
Nonlinear Analysis: Modelling and Control, 2013, Vol. 18, No. 2, 191–209 191

A predator-prey model with disease in prey

Md. Sabiar Rahman1, Santabrata Chakravarty

Department of Mathematics, Visva-Bharati
Santiniketan, 731235 West Bengal, India
sabiarrahman@gmail.com; santabrata2004@yahoo.co.in

Received: 25 March 2012 / Revised: 23 October 2012 / Published online: 18 April 2013

Abstract. The present investigation deals with the disease in the prey population having significant
role in curbing the dynamical behaviour of the system of prey-predator interactions from both
ecological and mathematical point of view. The predator-prey model introduced by Cosner et al. [1]
has been wisely modified in the present work based on the biological point of considerations.
Here one introduces the disease which may spread among the prey species only. Following the
formulation of the model, all the equilibria are systematically analyzed and the existence of
a Hopf bifurcation at the interior equilibrium has been duly carried out through their graphical
representations with appropriate discussion in order to validate the applicability of the system under
consideration.

Keywords: predator-prey model, eco-epidemiology, boundedness, local stability, Hopf bifurcation,
limit cycle, simulation.

1 Introduction

Around 1800, the British Economist Malthus formulated a single species model [2] and
subsequently modified by Verhulst [3]. Lotka and Volterra [4, 5], considered two popu-
lations and analysed the model. They formulated the model after considering predator-
prey type of situations. Many researchers have studied the techniques as predator-prey
interactions, mutualisms and competitive mechanisms and made an attempt to develop a
more biologically realistic model. Prey dependent predator-prey models have also been
studied extensively in several investigations (cf. [6–12]). The deterministic prey depen-
dent predator-prey model exhibits not only the “paradox of enrichment”, formulated by
Hariston et al. [13] and Rosenzweig [14] but also the “biological control paradox” which
was taken by Luck [15].

Mathematical epidemiology has become a interesting subject of research work since
the seminal model of Kermack–McKendrick [16] on SIRS (susceptible-infected-removed-
susceptible) systems, in which a disease is transmitted upon contact has been thoroughly
investigated. More recently epidemic models with demographic evolution have been
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introduced. Ecoepidemiology is much young subject in the branch of science. Here epi-
demic and demographic aspects are merged within one model. Gao and Hethcote [17]
and Mena–Lorca and Hethcote [18] consider the dynamics of a reproducing population,
which is also a subject of epidemics. A disease spreading in interacting populations was
first studied by Hadeler and Freedman [19]. The Lotka–Volterra model has been used
as the demographic basis in which the influence of a disease propagating in one of the
two species has been investigated. It is known that viral, bacterial, fungal and metazoan
parasites can intervene host vulnerable to predation (cf. [20–24]).

The simplest models contain a bilinear mass action term, quadratic in both the inter-
acting populations, called also Holling type I. This term appears due to the fact that an
individual can in principle interact with the whole other population, the product of the
two populations is the obvious outcome. We consider the fact that in general a single
individual can feed only until the stomach is full, a saturation function indicate the intake
of food. The latter can be modeled using the concept of the “law of diminishing returns”
or technically speaking Michaelis–Menten or Holling type II term. The present model
is a modification of the previous model studied by Cosner et al. [1], allowing a disease
to spread among the prey species only. Based upon thorough analysis of the problem
under study, all the equilibria are adequately characterized and their nature of stability
are properly discussed. The standard approach has finally been used to establish the local
stability, Hopf bifurcations and limit cycles.

2 Basic assumption and the mathematical model

A general type predator-prey model will have the following structure:

dX

dt
= f(X)X − g(X,P )P,

dP

dt
= eg(X,P )P − dP,

where X , P are the population size of prey and predator species, respectively, f(X) the
per capita prey growth rate in the absence of predators and g(X,P ) the rate at which
an individual predator consumes prey. Also g(X,P ) represents the functional response
of the model. The parameter e is the conversion factor and d is the natural death rate of
predator population. It has been observed in [1] that if the predator searches prey with line
formation and moving in a direction perpendicular or transverse to the line then the rate at
which an individual predator consumes prey has been used by g(X,P ) = (c1X)/(a+X)
as in the case of traditional Holling type II prey dependent response function. Such
scenario assumed that encounters involved only an individual predator and a single prey
item and that while one predator was handling prey, others would continue their searching
strategy. Furthermore, the prey form patches, herds that are large enough that the preda-
tors can aggregate before all the prey are consumed or escape. This type of behaviour
is limited by the requirement that the line of foragers must be short enough to permit
transmission of a signal. So the corresponding response function is probably only accurate
at low to moderate group size of predator. In this situation the number of encounters
between prey and individual predator is proportional to the number of predators due to
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aggregation upon contact with prey and thus each encounter between the prey and a single
predator is converted rapidly into an encounter between the prey and all the predators. As
a result the total number of encounters depends upon another factor of P . Also suppose
that the prey are gathered in large cluster that the predator do not entirely consume with
the action of an encounter due to disperseness within some short period after the cluster
is attacked. Then the predation rate per predator per encounter depends on that time and
also on the handling time rather than depending on P . This is why we choose the better
predator dependent response function as g(X,P ) = c1XP/(a+XP ). Now we deal with
a predator-prey model with Cosner et al. type functional response [1] given by

dX

dt
= rX

(
1− X

k

)
− c1XP

2

a+XP
,

dP

dt
=
ec1XP

2

a+XP
− dP (1)

with

X(0) = X0 > 0 and P (0) = P0 > 0,

where r, k, c1, a, e, d all belong to R+ and r, k, c1 and a represent growth rate of the prey,
carrying capacity, search rate for prey and half saturation constant, respectively. The first
equation characterizes that the prey population grows logistically with carrying capacity
k and intrinsic growth rate r in the absence of predator population.

System of equations (1) has the following equilibria: (i) trivial equilibrium Ê0(0, 0),
(ii) axial equilibrium Ê1(k, 0) and (iii) positive interior equilibrium Ê∗(X∗, P ∗), where
X∗ = ad/((ec1 − d)P ∗) and P ∗ is the real positive root of the cubic equation Z3 +
3hZ + g = 0, where h = −rea/(3(ec1 − d)) and g = a2der/(k(ec1 − d)2). This
equation has exactly one real positive root if g2 + 4h3 > 0 i.e., 27ad2 > 4k2er(ec1− d).
Using Cardano’s method, we obtain the root as m − h/m where m denotes one of the
three values of [(1/2)(−g +

√
(g2 + 4h3))1/3].

The predators consume prey population according to the Cosner et al. [1] type of
functional response. This type of functional response is different from others who have
derived the fact that it increases with P . Logically, the functional response could reflect
a higher rate of predation of prey per predator than would be possible if predator acted for
foraging individually. It is very important to point out that similar “foraging” techniques
were stated by German and American submarines in attacks on enemy convoys during
second world war (cf. [25] and [26]). Now the above model is modified by introducing
transmissible disease in the prey species only for the purpose of curbing the dynamical
behaviour of the system. We introduce the following facts:

(i) In the presence of disease, the prey population X is divided among susceptibles S
and infected I individuals. Therefore, the total prey population isX(t)=S(t)+I(t).

(ii) Assume that only susceptible prey can compete for resources.

(iii) The disease spreads with bilinear mass action incidence rate λSI .

(iv) The infected prey population neither recover from the disease nor is capable of
reproducing (cf. [27]).

Nonlinear Anal. Model. Control, 2013, Vol. 18, No. 2, 191–209



194 Md.S. Rahman, S. Chakravarty

(v) Further, we assume that the epidemics cannot be transmitted to the predator popula-
tion. Predators hunt both sound and sick prey with different search rates depending
on the various kind of parasitism (cf. [28–30]).

With the above modification we propose and analyze the following model:

dS

dt
= rS

(
1− S + I

k

)
− c1SP

2

a+ (S + I)P
− λIS, (2)

dI

dt
= λIS − c2IP

2

a+ (S + I)P
− γI, (3)

dP

dt
=
e(c1S + c2I)P 2

a+ (S + I)P
− dP, (4)

where r, k, λ, c2, c1, a, γ, e, d all belong to R+ and represent growth rate of the
prey, carrying capacity, force of infection, search rate for infected prey, search rate for
susceptible prey, half saturation constant, total death rate of infected prey (natural death
rate + death rate due to infection), conversion factor and the natural death rate of the
predator population, respectively. The right hand side of each of equations (2)–(4) is
a smooth function of variables (S, I, P ) and all the parameters are non-negative. So local
existence and uniqueness properties hold in the positive octant Π = {(S, I, P ): S > 0,
I > 0, P > 0}.

From equation (2) it follows that S = 0 is an invariant subset that is S ≡ 0 for some t.
Thus S(t) > 0 for all t, if S0 > 0. The same argument follows for equations (3) and (4).
Hence Π is an invariant set. If J be the Jacobian matrix of the system of equations (2)–(4)
which is diagonalizable and hence system (2)–(4) is obviously not conservative.

3 Boundedness of the system

Proposition 1. The sound prey population is bounded.

Proof. From equation (2) we have

dS

dt
= rS

(
1− S + I

k

)
− c1SP

2

a+ (S + I)P
− λIS < rS

(
1− S + I

k

)
<
rS

k
(k − S).

By using simple but standard argument we have lim supt→+∞ S(t) < k. Hence the
proof. Now there exists a T1 > 0 such that for all t > T1, we have S(t) < k + ε = W
(say).

Theorem 1. All the solutions of system (2)–(4) which initiate in R3
+ are uniformly bounded.

Proof. We define a function
Ω = S + I + P. (5)
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The time derivative of equation (5) is given by dΩ/dt = dS/dt + dI/dt + dP/dt for
each µ > 0, the following inequality holds:

dΩ

dt
+ µΩ = rS

(
1− S + I

k

)
− c1SP

2

a+ (S + I)P
− λIS + λIS − c2IP

2

a+ (S + I)P

− γI +
e(c1S + c2I)P 2

a+ (S + I)P
− dP + µΩ

6 k
(µ+ r)2

4r
− (γ − µ)I − (d− µ)P since e < 1

6 k
(µ+ r)2

4r
= φ if µ < min(γ, d).

Therefore, from the above inequation we have dΩ/dt+µΩ 6 φ. Applying theory of dif-
ferential inequality [31], we obtain 0 < Ω(S, I, P ) < (φ/µ)(1−e−µt)+Ω(S0, I0, P0)×
e−µt and for t → ∞ we have 0 < Ω < φ/µ. Hence all the solutions of the system of
equations (2)–(4) that initiate in R3

+ are confined in the region B = {(S, I, P ) ∈ R3
+:

Ω = φ/µ+ ε for any ε > 0}.

4 Equilibria

The system of equations (2)–(4) has the following equilibria: (i) trivial equilibrium
E0(0, 0, 0), (ii) axial equilibrium: E1(k, 0, 0), (iii) boundary equilibrium E2(S2, I2, 0),
(iv) boundary equilibrium E3(S3, 0, P3), (v) boundary equilibrium E4(0, I4, P4),
(vi) positive interior equilibrium E5(S5, I5, P5), where

S2 =
γ

λ
, I2 =

r(λk − γ)

λ(r + λk)
,

I5 =
−ad(kc1λ+ rc2)− kP5(dγc1 + drc2 − erc1c2)

D1
,

S3 = − da

(d− ec1)P3
, I4 = − da

(d− ec2)P4
,

S5 =
k

D1

[
dac2λ+ P5

(
drc1 + dγc1 − erc22

)]
with

D1 = P5

(
kdc1λ− dc2kλ+ erc1c2 − erc22

)
,

in which P3 is the real positive root of the cubic equation Z3 + 3h1Z + g1 = 0, where
h1 = −rea/(3(ec1 − d)) and g1 = a2der/(k(ec1 − d)2). This equation has exactly
one real positive root if g21 + 4h31 > 0 i.e., 27ad2 > 4k2er(ec1 − d). Using Cardano’s
method, we obtain the root as (m1 − h1/m1) where m1 denotes one of the three values
of [(1/2)(−g1 +

√
(g21 + 4h31))1/3].
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Also P4 is the real positive root of the quadratic equation (d − ec2)Z2 − eaγ = 0,
while P5 is the real positive root of the following cubic equation in τ :

Aτ3 + 3Bτ2 + 3Cτ +D = 0 (6)

with the coefficients given by

A = c1e
2c22r

2 + d2k2λ2c1 − k2λ2d2c2 − e2c32r2 − 2dekλc22r + 2dc1ekλc2r,

3B = c21e
2kγ2r − dc1ek2γ2λ− dec2r2k2λ− e2c22r2kγ − c1e2kγ2rc2 + c1e

2c2r
2kγ

+ c21e
2k2γ2λ+ e2c22r

2k2λ− dek2γrc2λ− dc1ek2γrλ+ 2c1e
2k2γrc2λ,

3C = −dekγrc2aλ+ c1e
2c2r

2aγ − dc1ek2λ2γa− 2dec2r
2akλ+ c1e

2kλγarc2

− e2c22r2aγ − dc1ekγraλ+ e2c22r
2kaλ− dek2λ2rac2,

D = −dec2r2a2λ− dekλ2ra2c2.

Equation (6) has exactly one positive real root if G2 + 4H3 > 0, where G = A2D +
3ABC+2B3, H = AC−B2, using Cardano’s method, we obtain the root as (1/A)(p−
(H/p)−B), where p denotes one of the three values of [(1/2)(−G+

√
(G2+4H3))1/3].

Existence of equilibria: (i) E1 always exists, (ii) E2 exists for λk > γ, (iii) E3 exists for
ec1 − d > 0, (iv) E4 does not exist since the feasibility condition of I4 avoids the reality
of the root P4, (v) E5 exists for (i) λ∗ < λ < λ∗ and c1 > c2 or (ii) λ∗ > λ > λ∗ and
c1 < c2, where

λ∗ =
P5(erc22 − dc1(r + γ))

adc2
and λ∗ =

k(erc1c2 − dγc1 − drc2)P5 − arc2d
akdc1

.

So we divide the system E5 as E5
∗ and E5

∗∗ for the conditions of existence, respec-
tively.

Threshold condition for epidemic: We have already shown that, lim supt→+∞ S(t) < k.
Next we see that dI/dt < I(λk − γ).

Proposition 2. If R0 ≡ λk/γ < 1 then dI/dt < 0, that means the infection will not
spread.

This characteristic is related to a similar threshold phenomenon in epidemic theory
(cf. [32–34]). Now if the “basic reproductive ratio R0” in epidemic theory exceeds the
value 1 then the epidemics outbreak will occur. This number, R0 can be thought of as
the number of all individuals who will get the disease in all time following “successful”
contact with a typical sick individual, that is, the expected number of secondary cases
produced by an infective during its whole infectious period.

5 Stability analysis

The system of equations (2)–(4) can be written as in the form Ẋ = F (X), where X =
(S, I, P )T. The Jacobian matrix J ≡ DF (X) of system (2)–(4) at any arbitrary point
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(S, I, P ) is given by J(S, I, P ) = (δij)3×3, where, assuming ζ = P/(a + (S + I)P ),
the elements are defined by

δ11 =

(
1− S + I

k

)
− rS

k
− c1Pζ + c1SPζ

2 − λI,

δ12 = −rS
k

+ c1SPζ
2 − λS, δ13 = −2c1Sζ + c1S(S + I)ζ2,

δ21 = λI + c2IPζ
2, δ22 = λS − c2Pζ + c2IPζ

2 − γ,
δ23 = −2c2Iζ + c2Iζ

2(S + I), δ31 = ec1Pζ − e(c1S + c2I)Pζ2,

δ32 = ec2Pζ − e(c1S + c2I)Pζ2, δ33 = eζ(c1S + c2I)
{

2− (S + I)ζ
}
− d.

We denote Jk = J , the Jacobian evaluated atEk, where k = 1, 2, 3, 4, 5. The determinant
of Jk = det(J), the trace of Jk = tr(J) and Ck = tr(Jk)Mk − det(Jk), where Mk

denotes the sum of the second order principal minors of Jk.

5.1 Local stability analysis for the simplest equilibria

It is easy to verify that the eigenvalues of the Jacobian matrix at E0 are r,−γ,−d.
Therefore, it is an unstable hyperbolic saddle critical point in the direction orthogonal
to IP -plane.

The eigenvalues of the Jacobian matrix at E1 are −r, λk − γ and −d. Therefore, E1

will be stable if the condition λk < γ holds. When λk < γ, then the system E1 will be
saddle with SP -plane its stable manifold and I-axis as unstable manifold.

Next with the entries of Jacobian matrix at E2, we have det (J2) = −drγρ < 0 and
tr(J2) = −(γr + dλk)/(λk) < 0. Then M2 = γdr/(λk) + γrρ, Cτ2 = −γdr/(λk) ×
(γr + dλk + rρ) < 0, where ρ = (λk − γ)/(λk). Hence the Routh–Hurwitz condition
is satisfied. Therefore, E2 is locally asymptotically stable for all positive values of the
parameter.

Existence of bifurcation around E2

The eigenvalues of the characteristic equation of the system at E2 are −d and −(1/2) ×
(γr ± ∆)/(λk), where ∆ =

√
γ2r2 − 4λ2k2rγ + 4λkrγ2. Since det(J2) < 0 for all

positive values of the parameter, therefore, the hyperbolic equilibrium point at E2 does
not possess Hopf bifurcations, transcritical bifurcations and pitch-fork bifurcations.

5.2 Local stability analysis for the equilibrium E3

Proposition 3. (I) E3 is locally asymptotically stable if taking ζ1 = P3/(a+ S3P3)

(i) k < 2S3, (ii) λS3 < γ, (iii) ec1ζ1S3(2− ζ1S3) < d. (7)

(II) E3 is unstable if the following condition holds: λ > λ[1]. Here

λ[1] = − 1

S3

[
r

(
1− 2S3

k

)
− ac1ζ21 − c2P3ζ1 − γ + ec1ζ1S3(2− ζ1S3)− d

]
. (8)
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Proof. (I) The Jacobian matrix J3 at E3 is given by J3 = (αij), i, j = 1, 2, 3. We have
the following entries:

α11 = r

(
1− 2S3

k

)
− ac1ζ21 , α12 = −rS3

k
+ c1S3P3ζ

2
1 − λS3,

α13 = −c1S3ζ1(2− ζ1S3), α22 = λS3 − c2P3ζ1 − γ,

α31 = aec1ζ
2
1 , α32 = eζ1P3(c2 − c1S3ζ1), α33 = ec1ζ1S3(2− ζ1S3)− d.

It is clear from the conditions (i), (ii), (iii) of (7) α11 < 0, α22 < 0, α33 < 0,
respectively, but obviously α13 < 0 and α31 > 0. Now we have

tr(J3) = α11 + α22 + α33, det (J3) = α22(α11α33 − α13α31),

M3 = α11α22 + α22α33 + α11α33 − α13α31,

C3 = tr(J3)M3 − det(J3)

= 2α11α22α33 + α2
11(α22 + α33) + α2

22(α11 + α33)

+ α2
33(α11 + α22)− α13α31(α33 + α11).

It is clear that M3 > 0, tr(J3) < 0, det(J3) < 0 and C3 < 0. Hence the Routh–Hurwitz
condition is satisfied for the matrix J3, i.e., all the characteristic roots of J3 are with
negative real parts. So the system is locally asymptotically stable around E3.

(II) The instability of E3 follows if tr(J3) > 0, which implies condition (8).

5.3 Local stability analysis for equilibrium E∗
5

Proposition 4. (I) Let

σ = a+ (c1S5 + c2I5)P5,

β[I] =
e{ac1 + (c1 − c2)I5P5}

dσ2 − ae(σ − a)
, β[II] =

ac1 + (c1 − c2)I5P5

ac2 − (c1 − c2)S5P5
,

λ[I] = max

{(
c1P5

3

σ2
− r

k

)
,
c2P

3
5

σ2
(β1 − 1), c2P

3
5 (β2 − 1)

}
,

λ[I] =
1

σ2

[
β2
{
dσ2 − ae(σ − a)

}
− c2P5

3
]
,

r[I] = max

{
P5

3

σ2S5
(kc1S5 + c2I5),

kc1P
2
5

a

}
,

d[I] =
1

σ2
max

{
ea(σ − a),

(
P 2
5 + ea

)
(σ − a)− rS5σ

2

k

}
,

d[I] =
1

2σ2

[
(a+ σ)

{
ac2 − P5S5(c1 − c2)

}
+ 2ae(σ − a)

]
,

D2 =
c2I5P

3
5 + ae(c1S5 + c2I5)P5

(a+ (S5 + I5)P5)2
.

www.mii.lt/NA



A predator-prey model with disease in prey 199

E∗5 is locally asymptotically stable if the following conditions hold:

λ[I] < λ < λ[I], d[I] < d < d[I], r[I] < r, ac2 > (c1 − c2)P5S5. (9)

(II) E∗5 is unstable if the following condition is satisfied:

D2 >
rS5

k
+ d. (10)

Proof. (I) The Jacobian matrix J∗5 at E∗5 is given by J∗5 = (ηij), i, j = 1, 2, 3. We have

tr
(
J∗5
)

= η11 + η22 + η33,

det
(
J∗5
)

= η11(η22η33 − η32η23) + η12(η31η23 − η33η21) + η13(η21η32 − η31η22),

M∗5 = (η11η22 − η12η21) + (η11η33 − η13η31) + (η22η33 − η23η32),

C∗5 = tr
(
J∗5
)
M∗5 − det

(
J∗5
)

= η211(η22 + η33) + η222(η11 + η33)

+
(
η233 − η12η21

)
(η11 + η22)− η13(η33η31 + η21η32)

− η23η32(η22 + η33 − η11) + η11(2η22η33 − η23η32)− η11η31η13 − η12η31η23,

using the fact that the interior equilibrium solves the algebraic system from the ODE’s.
Suitably using assumptions (9), the signs of the entries can be assessed as follows:
η12 < 0, η32 > 0, η11 < 0, η33 < 0. Again it is obvious that η22 > 0, η31 > 0, η13 < 0,
η21 > 0, η23 < 0. Also from assumptions (9), it is clear that M5

∗ > 0, tr(J5
∗) < 0. The

det(J5
∗) < 0 if the terms (η31η23 − η33η21), (η22η33 − η32η23) and (η21η32 − η31η22)

are positive, which follows from the first and second conditions of (9). Finally, we see
that C∗5 < 0 if η11 + η22 < 0, η22 + η33 − η11 < 0 and 2η22η33 + η23η32 < 0, which
follows from the second and third conditions of (9). Hence the Routh–Hurwitz condition
is satisfied for the matrix J5∗, that means, all the characteristic roots of J∗5 have with
negative real parts. Hence the claim.

(II) The instability of E5
∗ follows if tr(J5

∗) > 0, which implies condition (10).

5.4 Local stability analysis for equilibrium E∗∗
5

Proposition 5. (I) System (2)–(4) is locally asymptotically stable at E∗∗5 if the following
conditions hold:

λ[I] < λ < λ[I], d[I] < d < d[I], r[I] < r, ac1 > (c2 − c1)I5P5. (11)

(II) E∗∗5 will be unstable if the following condition is satisfied:

D2 >
rS5

k
+ d. (12)
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Proof. (I) The Jacobian matrix J∗∗5 at E∗∗5 is given by J∗∗5 = (µij), i, j = 1, 2, 3. We
have

tr
(
J∗∗5
)

= µ11 + µ22 + µ33,

det
(
J∗∗5
)

= µ11(µ22µ33 − µ32µ23) + µ12(µ31µ23 − µ33µ21)

+ µ13(µ21µ32 − µ31µ22),

M∗∗5 = (µ11µ22 − µ12µ21) + (µ11µ33 − µ13µ31) + (µ22µ33 − µ23µ32),

C∗∗5 = tr
(
J∗∗5
)
M∗∗5 − det

(
J∗∗5
)

= µ2
11(µ22 + µ33) + µ2

22(µ11 + µ33)

+
(
µ2
33 − µ12µ21

)
(µ11 + µ22)

− µ13(µ33µ31 + µ21µ32)− µ23µ32(µ22 + µ33 − µ11)

+ µ11(2µ22µ33 − µ23µ32)− µ11µ31µ13 − µ12µ31µ23,

since the interior equilibrium solves the algebraic system from the ODE’s. Suitably us-
ing assumptions (11), the signs of the entries can be assessed as follows: µ12 < 0,
µ31 > 0, µ11 < 0, µ33 < 0. Again it is obvious that µ22 > 0, µ32 > 0, µ13 < 0,
µ21 > 0, µ23 < 0. Also from assumptions (11), it is clear that M5

∗∗ > 0, tr(J5
∗∗) < 0.

The det(J5
∗∗) < 0 if the terms (µ31µ23 − µ33µ21), (µ22µ33 − µ32µ23) and (µ21µ32 −

µ31µ22) are positive, which follows from the first and second conditions of (11). Fi-
nally, we see that C∗∗5 < 0 if µ11 + µ22 < 0, µ22 + µ33 − µ11 < 0 and 2µ22µ33 +
µ23µ32 < 0, which follows from the second and third conditions of (11). Hence the
Routh–Hurwitz condition is satisfied for the matrix J5∗∗, that is, all the characteristic
roots of J5∗∗ are with negative real parts. So the system is locally asymptotically stable
around E∗∗5 .

(II) The instability of E∗∗5 follows if tr(J∗∗5 ) > 0, which implies condition (12).

Remark. Since the boundary equilibrium point E2 is locally asymptotically stable for
all positive values of the parameter of system (2)–(4), therefore, the system around the
positive interior equilibrium E5(S5, I5, P5) is not persistent.

6 Hopf bifurcation at E5(S5, I5, P5)

Lemma 1. The system possesses a Hopf bifurcation around E5 when λ passes through
λh, where λh satisfy the equality A1A2 = A3 and Ai satisfy the characteristic equation
of system (2)–(4) at E5(S5, I5, P5), that is:

ω3 +A1ω
2 +A2ω +A3 = 0. (13)

Proof. The characteristic equation of system (2)–(4) at E5(S5, I5, P5) is given by (13)
where A1 ≡ −tr(J5), A2 ≡ M5, A3 ≡ − det(J5) and A1A2 − A3 ≡ −C5. Hopf
bifurcation will occur if and only if there exists λ = λh such that (i) A1(λ)A2(λ) =
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A3(λ) with A1(λ), A2(λ), A3(λ) > 0 and (ii) (d/dλ)(Re(ω(λ)))|λ=λh
6= 0. Now when

λ = λh, A1A2 = A3 with A1, A2, A3 > 0. The characteristic equation is given by(
ω2 +A2

)
(ω +A1) = 0

with roots ω1 = i
√
A2, ω2 = −i

√
A2 and ω3 = −A1, so that there exists a pair of purely

imaginary eigenvalues and a strictly negative real eigenvalue. For λ in a neighbourhood
of λh, the roots have the form ω1(λ) = q1(λ)+iq2(λ), ω2 = q1(λ)−iq2(λ) and ω3(λ) =
−q3(λ), where q1(λ), q2(λ) and q3(λ) are real. Next, we shall verify the transversality
condition

d

dλ

(
Re
(
ωj(λ)

))∣∣
λ=λh

6= 0, j = 1, 2.

Substituting ω(λ) = q1(λ)+ iq2(λ) into the characteristic equation and taking the deriva-
tive we have

Ψ(λ)q̇1(λ)− Φ(λ)q̇2(λ) +Θ(λ) = 0 and Φ(λ)q̇1(λ) + Ψ(λ)q̇2(λ) + Γ (λ) = 0,

where

Ψ(λ) = 3
(
q1(λ)

)2
+ 2A1(λ)q1(λ) +A2(λ)− 3

(
q2(λ)

)2
,

Φ(λ) = 6q1(λ)q2(λ) + 2A1(λ)q2(λ),

Θ(λ) =
(
q1(λ)

)2
Ȧ1(λ) + q1(λ)Ȧ2(λ) + Ȧ3(λ)− Ȧ1(λ)

(
q2(λ)

)2
,

Γ (λ) = 2q1(λ)q2(λ)Ȧ1(λ) + Ȧ2(λ)q2(λ).

Now
d

dλ

(
Re
(
ωj(λ)

))∣∣
λ=λh

= −ΦΓ + ΨΘ

Ψ2 + Φ2

∣∣∣∣
λ

= λh 6= 0

and
q3(λh) = −A1(λh) 6= 0.

This completes the proof.

7 Non-existence periodic solutions around E5(S5, I5, P5)

In this section, we would like to prove that under some suitable conditions, there is no pe-
riodic solution of system (2)–(4) around the positive interior equilibrium E5(S5, I5, P5).
To prove this, the following criteria by Li and Muldowney [35] and Arino et al. [36] can
be applied. Consider the general autonomous ordinary differential equation

dX

dt
= F

(
X(t)

)
, (14)

where F is a C1 function in some open subset of RN . Denoting by J = (∂F/∂X) the
Jacobian matrix of (14) and J [2] the

(
N
2

)
×
(
N
2

)
matrix which is the second additive com-

pound matrix associated the Jacobian matrix J . The definition of the second additive com-
pound matrix can be established in the paper of Li and Muldowney [35]. Let J = (ξij)
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be an n× n matrix. The second additive compound matrix A[2] is the
(
N
2

)
×
(
N
2

)
matrix

defined as follows, for any integer i = 1, 2, . . .
(
N
2

)
, let (i) = (i1, i2) be the ith number in

the lexicographic ordering of integer pairs (i1, i2) such that 1 6 i1 < i2 6 n. Then, the
element in the ith row and jth column of J [2] is

ξi1i1 + ξi2i2 if (j) = (i),

(−1)r+sξirjs if exactly one entry ir of (i) does not occur in (j)
and js does not occur in (i),

0 if neither entry from (i) occurs in (j).

For n = 3, J = [ξij ], i, j = 1, 2, 3, the second additive computed matrix J [2] is given by

J [2] =

ξ11 + ξ22 ξ23 −ξ13
ξ32 ξ11 + ξ33 ξ12
−ξ31 ξ21 ξ22 + ξ33

 .
In this case, (1) = (1, 2), (2) = (1, 3) and (3) = (2, 3).
Theorem (Bendixson’s criterion inRnRnRn). A simple closed rectifiable curve that is invari-
ant with respect to system (14) cannot exist if any of the following conditions is satisfied
on Rn:

(i) sup

{
∂Fr
∂xr

+
∂Fs
∂xs

+
∑
q 6=r,s

(∣∣∣∣∂Fq∂xr

∣∣∣∣+

∣∣∣∣∂Fq∂xs

∣∣∣∣): 1 6 r < s 6 n

}
< 0,

(ii) sup

{
∂Fr
∂xr

+
∂Fs
∂xs

+
∑
q 6=r,s

(∣∣∣∣∂Fr∂xq

∣∣∣∣+

∣∣∣∣∂Fs∂xq

∣∣∣∣): 1 6 r < s 6 n

}
< 0,

(iii) λ1 + λ2 < 0,

(iv) inf

{
∂Fr
∂xr

+
∂Fs
∂xs
−
∑
q 6=r,s

(∣∣∣∣∂Fq∂xr

∣∣∣∣+

∣∣∣∣∂Fq∂xs

∣∣∣∣): 1 6 r < s 6 n

}
> 0,

(v) inf

{
∂Fr
∂xr

+
∂Fs
∂xs
−
∑
q 6=r,s

(∣∣∣∣∂Fr∂xq

∣∣∣∣+

∣∣∣∣∂Fs∂xq

∣∣∣∣): 1 6 r < s 6 n

}
> 0,

(vi) λn−1 + λn > 0,

where λ1 > λ2 > · · · > λn are the eigenvalues of (1/2)((∂F/∂x)∗+∂F/∂x) and where
∂F/∂x is the Jacobian matrix of F while the asterisk denotes transposition.

If X ∈ RN then the corresponding logarithmic norm of J [2] (that we denote by
µ∞(J [2])) endowed by the vector norm |X|∞ = supi |Xi| is

µ∞
(
J [2]
)

= sup

{
∂Fr
∂xr

+
∂Fs
∂xs

+
∑
q 6=r,s

(∣∣∣∣∂Fq∂xr

∣∣∣∣+

∣∣∣∣∂Fq∂xs

∣∣∣∣): 1 6 r < s 6 n

}
,

where µ∞(J [2]) < 0 implies the diagonal dominance by row matrix J [2]. Then, the
following result holds.
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Theorem. A simple closed rectifiable curve that is invariant with respect to system (2)–(4)
cannot exist if µ∞(J [2]) < 0.

Before we arrive at a condition in which there is no closed rectified curve (no periodic
solution), we carry out some changes of coordinates to lower the number the parameters
in system (2)–(4). Let us make the following parameter non-dimensional:

S′ =
S

k
, I ′ =

I

k
, P ′ =

P

k
, t′ = rt, a′ =

a

k2
,

(15)
c′1 =

c1
r
, c′2 =

c2
r
, γ′ =

γ

r
, λ′ =

λk

r
, d′ =

d

r
.

System (2)–(4) preserves the same form but with r = 1 and k = 1. The new parameters
with prime (′) mentioned in (15) are introduced in the foregoing analysis by dropping the
prime notations.

Li and Muldowney’s criteria has been adopted here in the revised coordinates for the
non existence of periodic solutions of system (2)–(4). The logarithmic norm µ∞, endowed
by the vector norm |X|∞ of the second additive compound matrix J [2] associated with the
Jacobian matrix J , calculated onE5, is negative iff the suprema of the following functions
satisfy:

(1− γ)− (2− λ)S + (1− e)Pζ{c2Iζ − c1 + c1Sζ − c2} < 0, (16)

(1− d1)− 2S − I + ec1ζ
2S

{
S + I +

2a

P

}
< 0, (17)

−γ − d− S + ζ2
{
ec2I

(
S + I +

2a

P

)
+ S

(
2aec1
P

+ (c1 − c2)P

)}
< 0. (18)

Sufficient conditions to satisfy (16), (17) and (18) are, respectively, (i) λ < 2, 1 < γ,
c2 < 2ac1, c1 < 2ac2, (ii) 1− d+ 5ec1/2 < 0 and (iii) e(5c2 + c1)/2 < γ + d, c1 < c2.

A direct application of Li and Muldowney’s criteria shows that under the conditions
(i), (ii) and (iii) there is no periodic solution for the present system (2)–(4), under consid-
eration.

8 Simulations

We have performed numerical simulation for the positive equilibrium of the updated sys-
tem (2)–(4) under consideration. The local stability characteristics of the present system
around the equilibriaE2,E3 andE5 are shown in Figs. 1(a), 1(b) and 1(c). It is very inter-
esting that the dynamical system enters into Hopf bifurcation at the interior equilibrium
E5. Here we have investigated the phase portrait of Hopf bifurcation exhibited in Fig. 2
when the parameters have values r = 0.2 per month, k = 11000 metric tons, a = 1500
metric tons, c1 = 0.00003 per month, c2 = 0.00001 per month, λ = 0.0066 per month,
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Fig. 1. The phase portrait of system (2)–(4) around E2, E3, E5 with the set of parameter
values: (a) r = 0.8, k = 50, a = 1, c1 = 0.03, c2 = 0.5, λ = 0.12, e = 0.4, γ = 0.91,
d = 2; (b) r = 0.4, k = 7, a = 2, c1 = 0.01, c2 = 0.09, λ = 0.058, e = 0.72, γ = 0.7,
d = 0.00705785; (c) r = 2, k = 100, a = 200, c1 = 0.00002000059, c2 = 0.00003,

λ = 0.01, e = 0.345210, γ = 0.061, d = 0.00001.
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Fig. 2. The phase portrait of Hopf bifurcation of system (2)–(4) around E5 with r = 0.2,
k = 11000, a = 1500, c1 = 0.00003, c2 = 0.00001, λ = 0.0066, e = 0.5185, γ = 0.21,

d = 0.00001.
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e = 0.5185, γ = 0.21 per month and d = 0.00001 per month by taking λ as a bifurcation
parameter. This feature corresponds to the case when c1 > c2, that is, when the consump-
tion rate of susceptible prey population is higher than that of infected prey population. On
the other hand when c1 < c2, the parameters have values r = 0.8 per month, k = 50
metric tons, a = 1 metric tons, c1 = 0.03 per month, c2 = 1.5 per month, λ = 0.12
per month, e = 0.4, γ = 0.91 per month, d = 0.163 per month, then the system also
enters into another Hopf bifurcation at the interior equilibrium E5. This happens when
the consumption rate of infected prey population is greater than the rate of the susceptible
prey population. In this context, one may observe the existence of a limit cycle.

9 Discussion

The dynamical behaviour investigated in our present model is an important issue of eco-
epidemiological interactions based upon predator-prey model with disease in prey species
only. Here we have considered three nonlinear autonomous ordinary differential eqations
for three different classes of populations, namely, the susceptible prey, the infected prey
and the predator. In this investigation, the boundedness of the solutions, the existence
and stability of different equilibria have been thoroughly examined. The present system
yields mainly five equilibria E0, E1, E2, E3 and E5. We have summarized the suffi-
cient conditions for the stability of all possible equilibria of model system (2)–(4) in
Table 1. It has been pointed out in Proposition 2 that the infection will spread only when
the “basic reproductive ratio R0” is greater than 1. On the other hand when R0 < 1
then the disease will naturally die out. The axial equilibrium position E1 is found to
be stable when λk < γ and unstable when γ < λk − r − d. The boundary equi-
librium E2 be always stable results in the system being non-persistent. The boundary
equilibrium E3 is locally asymptotically stable if the conditions (i), (ii) and (iii) of (7)
in Proposition 3(I) hold and on the other hand when λ > λ[1] then E3 is unstable.
Also using the Routh–Hurwitz criteria it can be shown that Ê0(0, 0) is always unstable,
Ê1(k, 0) is always stable and Ê∗(X∗, P ∗) is stable if (i) k < 2X∗ and (ii) ec1X∗P ∗×
(2a + X∗P ∗)/(a + X∗P ∗)2 < d. The dynamical behaviour of the systems represented

Table 1. Schematic representation (LAS – locally asymptotically stable).

Equilibria Conditions for stability Equilibrium nature
E0 No conditions Unstable
E1 λk < γ LAS
E2 No conditions Always LAS
E3 k < 2S3, λS3 < γ, LAS

ec1S3P3(2a+ S3P3)/(a+ S3P3)
2 < d

E∗
5 λ[I] < λ < λ[I], d[I] < d < d[I], LAS

r[I] < r, ac2 > (c1 − c2)P5S5

E∗∗
5 λ[I] < λ < λ[I], d[I] < d < d[I], LAS

r[I] < r, ac1 > (c2 − c1)S5I5
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by (1) and (2)–(4) about Ê0 and E0, respectively, appears to be the same. Here Ê1 is
always stable but E1 is stable when λk < γ. Thus one may conclude that the dynamical
behaviour of system (2)–(4) is influenced by the force of infection. But the system is
unstable when γ < (λk − r − d). Thus inclusion of the disease in the disease-free
predator-prey system is adequate to destabilize the otherwise stable equilibrium. Again
the equilibrium position E3 is analogous with Ê∗. But their dynamical behavior differs in
several ways. Both the equilibria have the same feasibility condition, but for the stability
of E3 an additional condition λS3 < γ is required. Again the system E3 is unstable when
λ > λ[2]. Thus the infection has an important influence on the ecosystem. Now one may
conclude that the conditions (I) of the Proposition 3 are true then the inclusion of disease
to the disease-free predator-prey system can help preventing total extinction and behave
as a biological control. Next, further attention was focused on the interior equilibrium
E5 into two cases: E∗5 with condition c1 > c2 and E5

∗∗ with condition c1 < c2 in
Propositions 4 and 5, respectively. In first cases we have noticed locally asymptotically
stable behaviour in Proposition 4. In this situation the predator population wants to predict
more susceptible prey population than infected prey population. On the other hand we
have observed the condition when predators try to predict susceptible prey but infected
prey is caught easily which is shown in the Proposition 5. Both the cases as mentioned
above are usually found in our real life on the interior equilibrium E5 into two cases:
E∗5 with condition c1 > c2 and E∗∗5 with condition c1 < c2 in Propositions 4 and 5,
respectively. In first cases we have noticed locally asymptotically stable behaviour in
Proposition 4. In this situation the predator population wants to capture more susceptible
prey population than infected prey population. On the other hand we have observed the
condition when predators try to hunt susceptible prey but infected prey is caught easily
which is shown in the Proposition 5. Both the cases as mentioned above are usually found
in real life. Lastly, we describe on both cases when the system enters Hopf bifurcation
with bifurcation parameter λ. The stable limit cycles justify a behaviour similar to the
one exhibited by the demographic model [37]. Also we apply Bendixson’s criterion in Rn
(according to [35]) to find the condition of non-existence of periodic solutions around
interior equilibrium E5.

Finally Venturino (cf. [38–40]) considered recovery from the disease, a step closer to
the real situation, which is not assumed herein. A future direction of this work can be well
extended by keeping this factor in mind.
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