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Abstract. A phenomenological model for the suspension of the aerotactic swimming micro-
organisms placed in a chamber with its upper surface open to air is presented. The model was
constructed to embody some complexity of the aerotaxis phenomenon, especially, changes in
the average bacteria drift velocity under changing environmental conditions. It was assumed that
effective forces applied to the cell (gravitational, drag, and thrust) should be essential for the
overall system dynamics; and that bacterial propulsion force, but not their swimming velocity, is
proportional to the gradient of the oxygen concentration. Mathematically, the model consists of
three coupled equations for the oxygen dynamics; for the cell conservation; and for the balance of
forces acting on bacteria. An analytical steady-state solution is given for the shallow and deep layers
and numerical results are given for the steady-state and initial value problems which are compared
with corresponding ones to the Keller–Segel model.

Keywords: bioconvection, thermo-bioconvection, swimming microorganisms, oxytactic bacteria.

1 Introduction

The term aerotaxis (or oxytaxis) refers to the situation where bacterium moves towards
or away from air or oxygen. Aerotaxis can be regarded as a kind of the more general
process, chemotaxis, which is a motion of bacteria towards a favorable chemical field. The
basic mathematical model in chemotaxis was introduced by Keller and Segel (KS) [1, 2].
In its original form this model consists of four coupled reaction–advection–diffusion
equations. Under the quasi-steady-state assumptions this model can be reduced to two
coupled parabolic equations for the concentration of microorganisms and the attracting
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species (attractants). Mathematical modeling of chemotaxis on the basis of the KS model
has developed into a large and diverse discipline [3, 4]. KS type equations were used to
describe the oxytactic motion of bacteria in a water column as well [5–7]. Hillesdon,
Pedley and Kessler (HPK) [6] and Hillesdon and Pedley (HP) [7] considered dynamics
of an oxytactic bacteria Bacillus subtilis suspension placed in a chamber with its upper
surface open to air. In the HPK model the phenomena of gravitational sedimentation,
bulk fluid motion, and diffusion of inactive cells were assumed to be negligible. The
assumption that the sedimentation rate is much smaller than the typical cell swimming
speed is inaccurate in the case of inactive cells [7]. The typical form of the KS model for
the oxytactic bacteria is [5–7]:

∂C

∂t
= div(κ1∇C)− κ2(C)B,

∂B

∂t
= div

(
−κ3(C)B∇C + κ4(C)∇B

)
.

(1)

Here C and B are the oxygen and cells concentrations, κ1 and κ4(C) are the diffusivity
of oxygen and bacterial cells, κ2(C) is the oxygen consumption rate by cells, v =
κ3(C)∇C is the oxytactic bacteria drift velocity, κ3(C) is the oxytactic sensitivity, ∇
and div are the gradient and divergence operators. In the steady-state, wide chamber, and
constant κ1, . . . , κ4 case, HPK gave an analytic solution of the model for both shallow
and deep chambers. In the deep chamber case, the authors neglected diffusion of inactive
cells and therefore one constant was not determined. This constant was obtained by
numerically solving the initial value problem. In the time-dependent one-dimensional
case with constant κ1 and depending on C coefficients κ2, κ3, and κ4, HPK solved
model (1) numerically using the method of lines. HP examined the stability of the steady-
state solution.

To describe the convective chemotaxis Dombrowski et al. [8], Tuval et al. [9] general-
ized the KS model by including the bulk fluid motion. This model describes the collective
behavior (bioconvection) of a suspension of oxytactic bacteria in an incompressible fluid
under assumptions [10] that the contribution of bacteria to the bacteria–fluid suspension
is sufficiently small and that more detailed cell–cell interactions (e.g., of hydrodynamic
type) are neglected. In [10], this model was studied numerically in detail. The solvability
of the model was examined by Lorz [11], Duan et al. [12], and Di Francesco et al. [13].
Becker et al. [14] and Kuznetsov [15, 16] generalized the KS model and studied the
bioconvection of oxytactic cells in a fluid saturated porous medium. Kuznetsov also in-
vestigated models for the thermo-bioconvection of oxytactic cells in a fluid layer [17–19]
and in a fluid saturated porous layer [15, 16] and carried out the stability analysis of
their steady-state solutions. In all models of bioconvection and thermo-bioconvection,
the oxytactic bacteria drift velocity, as in the KS model, is proportional to the gradient
of oxygen concentration while the gravitational force is approximated by the buoyancy
term. Papers of Alloui et al. [20,21] are devoted to numerical study of the development of
gravitactic bioconvection and thermo-bioconvection of swimming microorganisms which
are little denser than water and move randomly, but on the average, upwardly against
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gravity. Alloui et al. [22] also carried out the linear stability analysis of the thermo-
bioconvection of swimming against gravity microorganisms.

We note three problems that arise in mathematical modeling of bacterial aerotaxis.
Firstly, it should be noted, that an important aspect of KS chemotaxis models is the
expected onset of chemotactic collapse [3, 4, 23]. This term refers to the fact that, under
suitable circumstances, the whole population should concentrate in a single point in finite
time. However, it seems likely, that real bacterium is searching for the optimal place to be.
Therefore, the overcrowding of bacteria in small space domains is unrealistic due to lack
of nutrition for population in this domain. A number of modifications have been made
to the minimal KS model of auto-aggregation that allows preventing such unrealistic
singularities [4]. In general, this means, that in real systems there are certain dispersal
mechanisms, which can be regarded as a negative chemotaxis and/or the suppression of
the positive chemotaxis. The corresponding dispersal mechanisms were not taken into
account in the KS type models of aerotaxis. Secondly, in real systems, the response
of microorganisms to oxygen is much more complicated than the simplest KS model
suggests [24–27]. It is known, that dependently on the type of bacteria and local environ-
mental conditions, oxygen can act as an attractant or as a repellent ( [24,25] and references
therein). The positive aerotaxis (oxygen is attractant) results in aggregation of cells at the
oxygen-exposed surfaces and the negative aerotaxis (oxygen is repellent) imply dispersal
of the cell. Thus, again, a certain mechanism of the suppression of the positive aerotaxis
should be included to the overall dynamic system. Thirdly, a common feature of many
chemotaxis models based on the approximation of the cells drift velocity by the gradient
of the chemoattractant or chemorepellent is to incorporate some complexity of the chemo-
taxis into the equations through a chemotactic sensitivity function (see system (1)). But
different microorganisms detect spatial gradients of the chemical signal through distinct
mechanisms. Certain cells [28], such as Dystyostelium discoideum, fibroblasts and leuko-
cytes, can detect and respond to a small gradient in the chemical signal across the length
of their body using a process of internal amplification and polarisation. Smaller cells [29],
such as E. coli, detect a gradient by sampling the concentration at different time points
and modifying their movement accordingly. The observation that the gradient sensed
by bacteria is temporal means that bacteria possess a memory, which compares past
information with present information to make a decision. This memory is long enough
so that the bacteria can make an accurate comparison between two points more distal than
the bacterial body length. In both cases, the signal detected by the cell is intrinsically
non-local and it may therefore be appropriate to consider movement based on non-local
gradient by the integration of the signal by the cell over some region. For cells which
detect a gradient in the chemical signal across the length of their body, Othmer and Hillen
[30] approximated their drift velocity by the formula χCn/(ωρ)

∫
Sn−1 σB(t, x+ ρσ) dσ

where ω = |Sn−1|, Sn−1 denotes the (n − 1)-dimensional unit sphere in Rn, and
ρ is the radius of a sphere which enclose the cell. Analytical and numerical study of
this model is given in [31]. Studies of smaller cells revealed (see [28] and literature
therein) that, like many other sensory systems, the chemotactic response involves two
processes: excitation and adaptation. When bacteria are stimulated, their swimming mode
are changed instantaneously. This initial process, termed excitation, is very fast. Later on,
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bacteria resume their prestimulus behaviour, even though the stimulus is still present.
This process, termed adaptation, is relatively slow (in the range of seconds or minutes).
Adaptation thus enable bacteria to adjust to changes in the stimulus intensity and respond
to new stimuli. Models of KS type are based on the quasi-steady-state approximation of
the cells drift velocity and therefore cannot describe correctly the adaptation period.

The aim of this paper is study of the dynamics of the dilute suspensions of aerotac-
tic bacteria by the modified KS model. To describe some complexity of the aerotaxis
phenomenon (especially, the bacteria adaptation period under changes in environmental
conditions), we replace the quasi-steady-state equation v = κ3(C)∇C by the momentum
equation for cells drift velocity. In the modified model it is assumed that 1) gravitational,
drag, and thrust forces applied to the cell are not negligible and 2) that bacterial thrust
force, but not its average drift velocity, is proportional to the gradient of the oxygen
concentration. The model consists of three coupled equations: 1) the equations for oxygen
dynamics; 2) cell conservation equation; and 3) momentum equation for the cells drift ve-
locity. This original model of oxytaxis is termed as FB (Feedback/Force balance) model.
In the wide chamber case, we give an analytic solution of the model for both shallow
and deep chambers and discuss the numerical results of the initial value and steady-
state problems. We also solved the KS model and using numerical results demonstrate
difference between the FB and KS models.

The paper is organized as follows. In the auxiliary Section 2, we introduce the KS
model and give a detail derivation of its steady-state solution found by HPK. In Section 3,
we present the FB model and demonstrate its steady-state solution. In Section 4, we com-
pare numerical results for the KS and FB models. Some remarks in Section 5 conclude
the paper.

2 The one-dimensional Keller–Segel (KS) model

In this auxiliary section, we introduce the KS model and give a detail derivation of its
steady-state solution which was found by HPK [6]. Let x be the vertical coordinate. In
the one-dimensional case, Eqs. (1) can be written in the form

∂C

∂t
=

∂

∂x

(
κ1
∂C

∂x

)
− κ2(C)B, x ∈ (0, h),

∂B

∂t
=

∂

∂x

(
−κ3(C)B

∂C

∂x
+ κ4(C)

∂B

∂x

)
, x ∈ (0, h),

(2)



C(0, x) = C0, B(0, x) = B0, C(t, h) = C0,

∂C

∂x

∣∣∣∣
x=0

=
∂B

∂x

∣∣∣∣
x=0

= 0,(
κ3(C)B

∂C

∂x
− κ4(C)

∂B

∂x

)∣∣∣∣
x=h

= 0.

(3)
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Here x = 0 and x = h correspond to the bottom and surface of the chamber, the
constant C0 is the initial and atmosphere oxygen concentration, B0 is the initial cells
concentration. The total number of cells is equal to the hB0.

Now we introduce the dimensionless variables. Set Θ = (C − Cmin)/(C0 − Cmin),
where Cmin is the minimal value of the oxygen concentration necessary for cells to
be active. Let κ2(C) = κ20w2(Θ), κ3(C) = κ30w3(Θ), κ4(C) = κ40w4(Θ), with
constants κ20, κ30, and κ40. Assuming that κ1 is also constant HPK considered the case
where w2 = w3, w4 = w2

2 , with w2 the Heaviside step function. Set x = hx̄, B = B0B̄,
t = (h2/κ40)t̄. Omitting the bar, we rewrite (2), (3) in the dimensionless form

∂Θ

∂t
= δ

(
∂2Θ

∂x2
− β2w2(Θ)B

)
, x ∈ (0, 1),

∂B

∂t
=

∂

∂x

(
w4(Θ)

∂B

∂x
− αw3(Θ)B

∂Θ

∂x

)
, x ∈ (0, 1),

∂Θ

∂x

∣∣∣∣
x=0

=
∂B

∂x

∣∣∣∣
x=0

= 0,(
w4(Θ)

∂B

∂x
− αw3(Θ)B

∂Θ

∂x

)∣∣∣∣
x=1

= 0,

Θ(t, 1) = 1,

B(0, x) = Θ(0, x) = 1,

(4)

where δ = κ1/κ40, β2 = B0κ20h
2/(κ1(C0 − Cmin)), α = κ30(C0 − Cmin)/κ40.

Note that α is swimming upwards parameter. Integrating over (0, 1) Eq. (4)2 and using
conditions (4)3,4, we get that

∫ 1

0
B(t, x) dx = 1 is preserved. In the steady-state case,

system (4) reads 

Θ′′ = β2w2(Θ)B,(
w4(Θ)B′ − αw3(Θ)BΘ′

)′
= 0,

Θ(1) = 1,

w4(1)B′(1)− αw3(1)B(1)Θ′(1) = 0,

Θ′(0) = B′(0) = 0.

(5)

In addition, we formulate the condition
1∫

0

B(x) dx = 1. (6)

Now we derive the HPK steady-state solution of system (5) and (6).

2.1 The shallow layer case (Θ > 0 ∀x ∈ (0,1])

Integrating (5)2 and using condition (5)4 we get the equation

w4(Θ)B′ = αw3(Θ)BΘ′. (7)
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In this section, we consider the case w2 = w3 = w4 = 1. From (5)1 and (7) we get
the equationB′ = αβ−2θ′θ′′ which has the solutionB = (α/2)β−2(θ′)2+B(0). Hence,

Θ′ = β

√
2

α

√
B −B(0). (8)

From (7) and (8) we derive the equation

B′ = αβB

√
2

α

(
B −B(0)

)
which has the solution

B = B(0) cos−2(ξx), ξ = β

√
αB(0)

2
∈
(

0,
π

2

)
. (9)

Then combining (8) and (9) we get

Θ′ =
2

α
ξ tan(ξx), Θ(1) = 1.

Hence

Θ = 1− 2

α
ln

cos(ξx)

cos ξ
. (10)

Since Θ must be nonnegative the condition cos(ξx)/ cos ξ 6 eα/2 has to be satisfied for
all x ∈ [0, 1]. Hence cos ξ > e−α/2 or cos−2 ξ 6 eα and 0 6 ξ 6 arccos e−α/2. From
condition (6) and Eq. (9) we get the equation

q

ξ
= tan ξ, (11)

where q = αβ2/2. Eq. (11) has a unique solution ξ = ξ(q) ∈ (0, arccos e−α/2) growing
together with q since dξ/dq > 0. Then, from Eqs. (9)2 and (11) it follows that B(0) =
ξ2(q)/q and cos−2 ξ(q) = 1 + tan2 ξ(q) = 1 + q2/ξ2(q) 6 eα. Thus arccos e−α/2 >
ξ(q) > q/

√
eα − 1 = αβ2/(2

√
eα − 1) and, hence,

β2 6 β2
∗ =

2

α

√
eα − 1 arccos e−α/2. (12)

Thus θ(0) > 0 if 0 < β < β∗, and θ(0) = 0 if β = β∗. Values of β that satisfy the
inequality β 6 β∗ correspond to a shallow chamber. All others correspond to a deep
chamber. Note that ∂Θ/∂q = (2/α)(− tan ξ + x tanxξ) dξ/dq < 0 ∀x ∈ (0, 1).

2.2 The deep layer case

In this case β > β∗ and positiveΘ determined by Eq. (10) does not exist for all x ∈ [0, 1].
Θ is positive in a layer (x∗, 1],Θ(x∗) = 0, where x∗ > 0 is unknown a priori. There is not
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enough oxygen available in the layer [0, x∗] and cells are inactive. Therefore w2(Θ) = 0
and we have to consider the task Θ′′ = 0, Θ′(0) = Θ(x∗) = 0. Hence, Θ = 0 for
all x ∈ [0, x∗]. Independently of w3 and w4 from (7) it follows that B(x) = B(x∗)
∀x ∈ [0, x∗], where B(x∗) is also unknown a priori.

HPK neglected diffusion of inactive cells and therefore B(x∗) was not determined by
the conditions of the steady-state case. HPK determined it by solving the initial value
problem. Differently from HPK, we postulate the continuity of B and B′ at x∗. We also
use the continuity condition for Θ and Θ′ at x∗. In (x∗, 1] we have to solve Eqs. (5)1,2,3,4
and (6). Let w2 = w3 = w4 = 1. By the argument used for the shallow chamber and by
the continuity conditions at x∗ we get

B = B(x∗) cos−2
(
ξ̃(x− x∗)

)
, ξ̃ = β

√
αB(x∗)

2
,

Θ = 1− 2

α
ln

cos(ξ̃(x− x∗))
cos(ξ̃(1− x∗))

> 0
(13)

for x ∈ (x∗, 1] and (1− x∗)ξ̃ ∈ (0, π/2). Due to the condition Θ(x∗) = 0 it follows that
−α/2 = ln cos(ξ̃(1− x∗)). Hence

tan
(
ξ̃(1− x∗)

)
=
√

eα − 1. (14)

At last, from condition (6) we get

1 = B(x∗)x∗ +

1∫
x∗

B(x) dx = B(x∗)

(
x∗ +

1

ξ̃ tan(ξ̃(1− x∗))

)
. (15)

Combining the last two equations and using the definition of ξ̃ we get the equation

1 =
2ξ̃2

αβ2

(
x∗ +

√
eα − 1

ξ̃

)
which has the solution

ξ̃ =

√
eα − 1 + 2x∗αβ2 −

√
eα − 1

2x∗
. (16)

Now from (14) it follows that (1− x∗)ξ̃ = η(α) := arccos e−α/2. Hence,

1− x∗
2x∗

(√
eα − 1 + 2x∗αβ2 −

√
eα − 1

)
= η(α).

This equation has the solution

x∗ = 1− η

√
(η −

√
eα − 1 )2 + 2αβ2 − (η −

√
eα − 1 )

αβ2
∈ (0, 1) (17)
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such that dx∗/dβ > 0. Combining (16) and (17) we derive an equation for ξ̃ and then
from (15) get an equation for B(x∗):

ξ̃ =
αβ2√

(η −
√

eα − 1 )2 + 2αβ2 − (η −
√

eα − 1 )
> 0,

B(x∗) =
2αβ2

[
√

(η −
√

eα − 1 )2 + 2αβ2 − (η −
√

eα − 1 )]2
.

(18)

We see that the steady-state solution does not depend on the positive diffusivity of inactive
cells.

In Section 4, we give the numerical solution of the initial value problem (4) deter-
mined by using the finite-difference scheme.

3 The feedback/force balance (FB) model

Keller and Segel neglected the bulk fluid velocity and approximated the average ve-
locity of swimming upwards oxytactic bacteria by the quasi steady-state formula v =
κ3(C)∇C. We also neglect the bulk fluid motion but, to describe some complexity of
the aerotaxis phenomenon (especially, the bacteria adaptation period under changes in
environmental conditions), we use the momentum equation for cells which includes the
gravitational sedimentation of cells, swimming upwardly strength (force which arises
from chemotaxis and enables cells to swim), and resistance force to movement of cells
through the fluid. We postulate that swimming upwards strength of cells, but not their av-
erage velocity, is parallel and proportional to ∇C. For simplicity, we neglect the bacteria
to bacteria communication and convective acceleration, (v ·∇)v, terms in the momentum
equation for cells. In the one-dimensional case, the model consists of the equations

∂C

∂t
=

∂

∂x

(
κ1
∂C

∂x

)
− κ2(C)B, x ∈ (0, h),

∂B

∂t
=

∂

∂x

(
−Bv + κ4(C)

∂B

∂x

)
, x ∈ (0, h),

B
∂v

∂t
= −Bg̃ − κ5(C)v + κ̃3(C)

∂C

∂x
, x ∈ (0, h),

(19)

subject to the conditions

C(0, x) = C0, B(0, x) = B0, v(0, x) = v0,

C(t, h) = C0,
∂C

∂x

∣∣∣∣
x=0

= 0,(
Bv − κ4(C)

∂B

∂x

)∣∣∣∣
x=0;h

= 0.

(20)

Here κ1 = const, g̃ = g(1 − ρw/ρB) where g is the acceleration due to the gravity, ρw
and ρB are the water (fluid) and a cell density. Note that the dimensions of κ3 in Section 2
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and κ̃3 in Section 3 are different. Integrating Eq. (19)3 we get a non-local in time equation
for average cells drift velocity v,

v(t, x) = v0(x)Π(0, t, x) +

t∫
0

(
−B(ξ, x)g̃ + κ̃3

(
C(ξ, x)

)∂C(ξ, x)

∂x

)
Π(ξ, t, x) dξ

where Π(ξ, t, x) = exp{−
∫ t
ξ
κ5(C(τ, x)) dτ}.

Let κ2(C) = κ20w2(Θ), κ̃3(C) = κ̃30w3(Θ), κ4(C) = κ40w4(Θ), κ5(C) =
κ50w5(Θ), Θ = (C−Cmin)/(C0−Cmin), x = x̄h, B = B0B̄, t = (h2/κ40)t̄, v = v∗v̄.
Omitting the bar we rewrite system (19) and (20) in the dimensionless form

∂Θ

∂t
= δ

(
∂2Θ

∂x2
− β2w2(Θ)B

)
, x ∈ (0, 1),

∂B

∂t
=

∂

∂x

(
w4(Θ)

∂B

∂x
− γBv

)
, x ∈ (0, 1),

B
∂v

∂t
= −ρ1B − ρ3w5(Θ)v + ρ2w3(Θ)

∂Θ

∂x
, x ∈ (0, 1),

(21)



Θ(0, x) = 1, B(0, x) = 1, v(0, x) = v0,

∂Θ

∂x

∣∣∣∣
x=0

= 0, Θ|x=1 = 1,(
w4(Θ)

∂B

∂x
− γvB

)∣∣∣∣
x=0;1

= 0.

(22)

Here δ = κ1/κ40, γ = v∗h/κ40, β2 = B0κ20h
2/(κ1(C0−Cmin)), ρ1 = g̃h2/(κ40v∗) =

g̃h3/(γκ240), ρ2 = κ̃30h(C0 − Cmin)/(v∗B0κ40), ρ3 = h2κ50/(B0κ40).
Note, that model (21)–(22) preserves condition

∫ 1

0
B(t, x) dx = 1. Determining a1 =

ρ1γ/ρ3 and a2 = ρ2γ/ρ3 we rewrite Eq. (21)3 in the form

B
∂v

∂t
=
ρ3
γ

(
−a1B − γω5(Θ)v + a2ω3(Θ)

∂Θ

∂x

)
.

Now we consider the steady-state case.

3.1 The shallow chamber case (Θ > 0 ∀x ∈ (0,1])

We study the case where w2(Θ) = w3(Θ) = w4(Θ) = w5(Θ) = 1. From Eqs. (21) and
(22) we get 

Θ′′ = β2B,

γvB = B′,

v =
1

ρ3
(ρ2Θ

′ − ρ1B) =
a2
γ
Θ′ − a1

γ
B,

Θ′(0) = 0, Θ(1) = 1.

(23)
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In addition, we formulate the condition

1∫
0

B(x) dx = 1. (24)

Integrating (23)1 and using (24) we get

Θ′(1) = β2. (25)

Then from Eqs. (23)1,2,3 it follows that

γv =
B′

B
= β2 dB

dΘ′
= a2Θ

′ − a1B. (26)

The last equation of (26) is linear and integrates to get

B(x) = B̂
(
Θ′, B(0)

)
=

(
B(0) +

a2
a21
β2

)
exp

(
− a1
β2
Θ′
)

+
a2
a1
Θ′ − a2

a21
β2. (27)

From (26) we can see that v = 0 and dB/dΘ′ = 0 at B = (ρ2/ρ1)Θ′. Now, inserting
this value of B into (27), we get

Θ′ =
β2

a1
ln

(
1 +

B(0)a21
a2β2

)
. (28)

Then from (26) and (23)1 it follows that

B′′|B=
ρ2
ρ1
Θ′ =

{
B′

γ

ρ3
(ρ2Θ

′ − ρ1B) +B
γ

ρ3
(ρ2Θ

′′ − ρ1B′)
}∣∣∣∣

B=(ρ2/ρ1)Θ′

= B2 ρ2
ρ3
γβ2 > 0.

Hence, (28) is the point of a minimum of B and

minB =
ρ2
ρ1

β2

a1
ln

(
1 +

a21B(0)

a2β2

)
> 0.

We integrate Eqs. (23)1 and (27) and use condition (23)4 to get

β2x = x̂
(
Θ′, B(0)

)
:=

Θ′∫
0

dy

B̂(y,B(0))
. (29)

From here and by (25) we get the equation for B(0),

β2 =

β2∫
0

dy

B̂(y,B(0))
. (30)
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After this equation is solved for B(0), we determine B = B̂(Θ′, B(0)) by Eq. (27),
x = x̂(Θ′, B(0)) by Eq. (29), and v by (23)3 for Θ′ ∈ [0, β2].

At last, using (29) we integrate the equation dΘ = Θ′ dx to get

Θ = 1− 1

β2

β2∫
Θ′

y dy

B̂(y,B(0))
. (31)

This formula shows that Θ > 0 for all x ∈ [0, 1] if

β2 6 β̃2
∗ :=

β̃2
∗∫

0

y dy

B̂(y,B(0))
. (32)

Values β that satisfy condition β 6 β̃∗ correspond to shallow chamber. Substituting
y = β̃2

∗z, B(0) = β̃2
∗B̃(0) we rewrite Eqs. (30) and (31) in the form

β̃2
∗ =

1∫
0

dz

B̃(z, B̃(0))
, 1 =

1∫
0

z dz

B̃(z, B̃(0))
, (33)

where B̃(z, B̃(0)) = (B̃(0) + a2/a
2
1) exp(−a1z) + a2z/a1 − a2/a21.

From (33)2 we determine B̃(0) and then by (33)1 find β̃2
∗ . Clearly, β̃2

∗ > 1.

3.2 The deep chamber case (β > β̃∗)

Since function (31) is not positive for all x > 0, we divide (0, 1] into two intervals (0, x̃∗]
and (x̃∗, 1], Θ(x̃∗) = 0. In (x̃∗, 1], Θ > 0, and cells consume oxygen and are active.
Since Θ(x̃∗) = 0, there is not enough oxygen available in (0, x̃∗). Hence, cells are
inactive and therefore κ2(Θ) = 0 ∀x ∈ [0, x̃∗]. Thus in (0, x̃∗) we have the system

Θ′′ = 0, Θ(x̃∗) = 0, Θ′(0) = 0,

γvB = w4(Θ)B′,

v =
1

ρ3w5(Θ)

(
ρ2ω3(Θ)Θ′ − ρ1B

)
.

It is easy to see that Θ = 0, v = −ρ1B/(ρ3w5(Θ)) < 0, B′ = −qB2, q = γρ1/
(ρ3w4(0)w5(0)) ∀x ∈ (0, x̃∗). Therefore

B(x) =
B(x̃∗)

1− qB(x̃∗)(x̃∗ − x)
=

B(0)

1 + qxB(0)
. (34)

In (x̃∗, 1), we consider the case w2 = w3 = w4 = w5 = 1, and solve Eqs. (23) with
conditions Θ(1) = 1, Θ(x̃∗) = Θ′(x̃∗) = 0. By the argument used for the shallow
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chamber we get 

x− x̃∗ =
1

β2

Θ′∫
0

dy

B̂(y,B(x̃∗))
,

Θ = 1− 1

β2

Θ′(1)∫
Θ′

y dy

B̂(y,B(x̃∗))
,

B(x) = B̂
(
Θ′, B(x̃∗)

)
,

(35)

where

B̂
(
Θ′, B(x̃∗)

)
=

(
B(x̃∗) +

a2
a21
β2

)
exp

(
− a1
β2
Θ′
)

+
a2
a1
Θ′ − a2

a21
β2.

From condition (24) by Eqs. (23)1 and (34) we derive the equation

1 =

x̃∗∫
0

B dx+
1

β2

1∫
x̃∗

Θ′′ dx =
1

β2
Θ′(1) +B(0)

x∗∫
0

dx

1 + a1xB(0)

=
1

β2
Θ′(1) +

1

a1
ln
(
1 + a1x̃∗B(0)

)
=

1

β2
Θ′(1)− 1

a1
ln
(
1− a1x̃∗B(x̃∗)

)
.

Hence,

Θ′(1) = β2u
(
x̃∗, B(x̃∗)

)
,

u
(
x̃∗, B(x̃∗)

)
= 1 +

1

a1
ln
(
1− a1x̃∗B(x̃∗)

)
> 0

(36)

provided that B(x̃∗) < (1− e−a1)/(a1x̃∗). Inserting x = 1, Θ′(x̃∗) determined by (36)
into Eq. (35)1 and Θ(x̃∗) = 0, Θ′(x̃∗) from (36) into Eq. (35)2 we get

β2 =

β2u(x̃∗,B(x̃∗))∫
0

y dy

B̂(y,B(x̃∗))
, 1− x̃∗ =

1

β2

β2u(x̃∗,B(x̃∗))∫
0

dy

B̂(y,B(x̃∗))
,

which by substitution y = β2u(x̃∗, B(x̃∗))ξ can be transformed into
1− x̃∗ =

1∫
0

u(x̃∗, B(x̃∗)) dξ

B̂(β2u(x̃∗, B(x̃∗))ξ,B(x̃∗))
,

1 = β2

1∫
0

u2(x̃∗, B(x̃∗)) ξ dξ

B̂(β2u(x̃∗, B(x̃∗))ξ,B(x̃∗))
.

(37)

In Section 4, we solve initial value problem (21)–(22) by using the finite-difference
scheme.
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4 Numerical results
4.1 The initial-value problem for KS and FB models
Problems (4) and (21)–(22) are nonlinear and no their analytical solutions could be de-
rived. To solve these problems the finite-difference technique [32] was used. An implicit
finite-difference schemes (see Appendix) were applied. The approximation resulted in the
systems of linear algebraic equations with tridiagonal matrix which are solved effectively
by using the elimination method [32]. To find a numerical solution the uniform discrete
grids in space and time directions were introduced. The constant dimensionless steps of
size 0.001 in space and time directions were used. The difference schemes preserve a dis-
crete analogue of condition

∫ 1

0
B(t, x) dx = 1. Digital experiments show that numerical

solutions of both models for large time practically coincide with their exact steady-state
solutions. The numerical experiments for different values of space and time steps show
that the difference schemes are stable.

Numerical experiments performed for system (21)–(22) with w2(Θ) = 1, x ∈ (0, 1),
show that, in the case of deep and some shallow layers, Θ becomes negative near the
bottom of the chamber for small time, but later it becomes positive and tends to correct
steady-state value as time grows. To preserve the positivity of Θ we used w2(Θ) = 0
for x ∈ (0, x∗) and w2(Θ) = 1 for x ∈ (x∗, 1). The similar scheme was used to solve
system (4).

4.2 The steady-state Keller–Segel model
In the case of the shallow chamber, for fixed α and β, we determine q = αβ2/2 and by
Eq. (12) calculate β∗. Then, for β < β∗, to find ξ we solve Eq. (11) by splitting the interval
in half. Knowing q and ξ(q) we determine B(0) = 2αξ2/β2 and from Eqs. (9) and (10)
find B and Θ for x ∈ [0, 1]. Numerical results are demonstrated in Figs. 1–4 and Table 1.

In the deep layer case for fixed α and β, we calculate η(α), then, by Eqs. (17) and
(18), determine x∗, ξ̃, and B(x∗). Finally, by Eqs. (13) find B(x) and Θ(x). Numerical
results are exhibited in Figs. 5, 6 and Table 1.

4.3 The steady-state FB model
In the shallow chamber case, to determine B̃(0), for fixed a1 and a2, we solve (33)2 by
splitting the interval in half. Knowing B̃(0) we determine β̃∗ from Eq. (33)1. Then by
formula B(0) = β̃∗B̃(0) we calculate B(0). Now, from Eqs. (29) and (31) for given
β and B(0), we determine x(Θ′) and Θ(Θ′) for Θ′ ∈ [0, β2]. Results are exhibited in
Figs. 1–4 and Table 2.

In the deep layer case, in order to determine x̃∗ and B(x̃∗), for fixed β, a1, and a2,
we solve system (37). This system is solved by determining numerically the point of the
intersection of curves (37)1 and (37)2. Each curve we draw by determining B(x̃∗) of
argument x̃∗. To calculate B(x̃∗) for a given x̃∗ we use a method of splitting the interval
in half. Then, knowing x̃∗, β, B(x̃∗), from Eq. (35) we determine x(Θ′) and Θ(Θ′) for
Θ′ ∈ [0, β2]. At last, by Eq. (34), we calculate B(x) for x ∈ [0, x̃∗] and, for given γ, find
v by equation v = (1/γ)(a2Θ

′ − a1B), x ∈ [0, 1]. Results are exhibited in Figs. 5, 6 and
Table 2.
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4.4 Analysis of the numerical results

The selection of parameters for numerical simulation approximately corresponds to the
practically relevant values reported in the literature with the significant ranges in variation
to allow demonstration of different regimes of microorganisms transport. We employ pa-
rameters that were used in the most calculations in [6,26,27]: κ1 = 2.12 ·10−3 mm2 s−3,
κ20 = 105 s−1, κ40 ∈ (1.3 · 10−4, 1.3 · 10−3) mm2 s−1, B0 = 105 mm−3, C0 = 1.5 ·
1014 mm−3, v∗ = 7.4 · 10−3 mm s−1. In all calculations we used δ = 16.3 and γ = 460.

Plots in Figs. 1–4 and 5, 6 depict the behaviour of bacteria and oxygen concentrations
B and Θ for shallow and deep chambers, respectively.
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Fig. 1. The steady-state concentrations of the oxygen Θ (a) and bacterial cells B (b) versus
x for the shallow layer in the case a1 = 2 and β2 = 1.6: a2 = α = 0.5 (O FB model,
× KS model), a2 = α = 1 (• FB model, — KS model), a2 = α = 2, β2

∗ = 3.01
(◦ FB model, – – KS model).
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Fig. 2. Dependence of the steady-state Θ (a) and B (b) for the shallow layer on a2 in the
case a1 = 2, α = 1, β2 = 1.6 at three values of a2: 0.5 (O), 1 (•), 2 (◦)– a2 = 2 FB model.

Solid line for KS model.
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Fig. 3. Plot of steady-state Θ (a) and B (b) versus x for the shallow layer in the case
a2 = α = 1. β2 = 1.6 and a1: 1 (•), 2 (O) for FB model and solid line for KS model.

β2 = 1.2 and a1: 1 (◦), 2 (×) for FB model and dashed line for KS model.
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Fig. 4. The steady-state concentrations of the oxygen Θ (a) and bacterial cells B (b) versus
x for the shallow layer in the case a1 = a2 = α = 1 at three values of β2: 1.2 (• FB model,

— KS model), 1.5 (◦ FB model, - - - KS model), 1.8 (O FB model, × KS model).

Figs. 1(a) and 1(b) demonstrate a monotonic dependence of Θ and B for both KS and
FB models on parameter a2 = α for a1 = 2, β2 = 1.6. In the steady-state case, parameter
a2 = α characterizes a swimming upward velocity of microorganisms. Figs. 1(a) and
1(b) also illustrate a natural increase of Θ as a2 grows and different behaviour of B near
the bottom and the open surface. Concentration B decreases near the bottom and grows
in a region of the open surface as a2 increases. Moreover, B calculated from the FB
model possesses a minimum value in the case where a1 = a2 = α = 2 and β2 = 1.6.
B determined by KS model near the bottom is smaller than that calculated by FB model
but near the open surface it behaves vice-versa. Oxygen concentration determined by KS
model is greater than that calculated by FB one.
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Fig. 5. The steady-state concentrations of the oxygen Θ (a) and bacterial cells B (b) versus
x for the deep layer in the case a1 = a2 = α = 1 at three values of β2: 2.5 (• FB model,

— KS model), 3.5 (◦ FB model, - - - KS model), 4.5 (O FB model, × KS model).
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Fig. 6. Plots of the steady-state Θ (a) and B (b) versus x for the deep layer in the case
a1 = 2 and β2 = 3.5: a2 = α = 0.5 (• FB model, — KS model), a2 = α = 1 (◦ FB

model, - - KS model), a2 = α = 2 (O FB model, × KS model).

Figs. 2(a) and 2(b) illustrate the dependence of Θ and B on the parameter a2 in the
case a1 = α = 1 and β2 = 1.6. Solid line depict Θ and B calculated by KS model.
Curves of B corresponding to a2 = 1 or a2 = 2 possesses a minimum value which
increases as a2 decreases. Concentration Θ grows as a2 increases but Θ determined by
FB model is less than the oxygen concentration corresponding to KS one.

Plots in Figs. 3(a) and 3(b) depict the dependence of Θ and B on parameters a1 and
β2 for FB model and on parameter β2 for KS model. Note that parameters a1 and β2

characterize an influence of gravity and a chamber depth. Curves demonstrate the different
behaviour of B in a region of the bottom and open surface. Near the bottom B grows

www.mii.lt/NA



Phenomenological model of bacterial aerotaxis with a negative feedback 243

as a1 increases but far from the bottom it behaves vice-versa. Figure also demonstrates the
different behaviour ofB determined by both KS and FB models. Oxygen concentrationΘ
decreases for all x as a1 or β2 increases.

Plots in Figs. 4(a) and 4(b) depict the dependence of Θ and B on parameter β2 for
both KS and FB models and demonstrate their monotonic behaviour as β2 grows. Values
of B that correspond to KS and FB models near the bottom are larger than corresponding
ones near the open surface. Values of Θ determined by KS model for all x are larger that
those corresponding with FB model.

Figs. 5(a) and 5(b), 6(a) and 6(b) demonstrate the dependence of Θ and B on param-
eters β2 and a2, respectively, for a deep chamber. We observe a monotonic behaviour
of B for both KS and FB models with respect to parameter β2. But this behaviour is
similar near the bottom and the open surface and is different in the intermediate region
(see Figs. 5(a) and 5(b)). The qualitative behaviour of B and Θ with respect to a2 is
similar to that of the shallow chamber (see Figs. 6(a) and 6(b)).

Table 1 demonstrates the dependence of β̃2
∗ on parameters a1, a2 and x̃∗, B(x̃∗)

on β2 from steady-state FB model. Parameter β̃2
∗ decreases as a1 grows and increases

with a2 increasing. For the deep chamber case x̃∗, B(x̃∗) grow as β2 increases. Table 2
demonstrates the similar behaviour of β2

∗ , x∗ andB(x∗) for steady state case of KS model.
Fig. 7 demonstrates the comparison of the behaviour of B determined by the KS and

FB models for the shallow chamber in the time-dependent case. For small time and v0 =
0.01, we observe near the top and bottom a non-monotonic behaviour ofB determined by
the FB model. For fixed x, B reaches a maximum value and then tends to an asymptotic
one as time increases. We also observe a small maximum value of B determined by the
KS mode l for small time at x = 1. In the top region, Figs. 7(a) and 7(b) demonstrate
a different behaviour of B determined by KS and FB models as the depth of the chamber,
β2, grows. From Fig. 7(a) for small time and β2 = 5, we can see thatB determined by the
FB model in the top region is larger than that determined by the KS one, while Fig. 7(b)
depicts the vice-versa behaviour of B for β2 = 2. Numerical experiments reveal a similar
qualitative behaviour of B for the deep chamber as well.

Table 1. Parameters of the KS model.

α β2
∗ β2 x∗ B(x∗)

0.5 2.18 2.5 0.071 0.851
3.5 0.224 0.873
4.5 0.321 0.887

1 2.41 2.5 0.021 0.706
3.5 0.195 0.745
4.5 0.302 0.771

2 3.02 3.5 0.095 0.497
4.5 0.233 0.539

5 7.23 7.5 0.032 0.126
8.5 0.133 0.139

10 0.248 0.157
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Fig. 7. Comparison of B for time-dependent KS (Eq. (4)) and FB (Eqs. (21), (22) with
v0 = 0.01) models for fixed values of x: 1 (1), 0.95 (2), 0.9 (3), 0.8 (4) 0.1 (5) in the case
where a1 = 0.001, a2 = α = 3, β̃2

∗ = 3.9195, β2
∗ = 3.9186. (a) β2 = 2, (b) β2 = 3.

— KS model, - - - FB model.

Table 2. Parameters of the FB model.

a1 a2 β̃2
∗ β2 x̃∗ B(x̃∗)

0.01 1 2.40 2.5 0.022 0.709
3.5 0.195 0.747
5 0.342 0.783

0.01 5 7.21 7.5 0.035 0.127
8.5 0.135 0.140

10 0.249 0.157
0.1 1 2.36 2.5 0.032 0.741

3.5 0.199 0.770
5 0.343 0.798

0.1 5 7.02 7.5 0.056 0.134
8.5 0.154 0.147

10 0.264 0.165
1 0.5 1.85 2.5 0.110 1.254

3.5 0.224 1.116
4.5 0.302 1.037

1 1 2.01 2.5 0.089 1.091
3.5 0.214 0.995
4.5 0.297 0.939

1 2 2.44 3.5 0.170 0.743
4.5 0.271 0.730

2 0.5 1.62 3.5 0.199 1.312
2 1 1.73 3.5 0.197 1.205
2 2 2.04 3.5 0.186 0.978
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Fig. 8 demonstrates the influence of the initial value v0 on the behaviour of B deter-
mined by the FB model. B is monotonic in time for v0 < 0.007, but it is non-monotonic
if v0 > 0.007.
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Fig. 8. Effect of v0 on cells concentration B determined by time-dependent FB model (21)
and (22) at a1 = 0.001, a2 = 3, β̃2

∗ = 3.9195, β2 = 3 for fixed values of x: 1 (1), 0.9 (2),
0.8 (3), 0.1 (4). Values of v0: — 0.01, · · · 0.007, - - - 0.001.

5 Concluding remarks

In this paper we studied the steady-state and the initial value problems for oxytactic
swimming upwardly bacteria using the modified Keller–Segel model termed FB model.
It includes the conservation equations for the oxygen and cells concentrations and the
additional one for the balance of forces acting on bacteria (momentum equation for cells).
Differently from the KS model, the thrust force, but not the average cells velocity, is
approximated by the term proportional to the oxygen gradient.

The steady-state solution of the FB model is given analytically and studied numeri-
cally but the initial value problem is studied only numerically. In the deep layer case near
the bottom the oxygen concentration is insufficient for cells to be active. In this region we
only excluded the oxygen consumption and used the continuity conditions for concentra-
tions and their derivatives at the point where Θ = 0. Above this point Θ is positive.

We studied difference between solutions of the the KS and FB models and found that
in the steady-state case because of gravity the FB model determines more slow swimming
upwards of the oxytactic cells comparing with that determined by the KS one. This means
that oxygen consumption time grows and, hence, the oxygen concentration decreases
since its diffusion is a slow process. This leads to the increase of cells concentration near
the bottom and its decrease at the top of the chamber. In the case of small difference of
bacteria and fluid densities, asymptotic in time values of B for the KS and FB models
practically coincide.

In the time-dependent problem the transition period after the initial moment of the
concentrations B and Θ (the cells adaptation period) determined by the KS model is
shorter than the corresponding one determined by the FB model.
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We hope that the model of the FB type with an additional term of bacteria to bacteria
communication in the differential equation for v could be regarded as phenomenological
effective one to capture the possible variability of the oxytactic bacteria response to the
environmental changes in real systems.

Appendix

To find the numerical solution of problem (21) and (22) the finite-difference scheme was
used.

Assume that tj = jτ , 0 6 j 6 M , τ = T/M , xi = ih, 0 6 i 6 N , h = 1/N . Set
θji = θ(tj , xi), bji = b(tj , xi), vji = v(tj , xi).

Approximating the differential equations (21) with an implicit scheme the following
finite difference equations are obtained:

θj+1
i − θji
τ

= δ

(
θj+1
i−1 − 2θj+1

i + θj+1
i+1

h2
− β2bji

)
,

bj+1
i − bji
τ

=
bj+1
i−1 − 2bj+1

i + bj+1
i+1

h2
− γ

vji+1b
j
i+1 − v

j
i−1b

j
i−1

2h
,

bji
vj+1
i − vji
τ

=
ρ3
γ

(
−a1bji + a2

θji+1 − θ
j
i−1

2h
− γvji

)
,

i = 1, 2, . . . , N − 1; j = 0, 1, . . . ,M − 1.

(A.1)

The boundary and initial conditions (22) are approximated by

bj+1
1 − bj+1

0

h
− γ v

j
1b
j
1 + vj0b

j
0

2
= 0,

bj+1
N − bj+1

N−1
h

− γ
vjN−1b

j
N−1 + vjNb

j
N

2
= 0,

θj+1
1 = θj+1

0 , θj+1
N = 1,

θ0i = 1, b0i = 1, v0i = v0,

i = 0, 1, . . . , N ; j = 0, 1, . . . ,M − 1.

(A.2)

To get the discrete form of Eq. (21)3 at x = 0 and 1 we use the difference equations

bj0
vj+1
0 − vj0
τ

=
ρ3
γ

(
−a1bj0 − γv

j
0

)
,

bjN
vj+1
N − vjN

τ
=
ρ3
γ

(
−a1bjN + a2

θjN − θ
j
N−1

h
− γvjN

)
,

j = 0, 1, . . . ,M − 1.

(A.3)
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To write the difference scheme to KS model the following approximation of (4)2 and
boundary conditions for function B instead of Eqs. (A.1)2 and (A.2)1,2 are used:

bj+1
i − bji
τ

=
bj+1
i−1 − 2bj+1

i + bj+1
i+1

h2

−α
h

(
bji+1 + bji

2

θji+1 − θ
j
i

h
−
bji + bji−1

2

θji − θ
j
i−1

h

)
,

i = 1, 2, . . . , N − 1; j = 0, 1, . . . ,M − 1,

(A.4)


bj+1
1 = bj+1

0 ,

bj+1
N − bjN−1

h
− α

bjN−1 + bjN
2

θjN − θ
j
N−1

h
= 0,

j = 0, 1, . . . ,M − 1.

(A.5)

From (A.1)2, (A.2)1,2 or (A.4), (A.5) the discrete analogue of condition (6)
h
∑N−1
i=1 bj+1

i = h
∑N−1
i=1 bji , j = 0, 1, . . . ,M − 1, follows.
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