p(s) which will be analytic in the interior of K.
Applying Lemma 5 once more, we obtain that there exists a polynomial ¢(s) such that

sup |p(s) — eq(s)’ <<
seK 4

This together with (8) shows that

su};; |f(5) — eq(s)’ < % ©)
se

Again, by Lemma 5, there exist polynomials p;(s) such that

10)

DN

sup sup |fj(s) fpj(s)| <
1<j<r s€K;

Define

“= {(g’gl""’gr) € H™ (D): sup [g(s) —e*®)] < ,
seK 2

€
sup sup [g;(s) — py(s)] < 5 -
1<j<r s€K;

www.mii.Jt/NA
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Then G is an open set, and, in view of Theorem 6, e?(*) p;(s), ..., p.(s)) is an element
of the support of the measure P:. Therefore, an equivalent of the weak convergence
of probability measures in terms of open sets, see Theorem 2.1 of [22], together with
Theorem 5 and properties of the support give the inequality

liminf%meaS{T €10,T): {(s+ir,a,A) € G} > P(G) > 0.

T—o0 -

Hence, by the definition of G, we find that
liminflmeas 7€ [0,T): sup [¢(s +ir) —e?™] < <
T—oo T ’ s€K 2,
sup sup ’L()\j,aj,s—&-ir)—pj(s)‘ < 6} > 0. (11
1<5<r s€K; 2

Inequalities (9) and (10) show that
{7’ € [0,7]: sup|((s+ir) — e(I(S)‘ < E,
seK 2

. €
sup sup |L(Xj, ;.8 +i7) — pi(s)| < 2}
1<j<r s€K;

C {T € [0,T]: sup|((s+ir) — f(s)] <,
seK

sup sup ’L()\j,aj,s—i—iT) — fj(s)’ < 6}.
1< <r s€K;

Combining this with (11) gives the assertion of the theorem. O

Acknowledgment. The authors thank the anonymous referees for remarks and sugges-
tions.
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