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Soliton solution and conservation laws of the Zakharov
equation in plasmas with power law nonlinearity
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Abstract. This paper studies the Zakharov equation with power law nonlinearity. The traveling
wave hypothesis is applied to obtain the 1-soliton solution of this equation. The multiplier method
from Lie symmetries is subsequently utilized to obtain the conservation laws of the equations.
Finally, using the exact 1-soliton solution, the conserved quantities are listed.
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1 Introduction

There are several nonlinear evolution equations (NLEEs) that appears in various areas
of applied mathematics and theoretical physics [1–13]. These NLEEs are a key to the
understanding of various physical phenomena that governs the world today. Some of these
commonly studied NLEEs are the nonlinear Schrödinger’s equation (NLSE), Korteweg–
de Vries (KdV) equation, sine–Gordon equation (SGE), just to name a few. Some of these
equations appear in the real domain while others appear in the complex domain. The
NLSE appears in nonlinear optics, while KdV equation is studied in fluid dynamics and
the SGE is seen in theoretical physics. There are various vector valued coupled equations
that describe many physical phenomena. One such equation is the Zakharov equation (ZE)
that is studied in the context of plasma physics [1].

NLEEs are studied by several authors and there are several interesting aspects and
issues that have been addressed in the past. A systematical discussion on the secant
type function was conducted earlier [6]. Additionally, the traveling wave solutions to
nonlinear evolution equations by the transformed rational function method was displayed
in 2009 [8]. Moreover, a hierarchy of conservation can be easily generated from conserved
densities of Hamiltonian structures behind Lax pairs. This aspect has been addressed on
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numerous occasions. The details were already addressed in 2006 [9]. This paper will
integrate one such NLEE, namely the ZE with power law nonlinearity, by the traveling
wave hypothesis method and will obtain the conserved quantities after Lie symmetry
analysis extracts the conserved densities.

The traveling wave hypothesis will lead to an exact 1-soliton solution of ZE. There
are a few constraint conditions that will naturally fall out during the course of derivation
of the soliton solution of this equation. These constraint conditions must remain valid in
order for the soliton solutions to exist. Once integrated into closed form, there are various
physical features that are naturally revealed and many physical and mathematical aspects
become illustrious. The conserved quantities will be subsequently computed using the
soliton solution by the aid of Lie symmetry analysis.

2 Governing equations

The dimensionless form of the Zakharov equation (ZE) with power law nonlinearity is
given by [1]

iqt + aqxx + b|q|2nq = qr, (1)

rtt − k2rxx =
(
|q|2n

)
xx
. (2)

In (1) and (2) the dependent variables are q(x, t) and r(x, t) where the first dependent
variable in on a complex valued, while the second dependent variable is real-valued.
The independent variables are x and t, which are the spatial and temporal variables,
respectively. The parameter n is the power law nonlinearity parameter. If however n = 1,
the power law nonlinearity relaxes to cubic nonlinearity that is commonly studied in the
literature. In (1), the first term is the evolution term, while the coefficient of a is the group
velocity dispersion (GVD) and b represents the power law nonlinearity. The right hand
side represents the coupling term. Then in (2), the left hand side represents the wave
operator that couples nonlinearly with the complex valued function q(x, t) by means of
the term on its right hand side. Equations (1) and (2) form a coupled system of NLEEs.

This equation with n = 1 has been studied earlier by using several other mathe-
matical techniques such as the variational method [5, 13]. However, for arbitrary n the
semi-inverse variational principle was applied to solve the coupled system [1]. Then, the
traveling wave hypothesis was applied in 2009 [9]. The bifurcation analysis is also carried
out for this equation with n = 1 [11]. Several other solutions were also obtained in terms
of Jacobi’s elliptic functions in 2009 [3]. This paper will study equations (1) and (2) for
arbitrary values of n.

3 Traveling wave solution

In order to solve (1) and (2) by the aid of traveling wave hypothesis, it is assumed that

q(x, t) = g(s)eiφ, (3)
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where g(s) represents the solitary wave profile and

s = x− vt, (4)
φ = −κx+ ωt+ θ. (5)

Here, v is the velocity of the soliton, κ is the frequency while ω is the soliton wave number
and θ is the phase constant. Again, for (2), it is assumed that

r(x, t) = h(s). (6)

Substituting (3), (4) and (6) into (2) yields(
v2 − k2

)
h′′ =

(
g2n
)′′
, (7)

which gives

h =
g2n

v2 − k2
(8)

after integrating (7) twice. The integration constant is taken to be zero, since the search
is for a soliton solution. If however, the integration constant is taken to be non-zero, it
will lead to cnoidal waves, which is outside the scope of this paper. Now equation (1),
by virtue of (3)–(6) and (8), yields after decomposing into real and imaginary parts, the
following pair of equations

ag′′ −
(
ω + aκ2

)
g + bg2n+1 − g2n+1

v2 − k2
= 0 (9)

and
v = −2aκ, (10)

respectively, where the notations g′ = dg/ds and g′′ = d2g/ds2 are being used. While
(10) gives the velocity of the soliton, (9) is the ordinary differential equation (ODE) that
can be integrated. Therefore, multiplying (9) by g′ and integrating once yields

a(g′)2 −
(
ω + aκ2

)
g2 +

1

n+ 1

(
b− 1

v2 − k2

)
g2n+2 = 0. (11)

Now, separating variables and integration of the ODE leads to

g(s) = A1 sech1/n
[
B(x− vt)

]
, (12)

where the amplitude A1 of the soliton is given by

A1 =

[
(n+ 1)(v2 − k2)(ω + aκ2)

b(v2 − k2)− 1

]1/2n
(13)

while the width of the soliton is given by

B =
n√
a
. (14)
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Then, from (8), the solution h(s) is given by

h(s) = A2 sech2
[
B(x− vt)

]
, (15)

where the amplitude A2 is

A2 =
(n+ 1)(v2 − k2)(ω + aκ2)

b(v2 − k2)− 1
. (16)

The constraint conditions that immediately fall out of relations (13) and (14) are

a > 0 (17)

and (
v2 − k2

)(
ω + aκ2

){
b
(
v2 − k2

)
− 1
}
> 0 (18)

if n is even. Thus, finally, the 1-soliton solution to the system (1) and (2) is given by

q(x, t) = A1 sech1/n
[
B(x− vt)

]
ei(−κx+ωt+θ) (19)

and
r(x, t) = A2 sech2

[
B(x− vt)

]
, (20)

and the velocity of the solitons is given by (10). The solitons will exist provided the
constraint conditions given by (17) and (18) hold.

4 Symmetries and conservation laws

In order to determine conserved densities and fluxes, we resort to the invariance and
multiplier approach based on the well known result that the Euler-Lagrange operator an-
nihilates a total divergence (see [2]). Firstly, if (T, S) is a conserved vector corresponding
to a conservation law, then

DtT +DxS = 0

along the solutions of the differential equation E(t, x, q, q(1), q(2), . . .) = 0, where q(i)
represents all the possible ith derivatives of q.

Moreover, if there exists a nontrivial differential functionQ, called a “multiplier” such
that

Eq[QE] = 0,

then QE is a total divergence, i.e.,

QE = DtT
t +DxT

x,

for some (conserved) vector (T, S) and Eq is the respective Euler–Lagrange operator.
Thus, a knowledge of each multiplier Q leads to a conserved vector determined by, inter
alia, a Homotopy operator. See details and references in [2, 4].
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For a system of three equations Ej(t, x, q, q(1), q(2), . . .) = 0, where q = (u, v, w)
say, we require

fE1 + kE2 + hE3 = DtT +DxS

so that
E
(
fE1 + kE2 + hE3

)
= 0,

where E is the Euler operator and the vector (f, k, h) is the equivalent of the multiplier Q
above. In each case, T t is called the conserved density.

The system

iqt + aqxx + b|q|2nq − qw = 0,

rtt − k2rxx = (|q|2n)xx
(21)

becomes, with q = u+ iv,

ut + avxx + b
(
u2 + v2

)n
v − vw = 0,

−vt + auxx + b
(
u2 + v2

)n
u− uw = 0,

rtt − k2rxx −
[(
u2 + v2

)n]
xx

= 0.

(22)

For n = 1, the detail calculations reveal the following results for the multipliers and
corresponding conserved vectors for the system (22).

0. (f, k, h) = (u,−v, 1):

T =
1

2

(
u2 + v2 + 2rt

)
,

S = −2uux − avux + auvx − 2vvx − k2rx.

1. (f, k, h) = (u,−v, t):

T =
1

2

(
u2 + v2 − 2r + 2trt

)
,

S = −2tuux − avux + auvx − 2tvvx − tk2rx.

2. (f, k, h) = (−2tu, 2tv, (1/2)k2t2 + (1/2)x2):

T =
1

2

(
−2tu2 − 2tv2 − 2tk2r + x2rt + t2k2rt

)
,

S =
1

2

(
2xu2 + 2xv2 − 2u

((
x2 + t2k2

)
ux + 2atvx

)
− v
(
−4atux + 2

(
x2 + t2k2

)
vx
)
− k2

(
−2xr +

(
x2 + t2k2

)
rx
))
.

3. (f, k, h) = (−t2u, t2v, (1/6)k2t3 + (1/2)tx2):

T =
1

6

(
−3t2u2 − 3t2v2 − 3x2r − 3t2k2r + 3tx2rt + t3k2rt

)
,

S = −1

6
t
(
−6xu2 − 6xv2 + 2u

((
3x2 + t2k2

)
ux + 3atvx

)
+ v
(
−6atux + 2

(
3x2 + t2k2

)
vx
)

+ k2
(
−6xr +

(
3x2 + t2k2

)
rx
))
.
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Also, the one parameter Lie groups of transformations, in vector field form, that leave
invariant (22) are

X1 = ∂t,

X2 = u∂v − v∂u,
X3 = 2tu∂v − 2tv∂u + ∂r,

X4 = t2u∂v − t2v∂u + t∂r,

X5 = ∂x,

whose commutator table is
[ , ] X1 X2 X3 X4 X5

X1 0 0 2X2 X3 0
X2 0 0 0 0 0
X3 −2X2 0 0 0 0
X4 −X3 0 0 0 0
X5 0 0 0 0 0

Finally, the conserved densities of (21) are

Φ0 =
1

2

(
|q|2 + 2rt

)
,

Φ1 =
1

2

(
|q|2 − 2r + 2trt

)
,

Φ2 =
1

2

(
−2t|q|2 − 2tk2r + x2rt + t2k2rt

)
,

Φ3 =
1

6

(
−3t2|q|2 − 3x2r − 3t2k2r + 3tx2rt + t3k2rt

)
.

Therefore, the conserved quantities using the 1-soliton solution given by (19) and (20) for
n = 1 are given by

I0 =

∞∫
−∞

Φ0 dx =
1

2

∞∫
−∞

(
|q|2 + 2rt

)
dx =

A2
1

B
, (23)

I1 =

∞∫
−∞

Φ1 dx =
1

2

∞∫
−∞

(
|q|2 − 2r + 2trt

)
dx =

1

B

(
A2

1 − 2A2

)
(24)

I2 =

∞∫
−∞

Φ2 dx =
1

2

∞∫
−∞

(
−2t|q|2 − 2tk2r + x2rt + t2k2rt

)
dx = −2t

B

(
A2

1 + k2A2

)
,

which will be conserved quantity provided

k2 = −A
2
1

A2
.

The fourth conserved density, however, does not lead to a conserved quantity since it is
a divergent integral.
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5 Conclusions

This paper obtains the exact 1-soliton solution to the Zakharov equation by the aid of
traveling wave hypothesis. This equation very commonly appears in the study of plasma
physics. The constraint conditions or the parameter domains are obtained and listed in
order for the soliton solution to exist. Subsequently, the Lie symmetry analysis is also
carried out to extract the conserved densities of the equation. The commutator table is also
given. Finally, the conserved quantities are obtained for the first three conserved densities.
These results will serve as a very important milestone in the study of plasma physics.
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