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Abstract. This paper is devoted to model (1) for escherichia coli, introduced in [1]. Based on the
experimental observations of Budrene and Berg [2,3], Tyson and coworkers derived (1) with n cell
density, c chemotrattactant concentration and s stimulant concentration. Our aim is to study the
stability of constant meaning full solution and ultimately boundedness of the solutions. Precisely:

(i) linear and nonlinear stability is proved by using a peculiar Lyapunov function,
(ii) the ultimately boundedness of the solutions in the L2-norm is obtained,

(iii) conditions guaranteeing the global stability are also obtained.

Keywords: chemotaxis model, linear and nonlinear stability, absorbing set.

1 Introduction

Mathematical models of the biological systems are an important tool. Much attention has
been paid to pattern formation in the nature world. Especially, patterns of bacteria colonies
have long been investigated, and mathematical models of pattern formation have been
developed extensively. For an account of the state of art of chemotaxis and chemotaxis
models we refer to [4–7] and references therein.

The collection of diverse patterns observed by Budrene and Berg [2, 3] is an interest-
ing and well-documented example of complex pattern formation by bacteria. The most
complex patterns are formed by Escherichia coli in semi-solid medium. These models are
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time-dependent systems of partial differential equations, typically in two or three space
dimensions, which contain three distinct sets of terms modelling three distinct processes:
reaction term, diffusion term and chemotaxis term. Reaction diffusion equations includ-
ing only the first two processes above have been widely studied, both theoretically and
numerically, as models of many biological systems [6, 8, 9] (cfr. also [10, 11]).

Here, we describe dynamical behaviour of E. coli bacterial chemotaxis, the best un-
derstood phenomena among pattern process in bioscience. A small initial inoculum of
bacteria forms a swarm ring of high cell density which expands outward from the in-
oculum. The patterns are formed by fully-motile cells, but a large portion of the cells
becomes non-motile for some unknown reason, and these maintain the pattern. The E. coli
patterns are formed when the bacteria are exposed to intermediates of the tricarboxylic
acid (TCA) cycle, principally succinate. In response the cell secrete aspartate, which is
a potent chemoattractant. A chemoattractant for E. coli is a chemical which the bacteria
like, in the sense that the bacterial cells tend to move up concentration gradients of the
chemical, a process known as chemotaxis.

We choose a parabolic PDE model of reaction diffusion type which is modified from
[1, 12]. A model proposed by Tyson et al. [1] contains most of the relevant features ob-
served in E. coli chemotaxis. Tyson and coworkers based their model on the experimental
observations of Budrene and Berg [2, 3] and they derived the following mathematical
representation with three variables the cell density n, the chemoattractant concentration c
and the stimulant concentration s

nt = dn∆n−∇
[

k1n

(k2 + c)2
∇c
]

+ k3n

(
k4s

2

k9 + s2
− n

)
,

ct = dc∆c+ k5s
n2

k6 + n2
− k7nc,

st = ds∆s− k8n
s2

k9 + s2
.

(1)

The first term in (1) describes Fickian diffusion. In (1)1, the second term denotes the
chemotactic response and the third is for the growth of cells. Similarly, the production of
chemoattractant (second term in (1)2 adds to its diffusion transport, while the uptake of
chemoattractant by the cells (third term) reduces its extra cellular concentration. The rate
of change of nutrient concentration (1)3 is difference between the rates of diffusion and
consumption.

Tyson applied two simplifications: the succinate concentration s, was assumed to
be constant and used as a parameter, and k7 and k8 were set to zero. This eliminate
equation (1)3 and reduces equations (1)1 and (1)2. All these models contain more or less
assumption, yet none has been studied with respect to all three pattern-forming processes,
when any realistic model of the system must reproduce them all.

In this paper we present the mathematical model that captures all three observed
pattern-forming processes and we analyze the linear and nonlinear L2-stability of the
solution of (1) under Neumann boundary data by following the methodology formulated
in [13–17].
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The plain of the paper is the following. Section 2 is devoted to some preliminaries.
In Section 3, we recall a Lyapunov functional introduced previously in [13] and analyze
the linear stability of positive steady states. Section 4 is dedicated to the (local) nonlinear
stability. In Section 5 the existence of an absorbing set is shown. In Section 6 conditions
for the global stability are derived. The paper ends with an appendix in which the proof
of Lemma 1 is sketched.

2 Preliminaries

By introducing the scalings [6]

u =
n

n0
, v =

c

k2
, w =

s√
k9

, t∗ = k7n0t, ∆∗ =
dc
k7n0

∆,

d1 =
dn
dc
, d3 =

ds
dc
, α =

k1

dck2
, ρ =

k3

k7
,

δ =
k4

n0
, β =

k5

√
k9

k7k2n0
, k =

k8

k7

√
k9

, µ =
k6

n2
0

,

the mathematical model, dropping the stars, in dimensionless form is

ut = d1∆u− α∇
[

u

(1 + v)2
∇v
]

+ ρu

(
δw2

1 + w2
− u
)
,

vt = ∆v + βw
u2

µ+ u2
− uv,

wt = d3∆w − ku w2

1 + w2
,

(2)

where u denotes bacterial cell density, v the aspartate concentration and w the succinate
concentration.

We choose Ω ⊆ R3 a bounded smooth domain and we refer here to the positive
smooth solutions of (2), under the smooth initial data

u(x, 0) = u0(x), v(x, 0) = v0(x), w(x, 0) = w0(x), x ∈ Ω,

and we associate to (2) the Neumann boundary conditions (n being the outward normal
to ∂Ω)

du

dn
= 0,

dv

dn
= 0,

dw

dn
= 0 on ∂Ω ×R+. (3)

We denote by

• 〈·, ·〉 the scalar product in L2(Ω),

• ‖ · ‖ the L2(Ω)-norm,
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• H1(Ω) the Sobolev space such that

ψ ∈ H1(Ω)→
{
ψ2 + (∇ψ)2 ∈ L(Ω),

dψ

dn
= 0 on ∂Ω

}
and recall that in H1(Ω) holds the inequality [8]

‖∇ψ‖2 > ᾱ‖ψ‖2 (4)

with ᾱ = minH1(Ω)(‖∇ψ‖2/‖ψ‖2), i.e. ᾱ is the lowest nonzero eigenvalue of
∆Ψ = −αΨ in H1(Ω).

Remark 1. In the sequel we will denote by I1 the set of solutions of (2) with initial data
(0, v0, w0) and by I2 the set of solutions with initial data (u0, v0, w0) with u0 6= const.

3 Equilibria and stability

In this section we analyze the equilibrium points of the system (2) and their stability. We
observe that, by inspection of (2), one deduces that there are only two types of relevant
equilibria given by

E0 = (0, 0, 0), E∗ =
(
0, V ∗,W ∗)

with V ∗ and W ∗ positive constants.
Let us consider the perturbation to the generic equilibrium E∗

u = U, v = V ∗ + V, w = W ∗ +W,

the equations governing the perturbation (U, V,W ) to the basic state E∗ are
Ut = a11U + d1∆U + F1,

Vt = a21U + a23W + ∆V + F2,

Wt = a31U + d3∆W + F3,

(5)

where 

a11 = ρδ, a21 = −V ∗, a23 = β, a31 = −k,

F1 = −α∇
[

U

[1 + (V + V ∗)]2
∇V

]
− ρU

[
δ

1 + (W +W ∗)2
+ U

]
,

F2 = βµ

[
U2W ∗

(µ+ U2)µ
− W

µ+U2

]
− UV, F3 =

kU

1 + (W +W ∗)2
.

(6)

It can be sketched that the stability of the equilibria depends on the fulfillment of the
initial conditions. We observe that if (u0, v0, w0) ∈ I1 the stability analysis can be easily
performed and simple stability is easily obtained. Of course, this is not the situation we
are interested in and hence our analysis will be focused on the case (u0, v0, w0) ∈ I2
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and study the (asymptotic) stability of the equilibrium E∗ with respect the perturbation
(U, V,W )T with U0 6= 0, i.e., in order to make the analysis consistent with the exper-
iments, we consider initially nonzero cell density, nonzero stimulant concentration and
zero concentration of chemoattractant. In fact v(x, 0) is set to zero because, initially,
bacteria have not secreted any chemoattractant [12].

In vectorial form, system (5) can be expressed as

Ut = LU + F in Ω ×R+,

with

U = (U, V,W )T, F = (F1, F2, F3)T, L =

a11 + d1∆ 0 0
a21 d2∆ a23

a31 0 d3∆

 ,

aij = const ∈ R, di = const > 0, i, j = 1, 2, 3.
Setting

bii = aii − diᾱ, i = 1, 2, 3, (7)

let us consider the system
dU

dt
= LU (8)

with

L =

b11 0 0
a21 b22 a23

a31 0 b33

 . (9)

To the matrix L we will apply the following Lemma.

Lemma 1. The Routh–Hurwitz stability conditions of the matrixγ11 0 0
γ21 γ22 γ23

γ31 γ32 γ33


with γij real entries, are

γ11 < 0, I = γ22 + γ33 < 0, A = γ22γ33 − γ23γ32 > 0. (10)

Proof. The proof is given in [18]. For the sake of completeness a sketch of the proof is
given in the Appendix.

Remark 2. Applying Lemma 1, to (9), it follows that the zero solution of (8) is asymp-
totically stable if and only if

b11 < 0, I = b22 + b33 < 0, A = b22b33 > 0,

and hence, in view of a22 = a33 = 0, if and only if

b11 < 0.
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Denoting now by µi ( to be chosen suitably) positive rescaling constants and setting

U = µ1U1, V = µ2U2, W = µ3U3,

bij =
µj
µi
aij , i 6= j, i, j = 1, 2, 3,

(5), in view of (7), become

dU1

dt
= b11U1 + d1(∆U1 + ᾱU1) +

1

µ1
F ∗

1 ,

dU2

dt
= b21U1 + b22U2 + b23U3 + (∆U2 + ᾱU2) +

1

µ2
F ∗

2 ,

dU3

dt
= b31U1 + b33U3 + d3(∆U3 + ᾱU3) +

1

µ3
F ∗

3

(11)

with
F ∗
i = Fi(µ1U1, µ2U2, µ3U3), i = 1, 2, 3.

To (11) we associate the Lyapunov functional introduced by Rionero [13]

W (t) =
1

2
‖U1‖2 + V

with

V =
1

2

[
A
(
‖U2‖2 + ‖U3‖2

)
+ ‖b22U3 − b32U2‖2 + ‖b23U3 − b33U2‖2

]
.

The temporal derivative of W along the solutions of (11) is given by

Ẇ = b11‖U1‖2 + IA
(
‖U2‖2 + ‖U3‖2

)
+ Φ1 + Φ2 + Φ3 (12)

with

Φ1 = (A1b21 −A3b31)〈U1, U2〉+ (A2b31 −A3b21)〈U1, U3〉,
Φ2 =

〈
U1, d1(∆U1 + ᾱU1)

〉
+ 〈A1U2 −A3U3,∆U2 + ᾱU2〉

+
〈
A2U3 −A3U2, d3(∆U3 + ᾱU3)

〉
,

Φ3 =
1

µ1
〈U1, F

∗
1 〉+

1

µ2
〈A1U2 −A3U3, F

∗
2 〉+

1

µ3
〈A2U3 −A3U2, F

∗
3 〉

and
A1 = A+ (b33)2, A2 = A+ (b22)2 + (b23)2, A3 = b23b33.

Lemma 2. Let
ρδ < d1ᾱ (13)

holds. Then
Φ1 6

1

2

[
|b11|‖U1‖2 + |IA|

(
‖U2‖2 + ‖U3‖2

)]
. (14)
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Proof. Choosing µ2 = µ3 = 1, we observe that (6) and (13) imply (10) so that Lemma 3.3
in [13] can be applied.2

Then, according to the procedure used in [13], Lemma 3.2, one obtains

Lemma 3. Let
(1 + d3)|A3| = 2

√
A1A2d3 (15)

holds. Then
Φ2 6 0. (16)

Proof. In view of the boundary conditions it turns out that

Φ2 = d1

(
−‖∇U1‖2 + ᾱ‖U1‖2

)
+A1

(
−‖∇U2‖2 + ᾱ‖U2‖2

)
+A2d3

(
−‖∇U3‖2 + ᾱ‖U3‖2

)
+ (1 + d3)A3〈∇U2,∇U3〉

− ᾱ(1 + d3)A3〈U2, U3〉.

By virtue of (15) it follows that

Φ2 = d1

(
−‖∇U1‖2 + ᾱ‖U1‖2

)
−
[∥∥∇(√A1U2 ±

√
d3A2U3

)∥∥2 − ᾱ
∥∥√A1U2 ±

√
d3A2U3

∥∥2]
and hence (4) implies (16).

On linearizing (11), (12) reduces to

Ẇ = b11‖U1‖2 + IA
(
‖U2‖2 + ‖U3‖2

)
+ Φ1 + Φ2

and the following theorem holds true.

Theorem 1. Let (13) and (15) hold. Then (0, V ∗,W ∗) is linearly asymptotically stable
with respect to L2(Ω)-norm.

Proof. In view of Lemma 2 and Lemma 3, it follows that

Ẇ 6 −1

2

[
|b11|‖U1‖2 + |IA|

(
‖U2‖2 + ‖U3‖2

)]
. (17)

2Setting
m = sup

(
|A1a21 −A3a31|, |A2a31 −A3a21|

)
,

it follows that

Φ1 6 mµ1
(〈
|U1|, |U2|+ |U3|

〉)
6 mµ1

(
‖U1‖

(
‖U2‖+ ‖U3‖

))
6
m2µ21
|IA|

‖U1‖2 +
1

2
|IA|

(
‖U2‖2 + ‖U3‖2

)
and hence

µ21 =
|b11IA|
2m2

=⇒ (14).

www.mii.lt/NA



Stability and absorbing set of parabolic chemotaxis model of Escherichia coli 217

Further V is equivalent to the L2-norm, i.e. exist two positive constants K1,K2 such that

K1

(
‖U2‖2 + ‖U3‖2

)
6 V 6 K2

(
‖U2‖2 + ‖U3‖2

)
(18)

with
K1 =

1

2
A, K2 =

1

2
A+ (b22)2 + (b23)2 + (b33)2.

By virtue of (18), from (17) it turns out that

Ẇ 6 −1

2
|b11|‖U1‖2 −

|IA|
K2

V,

i.e.
Ẇ 6 −δW

with

δ = inf

(
|b11|,

|IA|
K2

)
.

Therefore it follows that
W 6W (0)e−δt

and the linear asymptotic stability is proved.

4 Nonlinear stability

Setting
b̄ii = bii + ᾱε, d̄i = di − ε, ε = const > 0, i = 1, 2, 3, (19)

it follows that (6) imply

Ā = b̄22b̄33 − a23a32 > 0, Ī = b̄22 + b̄33 < 0.

By virtue of (19), from (11) one obtains

dU1

dt
= b̄11U1 +G1 +

1

µ1
F ∗

1 ,

dU2

dt
= b21U1 + b̄22U2 + b23U3 +G2 +

1

µ2
F ∗

2 ,

dU3

dt
= b31U1 + b̄33U3 +G3 +

1

µ3
F ∗

3

(20)

with
Gi = d̄i(∆Ui + ᾱUi) + ε∆Ui, i = 1, 2, 3.

Let us define
W̄ (t) =

1

2
‖U1‖2 + V̄
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with

V̄ =
1

2

[
Ā
(
‖U2‖2 + ‖U3‖2

)
+ ‖b̄22U3 − b32U2‖2 + ‖b23U3 − b̄33U2‖2

]
.

The time derivative of W̄ is given by

dW̄

dt
= b̄11‖U1‖2 + ĪĀ

(
‖U2‖2 + ‖U3‖2

)
+ Φ̄1 + Φ̄2 + Φ̄3

with

Φ̄1 = (Ā1b21 − Ā3b31)〈U1, U2〉+ (Ā2b31 − Ā3b21)〈U1, U3〉,
Φ̄2 = 〈U1, G1〉+ 〈Ā1U2 − Ā3U3, G2〉+ 〈Ā2U3 − Ā3U2, G3〉,

Φ̄3 =
1

µ1

〈
U1, F

∗
1

〉
+

1

µ2

〈
Ā1U2 − Ā3U3, F

∗
2

〉
+

1

µ3

〈
Ā2U3 − Ā3U2, F

∗
3

〉
with

Ā1 = Ā+ (b̄33)2, Ā2 = Ā+ (b̄22)2 + (b23)2, Ā3 = b23b̄33.

Let b̄11 < 0, from Lemma 2, Φ̄1 is given by

Φ̄1 6
1

2

[
|b̄11|‖U1‖2 + |ĪĀ|

(
‖U2‖2 + ‖U3‖2

)]
. (21)

Moreover

Φ̄2 =
〈
U1, d̄1(∆U1 + ᾱU1)

〉
+
〈
Ā1U2 − Ā3U3, d̄2(∆U2 + ᾱU2)

〉
+
〈
Ā2U3 − Ā3U2, d̄3(∆U3 + ᾱU3)

〉
+ 〈U1, ε∆U1〉

+ 〈Ā1U2 − Ā3U3, ε∆U2〉+ 〈Ā2U3 − Ā3U2, ε∆U3〉

and following the procedure used in Lemma 3 with

(d̄2 + d̄3)|Ā3| = 2
√
Ā1Ā2d̄2d̄3 (22)

one obtains

Φ̄2 6 −ε‖∇U1‖2 − εĀ1‖∇U2‖2 − εĀ2‖∇U3‖2 + 2εĀ3〈∇U2,∇U3〉.

In view of (22) it follows that

Φ̄2 6 −ε
(
‖∇U1‖2 +

(
√
d̄2 −

√
d3)2

d̄2 + d̄3
Ā1‖∇U2‖2 +

(
√
d̄2 −

√
d3)2

d̄2 + d̄3
Ā2‖∇U3‖2

)
6 −εδ̄

(
‖∇U1‖2 + ‖∇U2‖2 + ‖∇U3‖2

)
(23)

with

δ̄ = min

{
1,

(
√
d̄2 −

√
d3)2

d̄2 + d̄3
Ā1,

(
√
d̄2 −

√
d3)2

d̄2 + d̄3
Ā2

}
.
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In view of (21) and (23) one has

dW̄

dt
6 −1

2

[
|b̄11|‖U1‖2 + |ĪĀ|

(
‖U2‖2 + ‖U3‖2

)]
− εδ̄

(
‖∇U1‖2 + ‖∇U2‖2 + ‖∇U3‖2

)
+ Φ̄3. (24)

It remains to estimate the term Φ̄3 appearing in (24).
Of course, from the biological point of view, we can confine ourselves to the positive

solutions of (20) and hence to perturbations such that

µ3U3 > −W ∗. (25)

Since (
U3 +W ∗)2 > 0→ U2

3 > −W ∗ − 2U3W
∗

by virtue of (25) it easily follows that

1 +
(
U3 +W ∗)2 > 1. (26)

Choosing µ2 = µ3 = 1, from (6) and (26), it follows that〈
U1, F

∗
1

〉
6 C1

〈
1, U2

1

〉
+ C2

〈
1, |U1|3

〉
, (27)〈

Ā1U2 − Ā3U3, F
∗
2

〉
6 C3

〈
U2

1 , |U2|
〉

+ C4

〈
|U2|, |U3|

〉
+ C5

〈
|U1|, |U2|2

〉
+ C6

〈
U2

1 , |U3|
〉

+ C7

〈
U2

3 , 1
〉

+ C8

〈
U2

3 , |U2|
〉
, (28)〈

Ā2U3 − Ā3U2, F
∗
3

〉
6 C9

〈
|U1|, |U3|

〉
+ C10

〈
|U1|, |U2|

〉
(29)

with

C1 = ρδ, C2 = ρµ1, C3 =
β|Ā1|W ∗

µ
µ2

1 +
µ1

2
|Ā3|,

C4 = β|Ā1|, C5 = µ1|Ā1|, C6 =
β|Ā3|µ2

1W
∗

µ
,

C7 = β|Ā3|, C8 =
µ

2
|Ā3|, C9 = kµ1Ā2, C10 = kµ1|Ā3|.

By virtue of (27)–(29) one obtains

|Φ̄3| 6
(
C1 +

C9

2
+
C10

2

)
‖U1‖2 +

(
C4

2
+
C10

2

)
‖U2‖2

+

(
C4

2
+ C7 +

C9

2

)
‖U3‖2 + C2

〈
1, |U1|3

〉
+ C3

〈
U2

1 , |U2|
〉

+ C5

〈
|U1|, U2

2

〉
+ C6

〈
U2

1 , |U3|
〉

+ C8

〈
U2

3 , |U2|
〉
.
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The Hölder inequality implies

|Φ̄3| 6
(
C1 +

C9

2
+
C10

2

)
‖U1‖2 +

(
C4

2
+
C10

2

)
‖U2‖2

+

(
C4

2
+ C7 +

C9

2

)
‖U3‖2 +

(
‖U1‖2 + ‖U2‖2 + ‖U3‖2

)1/2
×
[
(C2 + C3 + C6)‖U1‖24 + (C5 + 2)‖U2‖24 + (C8 + 2)‖U3‖24

]
and in view of the embedding inequality

‖f‖24 6 K
(
‖∇f‖2 + ‖f‖2

)
, K = K(Ω) = const > 0,

it turns out that

|Φ̄3| 6 H1‖U1‖2 +H2

(
‖U2‖2 + ‖U3‖2

)
+KM

(
‖∇U1‖2 + ‖∇U2‖2 + ‖∇U3‖2 + ‖U1‖2 + ‖U2‖2 + ‖U3‖2

)
×
(
‖U1‖2 + ‖U2‖2 + ‖U3‖2

)1/2
(30)

with

H1 = C1 +
C9

2
+
C10

2
,

H2 = max

{
C4

2
+
C10

2
,
C4

2
+ C7 +

C9

2

}
,

M = max{C2 + C3 + C6, C5 + 2, C8 + 2}.

Since Ā > 0, an inequality like (18) holds also for W̄ , with K1,K2 replaced by two
positive constant K̄1, K̄2. Hence, on taking into account (30), (24) implies

dW̄

dt
6 −

[(
1

2
|b̄11| −H1

)
‖U1‖2 +

(
|ĪĀ|

2
−H2

)(
‖U2‖2 + ‖U3‖2

)]
−
[
εδ̄ −KM

(
‖U1‖2 +

1

K̄2
V

)1/2](
‖∇U1‖2 + ‖∇U2‖2 + ‖∇U3‖2

)
+KM

(
‖U1‖2 +

1

K̄2
V

)3/2
,

i.e.

dW̄

dt
6 −

(
δ1 − δ2W̄ 1/2

)
W̄ −

(
δ3 − δ4W̄ 1/2

)(
‖∇U1‖2 + ‖∇U2‖2 + ‖∇U3‖2

)
with

δ1 = inf

{
1

2
|b̄11| −H1,

1

2K̄2

(
|ĪĀ| −H2

)}
,

δ2 = KM

(
1 +

1

K̄2

)3/2
, δ3 = εδ̄, δ4 = KM

(
1 +

1

K̄2

)1/2
.
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By recursive argument

W̄0 < inf

[(
δ1
δ2

)2

,

(
δ3
δ4

)2]
implies

W̄ 6 W̄0e−(δ1−δ2W̄ 1/2
0 )t.

We can summarize the results of this section in the following theorem.

Theorem 2. Let b̄11 < 0, (22) and

1

2
|b̄11| −H1 > 0, |ĪĀ| −H2 > 0

hold. Then the zero solution of (20) is asymptotically stable with respect to the
L2(Ω)-norm.

5 Absorbing set

Let us consider the energy

E =
1

2

(
‖u‖2 + ‖v‖2 + ‖w‖2

)
as a measure – in the phase space – of the distance from the origin and denote by |Ω| the
measure of Ω. Along the solutions of (2), belonging to I2, one has

dE

dt
= d1

∫
Ω

u∆udΩ +

∫
Ω

v∆v dΩ + d3

∫
Ω

w∆w dΩ

− α
∫
Ω

∇
[

u

(1 + v)2
∇v
]
udΩ +

∫
Ω

ρu2

(
δw2

1 + w2
− u
)

dΩ

+ β

∫
Ω

wv
u2

µ+ u2
dΩ −

∫
Ω

uv2 dΩ − k
∫
Ω

uw
w2

1 + w2
dΩ.

By virtue of the boundary conditions (3) and (4) it follows that

dE

dt
6 −d1ᾱ‖u‖2 − ᾱ‖v‖2 − d3ᾱ‖w‖2 − α

∫
Ω

∇
[

u

(1 + v)2
∇v
]
udΩ

+ ρδ

∫
Ω

u2

[
1− 1

1 + w2

]
dΩ − ρ

∫
Ω

u3 dΩ + β

∫
Ω

wv dΩ

− βµ
∫
Ω

wv

µ+ u2
dΩ −

∫
Ω

uv2 dΩ − k
∫
Ω

uw
w2

1 + w2
dΩ.
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Moreover, in view of (3), one obtains

− α
∫
Ω

∇
[

u

(1 + v)2
∇v
]
udΩ

= α

∫
Ω

∇
[
u∇(1 + v)−1

]
udΩ = −α

∫
Ω

u∇u∇(1 + v)−1 dΩ

= α

∫
Ω

∇(u∇u)(1 + v)−1 dΩ

= α

∫
Ω

(∇u)2(1 + v)−1 dΩ + α

∫
Ω

u∆u(1 + v)−1 dΩ. (31)

Considering the biologically meaningful concentration (u > 0, v > 0, w > 0) one has
that 1 + v > 1 and in view of (31) one obtains

−α
∫
Ω

∇
[

u

(1 + v)2
∇v
]
udΩ 6 α‖∇u‖2 + α

∫
Ω

|u∆u|dΩ 6 0.

Since

ρδ‖u‖2 − ρ
〈
1, u3

〉
6

ρδ

2ε1
〈1, u〉+

(
ρδε1

2
− ρ
)〈

1, u3
〉

with ε1 positive constant, choosing

ε1 =
2

δ

it turns out that

dE

dt
6 −d1ᾱ‖u‖2 − ᾱ‖v‖2 − d3ᾱ‖w‖2 +

ρδ2

4
〈1, u〉+ β

∫
Ω

vw dΩ.

On the other hand

β〈v, w〉 6 β

2ε2
‖v‖2 +

βε2
2
‖w‖2, ρδ2

4
〈1, u〉 6 ρ2δ4

32ε3
|Ω|+ ε3

2
‖u‖2,

therefore for
ε3 = d3ᾱ

one obtains

dE

dt
6 −d1ᾱ

2
‖u‖2 −

(
ᾱ− β

2ε2

)
‖v‖2 −

(
d3ᾱ−

βε2
2

)
‖w‖2 +

ρ2δ4

32d1ᾱ
|Ω|,

i.e.
dE

dt
6 −C1

(
‖u‖2 + ‖v‖2 + ‖w‖2

)
+ C2
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with

C1 = inf

{
d1ᾱ

2
,

(
ᾱ− β

2ε2

)
,

(
d3ᾱ−

βε2
2

)}
, C2 =

ρ2δ4

32d1ᾱ
|Ω|.

Now, assuming

ᾱ2d3 >
β2

4
(32)

and choosing ε2 in such a way that

β

2ᾱ
< ε2 <

2d3ᾱ

β
,

it follows that
d

dt
E(t) + 2C1E(t) 6 C2 (33)

with C1, C2 positive constants independent of the initial data (u0(x), v0(x), w0(x)).
Hence the following theorem holds

Theorem 3. Let (32) holds. Then it turns out that for any δ̄ > 0, the ball S(δ̄) centered
at the origin (0, 0) defined by

S(δ̄) =

{
(u, v, w): E 6 (1 + δ̄)

C2

2C1

}
is an absorbing set.

Proof. First of all we observe that S(δ̄) is invariant, in fact from

E(t̄) = (1 + δ̄)
C2

2C1
,

by virtue of (33) one obtains(
dE

dt

)
t=t̄

< C2 − 2C1(1 + δ̄)
C2

2C1
< −δ̄C2 < 0.

Moreover from (33) it turns out that

E(t) 6 E(0)e−2C1t +
C2

2C1
.

Thus, denoting by Γ a bounded set of the phase-space, there exists a positive constant M
such that

sup
Γ
E(t) 6M.

From
Me−2C1t +

C2

2C1
= (1 + δ̄)

C2

2C1

we obtain that, for any t > t∗ with

t∗ =
1

2C1
log

2MC1

δ̄C2
,

any trajectory starting initially in Γ , belongs to S(δ̄).
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6 Global nonlinear asymptotic stability

If one is able to “control” the functional Φ3 in (12), then conditions for the global stability
may be obtained. This is the main goal of this section.

By virtue of the ultimately boundedness L2-norm of the solutions of (2), it follows
that we can assume that exists a positive constant H such that

|U1|, |U2|, |U3| < H a.e. in Ω ×R+.

In this way, by virtue of (27)–(29), we get the estimate

|Φ3| 6M1‖U1‖2 +M2

(
‖U2‖2 + ‖U3‖2

)
with

M1 = C̃1 + (C̃2 + C̃3 + C̃6)H +
C̃9

2
+
C̃10

2
,

M2 = max

{
C̃4

2
+ C̃5H +

C̃10

2
,
C̃4

2
+ C̃7 + C̃8H +

C̃9

2

}
and

C̃1 = ρδ, C̃2 = ρµ1, C̃3 =
β|A1|W ∗

µ
µ2

1 +
µ1

2
|A3|,

C̃4 = β|A1|, C̃5 = µ1|A1|, C̃6 =
β|A3|µ2

1W
∗

µ
,

C̃7 = β|A3|, C̃8 =
µ

2
|A3|, C̃9 = kµ1A2, C̃10 = kµ1|A3|.

Hence the following theorem holds

Theorem 4. Let (13), (15), (32) and

1

2
|b11| −M1 > 0, |IA| −M2 > 0 (34)

hold. Then the zero solution of (11) is globally asymptotically stable with respect to the
L2-norm.

Proof. On taking into account (14), (16) and (18), (12) implies

Ẇ 6 −1

2
|b11|‖U1‖2 −

1

2
|IA|

(
‖U2‖2 + ‖U3‖2

)
+M1‖U1‖2 +M2

(
‖U2‖2 + ‖U3‖2

)
,

i.e.
Ẇ 6 −χ1W

with

χ1 = inf

{
1

2
|b11| −M1,

1

2K2

(
|IA| − 2M2

)}
and hence

W (t) 6W (0)e−χ1t.
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Appendix. Proof of Lemma 1

Since the invariants I1, I2, I3 of γ11 0 0
γ21 γ22 γ23

γ31 γ32 γ33

 (35)

and I1I2 − I3 are given by

I1 = γ11 + I, I2 = γ11I +A, I3 = γ11A,

I1I2 − I3 = γ11I

(
I +

γ2
11 +A

γ11

)
,

(36)

it immediately follows that (10) imply the Routh–Hurwitz stability condition for (35)

I1 < 0, I3 < 0, I1I2 − I3 < 0. (37)

Vice versa, let (37) hold. Since one easily verifies that γ11 is a real root of (35), by virtue
of (37), it follows that γ11 < 0.

Then (36)3 and (37)2 imply A > 0. It remains to obtain I < 0. But (37) implies

(−γ11)I

(
I +

γ2
11 +A

γ11

)
= (−γ11)I2 −

(
γ2

11 +A
)
I > 0,

and the roots of
(−γ11)I2 −

(
γ2

11 +A
)
I = 0

are 0 and (γ2
11 +A)/− γ11 > 0, hence I /∈ [0,−(γ2

11 +A)/γ11].
Since −(γ2

11 + A)/γ11 > −γ11, (37)1 does not allow, in view of (36)1, I > −γ11,
hence I < 0.
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