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with delay∗
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Abstract. This work explores a coupled Oregonator model. By analyzing the associated
characteristic equation, linear stability is investigated and Hopf bifurcations are demonstrated, as
well as the stability and direction of the Hopf bifurcation are determined by employing the normal
form method and the center manifold reduction. We also discussed the Z2 equivariant property and
the existence of multiple periodic solutions. Numerical simulations are presented to illustrate the
results in Section 5.
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1 Introduction

Delay in dynamical systems is exhibited whenever the system behavior is dependent at
least in part on its history. Many technological and biological systems are known to exhibit
such behavior, such as coupled laser systems, high-speed milling, population dynamics
and gene expression [1–4].

Ẋ = F (X), (1)

where X ∈ U , F ∈ C2(U), U ∈ Rn is a compact closure of the open set. When two
identical oscillators coupling in the way of linear difference, the equation of motion of the
system is

Ẋ = F (X) +K1(Y −X),

Ẏ = F (X) +K2(X − Y ),
(2)

where K1, K2 are the coupling coefficient matrix (see [5–8]). Chemical diffusion cou-
pling often described in this form [9]. In 1979, Tyson simplified the three-dimensional
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oscillator Oregonator to 2-D:

ε
dx

dt
= x(1− x)− hz x− u

x+ u
,

dz

dt
= x− z,

(3)

here x = [HBrO2], z = Ce (IV). In 1999, Tianshou Zhou and Chunsuo Zhang proposed
a coupled Oregonator model [10]

ε
dx1
dt

= x1(1− x1)− hz1
x1 − u
x1 + u

+D(x2 − x1),

dz1
dt

= x1 − z1,

ε
dx2
dt

= x2(1− x2)− hz2
x2 − u
x2 + u

+D(x1 − x2),

dz2
dt

= x2 − z2.

When electric current is applied, the catalyst Ce (IV) is perturbed and other species
are not affected (see [11]). Consequently, in modeling, the perturbation term is introduced
only in equation dz/dt = x− z, and we rewrite this equation as the following form:

dz

dt
= x− z + kz(t− τ). (4)

Then the purpose of this paper is to consider coupled Oregonator model with a delay

ε
dx1
dt

= x1(1− x1)− hz1
x1 − u
x1 + u

+D(x2 − x1),

dz1
dt

= x1 − z1 + kz1(t− τ),

ε
dx2
dt

= x2(1− x2)− hz2
x2 − u
x2 + u

+D(x1 − x2),

dz2
dt

= x2 − z2 + kz2(t− τ),

(5)

where ε = 4× 10−2, δ = 4× 10−4, u = 8× 10−4, h ∈ (0, 1) is an adjustable parameter.
The remainder of this paper organized as follows. In the next section, we shall consider
the stability and the local Hopf bifurcation. Base on the symmetric bifurcation theorem
of Golubitsky [12], we also discussed the Z2 equivariant property and the existence
of multiple periodic solutions in Section 3. In Section 4, based on the normal form
method and the center manifold reduction introduced by Hassard et al. [13], we derive
the formulae determining the direction, stability and the period of the bifurcating periodic
solution at the critical value of τ , a conclusion is drawn in this section. To verify the
theoretic analysis, numerical simulations are given in Section 5.
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2 Stability and local Hopf bifurcations

Through out the paper, we assume that k < 1 (resulting in equilibrium point x0/z0 =
1− k > 0).

Definition 1. (See [1].) Suppose S(xs1, z
s
1, x

s
2, z

s
2) is the uniform steady state of sys-

tem (5). If xs1 = xs2, zs1 = zs2, then S is an uniform steady state.

Let S(x1, z1, x2, z2) be an equilibrium point of system (5). Obviously, S(x1, z1, x2, z2)
satisfying equation group

z1 =
x1

1− k
,

z2 =
x2

1− k
,

x1(1− x1)− hz1
x1 − u
x1 + u

+D(x2 − x1) = 0,

x2(1− x2)− hz2
x2 − u
x2 + u

+D(x1 − x2) = 0.

(6)

Let x1 = x2 = x, then we have

x(1− x)− h

1− k
x
x− u
x+ u

= 0. (7)

Equation (7) have has three roots x = 0, x = x+, x = x−, where

x± =
1− h

1−k − u±
√

(1− h
1−k − u)2 + 4u(1 + h

1−k )

2
. (8)

So, system (5) has three steady-state solution, S−(x1−, z1−, x2−, z2−), S0(0, 0, 0, 0),
S+(x1+, z1+, x2+, z2+). Obviously, there is an unique uniformly positive steady state.
The following is to prove that the uniformly positive steady state is unique. Let G(x) =
x(1−x)− (h/(1−k))x(x−u)/(x+u), from (7) and (8) we conclude there is an unique
x+ satisfying G(x) = 0, and when 0 < x < x+, we have G(x) > 0; when x > x+, we
have G(x) < 0. Further more we obtain G(x+) = 0, Ġ(x+) < 0. From (6) we have
x2 = x1 −G(x1)/D, D > 0 and G(x1) +G(x2) = 0, that is why

G

(
x1 −

G(x1)

D

)
+G(x1) = 0. (9)

The following we will study the function

g(x,D) = G

(
x− G(x)

D

)
+G(x) = 0. (10)

Clearly g(x+, D) = 0, that means x is a positive real root of Eq. (10). Notice that 0 <
x < x+, from Ġ(x+) < 0 and G(x) > 0, we can obtain x − G(x)/D < x < x+ and
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G(x−G(x)/D) > 0, it follows that g(x,D) > 0. On the other hand when x > x+, from
G(x) < 0, we conclude that x −G(x)/D > x > x+ and G(x −G(x)/D) < 0, further
more we have g(x,D) < 0. Then, the following lemma holds.

Lemma 1. For any ε > 0, u > 0, h > 0 andD > 0, system (5) have an unique uniformly
positive steady state S+(x10, z10, x20, z20).

The following work is expanded around the uniformly positive steady state and we
don’t consider of other steady state. Let S+(x10, z10, x20, z20) satisfying Eqs. (6), where

x10 = x20 =
1− h

1−k − u+
√

(1− h
1−k − u)2 + 4u(1 + h

1−k )

2
,

z10 = z20 =
x10

1− k
.

Let x1 = x1−x10, x2 = x2−x20, z1 = z1−z10, z2 = z2−z20. Then we can rewrite (5)
as the following equivalent system:

dx1
dt

=
1

ε

(
(x1+x10)(1−x1−x10)− h(z1+z10)

(x1+x10)−u
(x1+x10) + u

+D(x2−x1)

)
,

dz1
dt

= x1−z1+kz1(t−τ),

dx2
dt

=
1

ε

(
(x2+x20)(1−x2−x20)− h(z2+z20)

(x2+x20)−u
(x2+x20)+u

+D(x1−x2)

)
,

dz2
dt

= x2−z2+kz2(t−τ).

(11)

Set x0 = x10, z0 = z10.
The linearization of system (11) at (0, 0, 0, 0) is

dx1
dt

= a1x1 + a2z1 +
D

ε
(x2 − x1),

dz1
dt

= x1 − z1 + kz1(t− τ),

dx2
dt

= a1x2 + a2z2 +
D

ε
(x1 − x2),

dz2
dt

= x2 − z2 + kz2(t− τ),

where a1 = (1/ε)(−2uhz0/(u+ x0)2 + 1− 2x0), a2 = (1/ε)(uh− hx0)/(u+ x0).
Moreover, its corresponding characteristic equation is∣∣∣∣∣∣∣∣
λ− (a1 − D

ε ) −a2 −Dε 0
−1 λ+ 1− ke−λτ 0 0
−Dε 0 λ− (a1 − D

ε ) −a2
0 0 −1 λ+ 1− ke−λτ

∣∣∣∣∣∣∣∣
=

∣∣∣∣λ− a1 −a2
−1 λ+ 1− ke−λτ

∣∣∣∣ ∣∣∣∣λ− (a1 − 2D
ε ) −a2

−1 λ+ 1− ke−λτ

∣∣∣∣ = ∆1∆2 = 0, (12)
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where ∆1 = λ2 − b1λ − b2 − kλe−λτ + ka1e−λτ , ∆2 = λ2 − b1λ − b2 − kλe−λτ +
ka1e−λτ + (2D/ε)(λ+ 1− ke−λτ ), b1 = a1 − 1, b2 = a1 + a2.

In this section, we will study the distribution of roots of Eq. (12). We first introduce
the following important result, which was been proved by Ruan and Wei using Rouche
theorem [14]. For τ = 0, the two roots of ∆1 = 0 have negative real parts if and
only if k + b1 < 0, ka1 − b2 > 0. Because of D > 0, we obtain if k + b1 <
0, then k + b1 − 2D/ε < 0 and if ka1 − b2 > 0, then ka1 − b2 − k(2D/ε) +
2D/ε > 0. Thus, the two roots of ∆2 = 0 have negative real parts. We impose the
following condition:

(A1) ka1 > b2, k < −b1.

Lemma 2. Let τ = 0. Then if (A1) is satisfied, all the roots of (12) have negative real
parts, hence (x10, z10, x20, z20) is asymptotically stable.

Next, we mainly focus on the case of τ > 0.

Case 1. If λ = iw1 (w1 > 0) is a purely imaginary root of ∆1 = 0 for τ > 0, then we have

−ω2
1 − b1iω1 − b2 − kiω1e−iω1τ + ka1e−iω1τ = 0.

Separating the real and imaginary parts, we obtain

−ω2
1 − b2 − kω1 sinω1τ + ka1 cosω1τ = 0,

−b1ω1 − kω1 cosω1τ − ka1 sinω1τ = 0,
(13)

which implies
w4

1 + (2b2 + b21 − k2)w2
1 + b22 − k2a21 = 0. (14)

Let z = w2
1 and denote

u1 = 2b2 + b21 − k2, r1 = b22 − k2a21.

Then, (15) becomes
m2 + u1m+ r1 = 0. (15)

In order to seek a positive solution for Eq. (14), we impose the following condition:

(B1) r1 < 0.
Clearly, under the condition (B1), (12) has a unique positive root m = (1/2) ×
(−u1 +

√
u21 − 4r1).

(B2) r1 > 0, u1 > 0.
Under the condition (B2), (12) has no positive root.

(B3) r1 > 0, u1 < 0.
Under the condition (B3), if there are real positive roots, then |k| is very large,
h infinitely close to one, does not match with the actual situation.
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Summarizing the above discussions, we obtain the following.

Lemma 3. For the polynomial equation (15), we have the following result:
(i) If r1 < 0, then equation ∆1 = 0 has a unique positive root m = (1/2) ×

(−u1 +
√
u21 − 4r1).

(ii) If r1 > 0, then equation ∆1 = 0 has no positive root.

Suppose that Eq. (15) has positive roots. Without loss of generality, we assume that
it has a positive root defined by m. Then, Eq. (14) has a positive root ω1, moreover ω1

must satisfies the following equation:(
w2

1 + a1b2
k(w2

1 + a21)

)2
+

(
w3

1 + w1(a21 + a2)

kw2
1 + ka21

)2
= 1.

By (13), we have

cos(w1τ) =
w2

1 + a1b2
k(w2 + a21)

, sin(w1τ) = −w
3
1 + w1(a21 + a2)

kw2
1 + ka21

.

Thus, denote

α1 = −w
3
1 + w1(a21 + a2)

kw2
1 + ka21

, β1 =
w2

1 + a1b2
k(w2 + a21)

,

τ1j =

{
1
w1

(arccosβ1 + 2jπ), α1 > 0,

1
w1

(2π − arccosβ1 + 2jπ), α1 < 0,

where j = 0, 1, 2, . . . , then±iw1 is a pair of purely imaginary roots of (12) with τ = τ1j .
If (B1) hold, we have k < 0, then

τ1j =
1

w1
(arccos b1 + 2jπ), j ∈ {1, 2, . . . }.

Case 2. If λ = iw2 (w2 > 0) is a purely imaginary root of ∆2 = 0 for τ > 0, then we
have

−
(
b1 −

2D

ε

)
iω2 −

(
b2 −

2D

ε

)
− kiω2e−iω2τ + k

(
a1 −

2D

ε

)
e−iω2τ = 0.

Separating the real and imaginary parts, we obtain

−ω2
2 −

(
b2 −

2D

ε

)
− kω2 sinω2τ + k

(
a1 −

2D

ε

)
cosω2τ = 0,

−
(
b1 −

2D

ε

)
ω2 − kω2 cosω2τ − k

(
a1 −

2D

ε

)
sinω2τ = 0,

(16)

which implies

w4
2+

(
2

(
b2−

2D

ε

)
+

(
b1−

2D

ε

)2
−k2

)
w2

2+

(
b2−

2D

ε

)2
−k2

(
a1−

2D

ε

)2
= 0. (17)
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Denote

u2 = 2

(
b2 −

2D

ε

)
+

(
b1 −

2D

ε

)2
− k2,

r2 =

(
b2 −

2D

ε

)2
− k2

(
a1 −

2D

ε

)2
.

Then, Eq. (17) becomes
m2 + u2m+ r2 = 0. (18)

In order to seek a positive solution for (18), we impose the following condition:

(C1) r2 < 0.
Clearly, under the condition (C1), (18) has a unique positive root m = (1/2) ×
(−u2 +

√
u22 − 4r2).

(C2) r2 > 0, u2 > 0.
Under the condition (C2), (18) has no positive root.

(C3) r2 > 0, u2 < 0.
Under the condition (C3), if u22 − 4r2 > 0, then (18) has a pair of roots

m1,2 =
−u2 ±

√
u22 − 4r2

2
.

Summarizing the above discussions, we obtain the following.

Lemma 4. For the polynomial equation (18), we have the following result:
(i) If r2 < 0, then equation ∆2 = 0 has a unique positive root m = (1/2) ×

(−u2 +
√
u22 − 4r2).

(ii) If r2 > 0, u2 < 0, then equation ∆2 = 0 has a pair of roots m1,2 = (1/2) ×
(−u2 ±

√
u22 − 4r2).

Suppose that Eq. (18) has some positive roots. Without loss of generality, we assume
that it has a positive root defined by m. Then, (14) has a positive root ω2, moreover ω2

must satisfies the following equations:(
w2

2 + (a1 − 2D
ε )(b2 − 2D

ε )

k(w2 + (a1 − 2D
ε )2)

)2
+

(
w3

2 + w2((a1 − 2D
ε )2 + a2)

kw2
2 + k(a1 − 2D

ε )2

)2
= 1.

By (16), we have

cos(w2τ) =
w2

2 + (a1 − 2D
ε )(b2 − 2D

ε )

k(w2
2 + (a1 − 2D

ε )2)
,

sin(w2τ) = −
w3

2 + w2((a1 − 2D
ε )2 + a2)

kw2
2 + k(a1 − 2D

ε )2
.
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Thus, denoting

α2 = −
w3

2 + w2((a1 − 2D
ε )2 + a2)

kw2
2 + k(a1 − 2D

ε )2
,

β2 =
w2

2 + (a1 − 2D
ε )(b2 − 2D

ε )

k(w2
2 + (a1 − 2D

ε )2)
,

τ2j =

{
1
w2

(arccosβ2 + 2jπ), α2 > 0,

1
w2

(2π − arccosβ2 + 2jπ), α2 < 0,

where j = 0, 1, 2, . . . , then±iw2 is a pair of purely imaginary roots of (12) with τ = τ2j .
If (C1) hold, we have

τ2j =
1

w2
(arccosβ2 + 2jπ), j ∈ {1, 2, . . . }.

As the same, for condition (C3) and u22 − 4r2 > 0 is satisfied, then (17) has at least two
roots w(1)

2 and w(2)
2 . So, we have

τ
(1)
2j =


1

w
(1)
2

(arccosβ
(1)
2 + 2jπ), α

(1)
2 > 0,

1

w
(1)
2

(2π − arccosβ
(1)
2 + 2jπ), α

(1)
2 < 0,

where

α
(1)
2 = −

(w
(1)
2 )3 + w

(1)
2 ((a1 − 2D

ε )2 + a2)

k(w
(1)
2 )2 + k(a1 − 2D

ε )2
,

β
(1)
2 =

(w
(1)
2 )2 + (a1 − 2D

ε )(b2 − 2D
ε )

k((w
(1)
2 )2 + (a1 − 2D

ε )2)
.

And

τ
(2)
2j =


1

w
(2)
2

(arccosβ
(2)
2 + 2jπ), α

(2)
2 > 0,

1

w
(2)
2

(2π − arccosβ
(2)
2 + 2jπ), α

(2)
2 < 0,

where

α
(2)
2 = −

(w
(2)
2 )3 + w

(2)
2 ((a1 − 2D

ε )2 + a2)

k(w
(2)
2 )2 + k(a1 − 2D

ε )2
,

β
(2)
2 =

(w
(2)
2 )2 + (a1 − 2D

ε )(b2 − 2D
ε )

k((w
(2)
2 )2 + (a1 − 2D

ε )2)

Because the condition (C3) and u22−4r2 > 0 is satisfied, (d(Reλ(τ))/dτ)−1
τ=τ

(1)
2j ,τ

(2)
2j

> 0
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(we will proof of it in later). So, τ2j = min{τ (1)2j , τ
(2)
2j }.

Here we consider the whole system (12). Note that when τ = 0, Eq. (12) becomes

(
λ2− (k+ b1)λ+ka1− b2

)(
λ2− (k+ b1)λ+ka1− b2 +

2D

ε
(λ+ 1−k)

)
= 0. (19)

Using Lemmas 1–3, we have the following results.

Lemma 5. For the exponential polynomial equation (12), we have:
(i) If min{r1, r2} > 0, u22 − 4r2 < 0 and the condition (A1) is satisfied, then all roots

with positive real parts of Eq. (12) has the same sum as those of the polynomial
equation (19) for all τ > 0.

(ii) If (B1) is satisfied, then all roots with positive real parts of equation ∆1 = 0 has
the same sum as those of the polynomial equation λ2 − (k + b1)λ + ka1 − b2 = 0
for τ ∈ [0, τ10).

(iii) If (C1) is satisfied, then all roots with positive real parts of equation ∆2 = 0 has
the same sum as those of the polynomial equation λ2 − (k + b1)λ + ka1 − b2 +
(2D/ε)(λ+ 1− k) = 0 for τ ∈ [0, τ20).

(iv) If (C3) is satisfied, then all roots with positive real parts of equation ∆2 = 0 has
the same sum as those of the polynomial equation λ2 − (k + b1)λ + ka1 − b2 +
(2D/ε)(λ+ 1− k) = 0 for τ ∈ [0, τ20).

For convenience, we make some hypotheses as follows:

(P1) (1) min{r1, r2} > 0;
(2) ka1 > b2, k < b1;
(3) u2 > 0 or u2 < 0, u22 − 4r2 < 0.

(P2) (1) r1 < 0, r2 > 0;
(2) k + b1 − 2D/ε < 0, ka1 − b2 − k(2D/ε) + 2D/ε > 0;
(3) u2 > 0 or u2 < 0, u22 − 4r2 < 0 is satisfied.

Then denoting τj = τ1j .

(P3) r1 > 0, ka1 > b2, k < b1, and one of the following holds,

(1) r2 < 0;
(2) u2 < 0 and u22 − 4r2 > 0.

Then denote τj = τ2j .

(P4) One of the following is satisfied:

(1) r1 < 0 and r2 < 0;
(2) r1 < 0 and r2 > 0, u2 < 0, u22 − 4r2 > 0.

Let λ(τ) = a(τ) + iw(τ) be the root of Eq. (5) near τ = τj satisfying a(τj) = 0,
w(τj) = wj . Then, the following transversality condition holds.
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Lemma 6. Suppose that one the the hypothesis (P2), (P3), (P4) is satisfied, then
(d(Reλ(τ))/dτ)−1τ=τ1j > 0, (d(Reλ(τ))/dτ)−1τ=τ2j > 0.

Proof. Substituting λ(τ) into (12) and differentiating the resulting equation in τ , we
obtain

2
(
λ2 − (k + b1)λ+ ka1 − b2

)
×
((

2λ− b1λ+ τkλe−λτ − ke−λτ − τa1e−λτ
)dλ

dτ
− λka1e−λτ + kλ2e−λτ

)
+

2D

ε

(
λ+ 1− ke−λτ

)
×
((

2λ− b1λ+ τkλe−λτ − ke−λτ − τa1e−λτ
)dλ

dτ
− λka1e−λτ + kλ2e−λτ

)
+

2D

ε

(
λ2 − (k + b1)λ+ ka1 − b2

)(dλ

dτ
+ λke−λτ + τke−λτ

dλ

dτ

)
= 0.

Denote

∆′1 =
(
2λ− b1λ+ τkλe−λτ − ke−λτ − τa1e−λτ )

dλ

dτ
− λka1e−λτ + kλ2e−λτ ,

we have

2∆1∆′1 +
2D

ε

(
λ+ 1− ke−λτ

)
∆′1 +

2D

ε
∆1

dλ

dτ

+
2D

ε

(
λke−λτ + τke−λτ

dλ

dτ

)
∆1 = 0. (20)

We first focus on the case ∆1 = 0. Under the condition (P2), when τ = τ1j , we have
∆1 = 0. Thus Eq. (20) becomes

2D

ε

(
λ+ 1− ke−λτ

)
×
((

2λ− b1λ+ τkλe−λτ− ke−λτ− τa1e−λτ
)dλ

dτ
− λka1e−λτ+ kλ2e−λτ

)
= 0.

Then (
dλ

dτ

)−1
=

2λ− b1λ+ τkλe−λτ − ke−λτ − τa1e−λτ

λka1e−λτ − kλ2e−λτ
.

We can easily obtain(
d(Reλ(τ))

dτ

)−1
τ=τ1j

= Re

{
2λ− b1λ+ τkλe−λτ − ke−λτ − τa1e−λτ

λka1e−λτ − kλ2e−λτ

}
τ=τ1j

=

(
1

w2
1 + a21

+
(3− a1)(w2

1 + b2) + τka1 − τa1
k(a21 + w2

0)

)
.
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For a1 < 0, we have k < 0. In the previous part of this paper we know |k| can’t be very
large. As mentioned above, it can be obtained that

sgn

[(
1

w2
1 + a21

+
(3− a1)(w2

1 + b2) + τka1 − τa1
k(a21 + w2

1)

)]
> 0.

For a1 > 0, we have 0 < k < 1− 2f and a1 < 2. It can be obtained that

sgn

[(
1

w2
1 + a21

+
(3− a1)(w2

1 + b2) + τka1 − τa1
k(a21 + w2

1)

)]
> 0.

Then we focus on the case where ∆2 = 0. As the same, we have(
d(Reλ(τ))

dτ

)−1
τ=τ2j

= sgn

[(
k2 + (3− (a1 − 2D

ε ))(w2
2 + (b2 − 2D

ε )) + τ(a1 − 2D
ε )(k − 1)

k((a1 − 2D
ε )2 + w2

2)

)]
.

In the previous part of this paper we know |k| and w2 can’t be very large, ε is very small,
it can be obtained that

sgn

[(
k + (3− (a1 − 2D

ε ))(w2
2 + (b2 − 2D

ε )) + τ(a1 − 2D
ε )(k − 1)

k((a1 − 2D
ε )2 + w2

2)

)]
> 0.

So under the condition (P3), we have(
d(Reλ(τ))

dτ

)−1
τ=τ2j

> 0.

As the same, under the condition (P4), we have(
d(Reλ(τ))

dτ

)−1
τ=τ1j

> 0,

(
d(Reλ(τ))

dτ

)−1
τ=τ2j

> 0.

In the case of r1 < 0, r2 < 0, we have k < 0. Then we have the following results:

τ1j =
1

w1
(arccos b1 + 2jπ), τ2j =

1

w2
(arccos b2 + 2jπ), τj = min{τ1j , τ2j}.

In addition, the second condition of (P4) is not established. Then condition (P4)
modified as r1 < 0, r2 < 0. Therefore, the transversality condition holds and Hopf-
bifurcation occurs at τ = τj .

From Lemmas 4 and 5, we have the following.

Theorem 1. (i) If the condition (P1) is satisfied, then the zero solution of system (5) is
asymptotically stable for all τ > 0.

(ii) If one of the hypothesis (P2), (P3), (P4) is satisfied, then the zero solution of
system (5) is asymptotically stable for τ ∈ (0, τ0), and unstable for τ > τ0. The system (5)
undergoes a Hopf bifurcation at the zero solution when τ = τj (j = 0, 1, 2 . . . ).
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3 Existence of multiple periodic solutions

In the following, we consider the symmetric properties of Eq. (5). Using the theories of
functional differential equation, we know that the system (5) is Z2-equivariant with

(ρU)r = Ur+1 (mod 2)

for any Ur in R2. It is much interesting to consider the spatio-temporal patterns of bifur-
cating periodic solutions. For this purpose, we give the concepts of some spatiotemporal
symmetric periodic solutions. Assume that the state (u1(t), v1(t), u2(t), v2(t)) can pos-
sess two different types of symmetry: spatial and temporal. The oscillators (u1(t), v1(t))
and (u2(t), v2(t)) are in-phase if the state taking the form(

u(t), v(t), u(t), v(t)
)

for all times t. On the other hand, oscillator (u1(t), v1(t)), is half a period out of phase
with (anti-synchronous) oscillator (u2(t), v2(t)) means the state taking the form(

u(t), v(t), u

(
t+

T

2

)
, v

(
t+

T

2

))
.

Now, we explore the possible (spatial) symmetry of the system (5). Consider the action
of Z2 × S1 on ([−τ, 0], R4) with

(r, θ)x(t) = rx(t+ θ), (r, θ) ∈ Z2 × S1,

where S1 is the temporal. Let T = 2π/ω1 or T = 2π/ω2, and denote PT the Banach
space of all continuous T -periodic function x(t). Denoting SPT the subspace of PT
consisting of all T -periodic solution of system (5) with τ = τkj (k = 1, 2), then for
each subgroup Σ ⊂ Z2 × S1,

Fix(Σ,SPT ) =
{
x ∈ SPT , (r, θ)x = x for all (r, θ) ∈ Σ}

is a subspace.

Theorem 2. The trivial solution of system (5) undergoes a Hopf bifurcation at giving rise
to one branch of in-phase (respectively, anti-phase) periodic solutions.

Proof. Let ω1 satisfies Eq. (15). The corresponding eigenvectors of ∆1 = 0 can be chosen
as

q1(θ) =

(
a2

iw1 + a1
, 1,

a2
iw1 + a1

, 1

)T
eiw1τ1θ.

The isotropic subgroup of Z2×S1 is z2(ρ), the center space associated to eigenvalues
±iω1 is spanned by q1(θ) and q̄1(θ), and the bifurcated periodic solutions are in-phase,
taking the form (

u(t), v(t), u(t), v(t)
)
.
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Similarly, if ω2 satisfies Eq. (18), then corresponding eigenvectors of ∆2 = 0 can be
chosen as

q2(θ) =

(
a2

iw2 + a1 − 2D
ε

, 1, − a2

iw2 + a1 − 2D
ε

, −1

)T
eiw2τ2θ.

Z2×S1 has another isotropic subgroup z2(ρ, π), the center space associated to eigen-
values ±iω2 is spanned by q2(θ), q̄2(θ) which implies that the bifurcated periodic solu-
tions are anti-phase, i.e., taking the form(

u(t), v(t), u

(
t+

T

2

)
, v

(
t+

T

2

))
where T is a period.

4 Direction and stability of the Hopf bifurcation

In the previous section, we have obtained some conditions to ensure that the system (5)
undergoes a single Hopf bifurcation at the origin (x10, z10, x20, z20) when τ = τj passes
through certain critical values. In this section, we shall study the direction, stability, and
the period of the bifurcating periodic solutions. The method we used is based on the
normal form method and the center manifold theory introduced by Hassard et al. [13].

We first focus on the case ∆1 = 0, because the other case can be dealt with analo-
gously. We re-scale the time by t 7→ t/τ , to normalize the delay so that system (11) can
be written as

dx1
dt

=
τ

ε

(
uh(z1 + z0)

u+ (x1 + x0)
− h(x1 + x0)(z1 + z0)

u+ (x1 + x0)

+ (x1 + x0)(1− x1 − x0) +D(x2 − x1)

)
,

dz1
dt

= τx1 − τz1 + τkz1(t− 1),

dx2
dt

=
τ

ε

(
uh(z2 + z0)

u+ (x2 + x0)
− h(x2 + x0)(z2 + z0)

u+ (x2 + x0)

+ (x2 + x0)(1− x2 − x0) +D(x1 − x2)

)
,

dz1
dt

= τx1 − τz1 + τkz1(t− 1).

(21)

Letting τ = τ1 + a (a ∈ R), then a = 0 is Hopf bifurcation value of (21), Eq. (21) can be
rewritten as:

dx1
dt

= (τ1 + a)

(
(a1 −

D

ε

)
x1 + a2z1 +

D

ε
x2 +M1

)
,

dz1
dt

= (τ1 + a)
(
x1 − z1 + kz1(t− 1)

)
,
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dx2
dt

= (τ1 + a)

(
(a1 −

D

ε

)
x2 + a2z2 +

D

ε
x1 +M2

)
,

dz2
dt

= (τ1 + a)
(
x2 − z2 + kz2(t− 1)

)
,

where

M1 =
1

ε

[
hz0(u− x0 + 1)

(u+ x0)2

]
x21 +

1

ε

−2uh

(u+ x0)
x1z1,

M2 =
1

ε

[
hz0(u− x0 + 1)

(u+ x0)2

]
x22 +

1

ε

−2uh

(u+ x0)
x2z2.

Select the phase space C = C([−1, 0], R4). For any ϕ = (ϕ1, ϕ2, ϕ3, ϕ4)T ∈ C,
setting

La(φ) = (τ1 + a)


a1 − D

ε a2
D
ε 0

1 −1 0 0
D
ε 0 a1 − D

ε a2
0 0 1 −1



φ1(0)
φ2(0)
φ3(0)
φ4(0)



+ (τ1 + a)


0 0 0 0
0 k 0 0
0 0 0 0
0 0 0 k



φ1(−1)
φ2(−1)
φ3(−1)
φ4(−1)

 ,

and
f(a, ϕ)

def
= (τ1 + a)(M1, 0, M2, 0)T.

By the Riesz representation theorem, there exists a function η(θ, µ) (0 6 θ 6 1), whose
elements are of bounded variation such that

Laφ =

0∫
−1

dη(θ, a)φ(θ), φ ∈ C.

We choose
η(θ, a) = (τ1 + a)Aδ(θ) + (τ1 + a)Bδ(θ + 1),

where δ is defined by

δ(θ) =

{
1, θ = 0,

0, θ 6= 0.

For φ ∈ C1([−1, 0], R4), define

A(a)φ =

{dφ(θ)
dθ , θ ∈ [−1, 0),∫ 0

−1 dη(t, a)φ(t), θ = 0,
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and

R(a)ϕ =

{
0, θ ∈ [−1, 0),

f(a, ϕ), θ = 0.

Then, system (21) is equivalent to the following operator equation:

u̇t = A(α)ut +R(α)ut, (22)

where ut = u(t+ θ) (θ ∈ [−1, 0]).
For ψ ∈ C1([0, 1], (R4)∗), define

A∗ψ(s) =

{
−dψ(s)

ds , s ∈ (0, 1],∫ 0

−1 dηT (s, a)φ(−s), s = 0,

and a bilinear form

〈
ψ(s), φ(θ)

〉
= ψ(0)φ(0)−

0∫
θ=1

θ∫
ξ=0

ψ(ξ − θ) dη(θ)φ(ξ) dξ,

where η(θ) = η(θ, 0), then A(0) and A∗ are adjoint operators. Setting q(θ) and q∗(s) is
the eigenvector ofA(0) andA∗ corresponding to iτ1w1 and−iτ1w1. By direct calculation
we have

q(θ) =

(
a2

iw1 + a1
, 1,

a2
iw1 + a1

, 1

)T
eiw1τ1θ,

q∗(s) = D

(
1

iw1 + a1
, 1,

1

iw1 + a1
, 1

)
eiw1τ1s,

where

D =

((
2a2

a21 + w2
1

+ 2

)
− 2kτ1

(
e−iw1τ1 + iw1τ1e−iw1τ1

))−1
.

Then 〈q∗, q〉 = 1 and 〈q∗, q〉 = 0.
In the following, we follow the ideas in Hassard et al. [13] and by using the same

notations as there to compute the coordinates describing the center manifold C0 at a = 0.
Let ut be the solution of (22) when a = 0. Define z(t) = 〈q∗, ut〉, W (t, θ) = ut(θ) −
2 Re{z(t)q(θ)}.

On the center manifold C0 we have W (t, θ) = W (γ(t), γ̄(t), θ), where

W (γ, γ̄, θ) = W20(θ)
γ2

2
+W11(θ)γγ̄ +W02(θ)

γ2

2
+W30

γ3

6
+ · · · ,

γ and γ are local coordinates for center manifold C0 in the direction of q∗ and q∗. Note
that W is real if ut is real. We only consider real solutions. For solution ut ∈ C0 of (15),
since a = 0, we have

γ′(t) = iw1z +
〈
q∗(θ), f

(
W + 2 Re

{
γ(t)q(θ)

})〉
def
= iw1 + q̄∗(0)f0(γ, γ̄).
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We rewrite this equation as

γ′(t) = iw1γ(t) + g(γ, γ̄), (23)

with

g(γ, γ̄) = q̄∗(0)f
(
W (γ, γ̄, 0) + 2 Re

{
γ(t)q(0)

})
= g20

γ2

2
+ g11γγ̄ + g02

γ̄2

2
+ g21

γ2γ̄

2
+ · · · . (24)

It follows from (23) and (24) that

W ′ = u′t − γ′q − γ̄′q̄ =

{
AW − 2 Re{q̄∗(0)f0q(θ)}, θ ∈ [−1, 0),

AW − 2 Re{q̄∗(0)f0q(θ)}+ f0, θ = 0.

Comparing of coefficients we have:

g20 = 2q∗1(0)
1

ε

hz0(u− x0 + 1)

(u+ x0)2
+ 2q∗3(0)

1

ε

hz0(u− x0 + 1)

(u+ x0)2
,

g11 = 2q∗1(0)
1

ε

−2uh

(u+ x0)
+ 2q∗3(0)

1

ε

−2uh

(u+ x0)
,

g02 = 0,

g21 = 2q∗1(0)
1

ε

hz0(u− x0 + 1)

(u+ x0)2

(
2a1a2
a21 + w2

1

w1
11(0) +

2a1a2
a21 + w2

1

w1
20(0)

)
+

1

ε

−2uh

(u+ x0)

(
1

2
w1

20 +
1

2

2a1a2
a21 + w2

1

w2
20(0) +

2a1a2
a21 + w2

1

w2
11(0)

)
+ 2q∗3(0)

1

ε

hz0(u− x0 + 1)

(u+ x0)2

(
2a1a2
a21 + w2

1

w1
11(0) +

2a1a2
a21 + w2

1

w1
20(0)

)
,

where

q∗1(0) =
1

a1 + w1
, q∗3(0) =

1

a1 + w1
,

W20(θ) = −g20
iω1

q(0)eiω1θ − ḡ20
3iω1

q̄(0)e−iω1θ + E1e2iω1θ,

W11(θ) =
g11
iω1

q(0)eiω1θ − ḡ11
iω1

q̄(0)e−iω1θ + E2.

Moreover E1 and E2 satisfies the following equations, respectively:
2iw1 − (a1 − D

ε ) −a2 −Dε 0
−1 2iw1 + 1− ke−2iw1 0 0
−Dε 0 2iw1 − (a1 − D

ε ) −a2
0 0 −1 2iw1 + 1− ke−2iw1

E1

=

(
1

ε

hz0(u− x0 + 1)

(u+ x0)2
, 0,

1

ε

hz0(u− x0 + 1)

(u+ x0)2
, 0

)T
,
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
−(a1 − D

ε ) −a2 −Dε 0
−1 1− k 0 0
−Dε 0 −(a1 − D

ε ) −a2
0 0 −1 1− k

E2 =


1
ε
−2uh
(u+x0)

0
1
ε
−2uh
(u+x0)

0

 .

Then we can compute the following quantities:

c11(0) =
i

2ω1

(
g20g11 − 2|g11|2 −

1

3
|g02|2

)
+
g21
2
, v21 = − Re c1(0)

Reλ′(τ1)
,

T21 = − Im{c1(0)}+ µ2 Im{λ′(τ1)}
ω1

, β21 = 2 Re c1(0).

(25)

Then we focus on the case ∆2 = 0. As the same, we have

g20 = 2q∗1(0)
1

ε

hz0(u− x0 + 1)

(u+ x0)2
+ 2q∗3(0)

1

ε

hz0(u− x0 + 1)

(u+ x0)2
,

g11 = 2q∗1(0)
1

ε

−2uh

(u+ x0)
+ 2q∗3(0)

1

ε

−2uh

(u+ x0)
,

g02 = 0,

g21 = 2q∗1(0)
1

ε

hz0(u− x0 + 1)

(u+ x0)2

(
2a1a2
a21 + w2

2

w1
11(0) +

2a1a2
a21 + w2

2

w1
20(0)

)
+

1

ε

−2uh

(u+ x0)

(
1

2
w1

20(0) +
1

2

2a1a2
a21 + w2

2

w2
20(0) +

2a1a2
a21 + w2

2

w2
11(0)

)
+ 2q∗3(0)

1

ε

hz0(u− x0 + 1)

(u+ x0)2

(
2a1a2
a21 + w2

2

w1
11(0) +

2a1a2
a21 + w2

2

w1
20(0)

)
,

where

q∗1(0) =
1

a1 − 2D
ε + w2

, q∗3(0) = − 1

a1 − 2D
ε + w2

,

W20(θ) = −g20
iω2

q(0)eiω2θ − ḡ20
3iω2

q̄(0)e−iω2θ + E1e2iω2θ,

W11(θ) =
g11
iω2

q(0)eiω2θ − ḡ11
iω2

q̄(0)e−iω2θ + E2,

moreover E1 and E2 satisfies the following equations, respectively:
2iw2 − (a1 − D

ε ) −a2 −Dε 0
−1 2iw2 + 1− ke−2iw2 0 0
−Dε 0 2iw2 − (a1 − D

ε ) −a2
0 0 −1 2iw2 + 1− ke−2iw2

E1

=

(
1

ε

hz0(u− x0 + 1)

(u+ x0)2
, 0,

1

ε

hz0(u− x0 + 1)

(u+ x0)2
, 0

)T
,
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
−(a1 − D

ε ) −a2 −Dε 0
−1 1− k 0 0
−Dε 0 −(a1 − D

ε ) −a2
0 0 −1 1− k

E2 =


1
ε
−2uh
(u+x0)

0
1
ε
−2uh
(u+x0)

0

 .

And

c12(0) =
i

2ω2

(
g20g11 − 2|g11|2 −

1

3
|g02|2

)
+
g21
2
, v22 = − Re c1(0)

Reλ′(τ2)
,

T22 = − Im{c1(0)}+ µ2 Im{λ′(τ2)}
ω2

, β22 = 2 Re c1(0).

(26)

Hence we have the following theorem by the result of Hassard et al. [13].

Theorem 3. In (25) (in (26)), the sign of v21 (v22) determined the direction of Hopf
bifurcation: if v21 > 0 (v22 > 0), then the Hopf bifurcation is supercritical and the
bifurcating periodic solution exist for τ > τ21 (τ > τ22); if v21 < 0 (v22 < 0), then
the Hopf bifurcation is subcritical and the bifurcating periodic solution exist for τ < τ21
(τ < τ22). β21 (β22) determined the stability of the bifurcating periodic solution: the
bifurcating periodic solution is stable if β21 < 0 (β22 < 0); the bifurcating periodic
solution is unstable if β21 > 0 (β22 > 0). T21 (T22) determines the period of the
bifurcating periodic solution: the period increase if T21 > 0 (T22 > 0); the period
decrease if T21 < 0 (T22 < 0).

5 Numerical simulations

Let us now give some numerical simulations to illustrate the above results.
Set u = 8 × 10−4, h = 2/3, k = −2.5, ε = 0.04, D = 1, we consider following

system:

dx1
dt

=
1

0.04

(
x1(1− x1)− 2

3
z1
x1 − 8× 10−4

x1 + 8× 10−4
+ (x2 − x1)

)
,

dz1
dt

= x1 − z1 − 2.5z1(t− τ),

dx2
dt

=
1

0.04

(
x2(1− x2)− 2

3
z2
x2 − 8× 10−4

x2 + 8× 10−4
+ (x1 − x2)

)
,

dz2
dt

= x2 − z2 − 2.5z2(t− τ).

We have the equilibrium point (0.8075, 0.2307, 0.8075, 0.2307) and τ10 = 1.6918, τ20 =
0.9653, than τ0 = min{τ10, τ20} = 0.9653.

Figs. 1, 2 show that zero solution is asymptotical stable. Figs. 3, 4 depict that anti-
phased periodic solutions are bifurcated from the trivial solution. Figs. 5, 6 illustrate that
two waveforms are completely symmetrical.
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Fig. 1. Equilibrium point is asymptotical stable with τ = 0.9 < τ0, initial value x1 = 0.7,
x2 = 0.5.

Fig. 2. Equilibrium point is asymptotical stable with τ = 0.9 < τ0, initial value z1 = 0.3,
z2 = 0.2.

Fig. 3. A branch of anti-phased periodic solutions is bifurcated from the trivial solution
with τ = 0.97 ≈ τ0, initial value x1 = 0.7, x2 = 0.5.

Fig. 4. A branch of anti-phased periodic solutions is bifurcated from the trivial solution
with τ = 0.97 ≈ τ0, initial value z1 = 0.3, z2 = 0.2.
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Fig. 5. A branch of synchronous periodic solutions is bifurcated from the trivial solution
with τ = τ10 = 1.69, initial value x1 = 0.7, x2 = 0.7.

Fig. 6. A branch of synchronous periodic solutions is bifurcated from the trivial solution
with τ = τ10 = 1.69, initial value z1 = 0.3, z2 = 0.3.

6 Conclusions

For a coupled Oregonator model with delay, an important issue is how delays change the
stability of Oregonator model states, steady or oscillatory, causing further oscillations or
significantly altering existing ones and hence inducing delay-controlled periodic behav-
ior. In this paper, experimental and numerical investigations on the effect of electrical
feedback in the oscillating Belousov–Zhabotinsky reaction are studied. By analyzing the
associated characteristic equation and means of space decomposition, we subtly discuss
the distribution of zeros of the characteristic equation, and then derive some sufficient
conditions ensuring that all the characteristic roots have negative real parts. By regarding
the eigenvalues of the connection matrix of the system as bifurcation parameters, we
discuss Hopf bifurcation of the equilibria. Meanwhile, with the help of center manifold
reduction and normal form theory, we study Hopf bifurcation of the equilibria, and obtain
the detailed information about the bifurcation direction and stability of various bifurcated
periodic solutions. Finally, numerical simulations have demonstrated the correctness of
the theoretical results.

From a chemical viewpoint, both means that time delay could cause a stable equi-
librium to become unstable and cause the properties in a coupled Oregonator model to
fluctuate: if τ < τj , the density of various elements reach an equilibrium. If τ increases
and crosses the value τj , then this equilibrium becomes unstable: the density of various
elements oscillates around the unstable equilibrium.
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