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Abstract. A mathematical model describing the transmission dynamics of an infectious disease
with an exposed (latent) period, relapse and a saturation incidence rate is investigated. By analyzing
the corresponding characteristic equations, the local stability of a disease-free equilibrium and
an endemic equilibrium is established. By using suitable Lyapunov functionals and LaSalle’s
invariance principle, it is proven that if the basic reproduction number is less than unity, the disease-
free equilibrium is globally asymptotically stable and therefore the disease fades out; and if the basic
reproduction number is greater than unity, the endemic equilibrium is globally asymptotically stable
and the disease becomes endemic.
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1 Introduction
Mathematical modelling has become important tools in analyzing the spread and control
of infectious diseases. Recently, a great deal of attention has been paid to developing
realistic mathematical models for the transmission dynamics of infectious diseases. There
has been a large body of work on modelling epidemic models described by ordinary
differential equations (see, for example, [1–9] and the references cited therein). In most
of the literatures, it was frequently assumed that the disease incubation is negligible. In
this case, once infected, each susceptible individual becomes infectious instantaneously
and later recovers with a temporary acquired immunity. An epidemic model based on
these assumptions is called SIR (susceptible, infectious, recovered) model. However, for
some diseases, such as tuberculosis, influenza and measles, on adequate contact with an
infective, a susceptible individual becomes exposed, that is, infected but not infective.
This individual remains in the exposed class for a certain latent period before becoming
infective (see, for example, [5, 10, 11]). Hence, it is realistic to introduce a time delay
to describe the latent period. The resulting model is called SEIR (susceptible, exposed,
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infectious, recovered) model (see, for example, [12, 13]). In [12], Gao et al. considered
the following delayed SEIR epidemic model

Ṡ(t) = µ
(
1− S(t)

)
− βS(t)I(t),

Ė(t) = βS(t)I(t)− βe−µτS(t− τ)I(t− τ)− µE(t),

İ(t) = βe−µτS(t− τ)I(t− τ)− (µ+ γ)I(t),

Ṙ(t) = γI(t)− µR(t),

(1)

where S(t) represents the number of individuals who are susceptible to the disease, that
is, who are not yet infected at time t; I(t) represents the number of infected individuals
who are infectious and are able to spread the disease by contact with susceptible individ-
uals; E(t) represents the number of exposed (in the latent period) individuals; and R(t)
represents the number of individuals who have been infected and temporarily recovered
at time t. In (1), the parameters β, γ and µ are positive constants in which β is the contact
rate, µ is the birth and death rate, γ is the removal rate. τ > 0 represents a time delay
describing the latent period of the disease, the term βe−µτS(t− τ)I(t− τ) represents the
individuals surviving in the latent period τ and becoming infective at time t.

In [14], van den Driessche and Zou pointed out that for some diseases, recovered
individuals may relapse with reactivation of latent infection and revert back to the in-
fective class. This recurrence of disease is an important feature of some animal and
human diseases, for example, tuberculosis, including human and bovine [15, 16], and
herpes [15, 17]. For human tuberculosis, incomplete treatment can lead to relapse, but
relapse can also occur in patients who took a full course of treatment and were declared
cured. Most tuberculosis in human adults (caused by Mycobacterium tuberculosis) in the
USA results from reactivation of latent infection [15]. In [14], van den Driessche and
Zou formulated and analyzed a model including a general exposed distribution and the
possibility of relapse in which a constant exposed period was assumed, for the spread of
bovine tuberculosis (Mycobacterium bovis) in a cattle herd. For this model with a general
probability of remaining in the exposed class, the basic reproduction number was identi-
fied and its threshold property was discussed. A model for herpes with a general relapse
distribution, but ignoring the exposed class, was formulated in [18] and shown to exhibit
a threshold phenomenon.

Incidence plays an important role in the modelling of epidemic dynamics. It has been
suggested by several authors that the disease transmission process may have a saturation
incidence rate (see, for example, [4, 19, 20]). After studying the cholera epidemic spread
in Bari in 1973, Capasso and Serio [4] introduced a saturated incidence rate g(I)S into
epidemic models, where g(I) tends to a saturation level when I gets large, i.e., g(I) =
βI/(1 + αI), where βI measures the infection force of the disease and 1/(1 + αI)
measures the inhibition effect from the behavioral change of the susceptible individuals
when their number increases or from the crowding effect of the infective individuals.
This incidence rate seems more reasonable than the bilinear incidence rate βIS, because
it includes the behavioral change and crowding effect of the infective individuals and
prevents the unboundedness of the contact rate by choosing suitable parameters.
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Motivated by the works of Capasso and Serio [4], Gao et al. [12] and van den Driess-
che and Zou [14], in this paper, we consider the following delayed SEIR epidemic model
with nonlinear incidence rate and relapse

Ṡ(t) = A− µS(t)− βS(t)I(t)

1 + αI(t)
,

Ė(t) =
βS(t)I(t)

1 + αI(t)
− µE(t)− βe−µτS(t− τ)I(t− τ)

1 + αI(t− τ)
,

İ(t) =
βe−µτS(t− τ)I(t− τ)

1 + αI(t− τ)
+ δR(t)− (µ+ γ + ε)I(t),

Ṙ(t) = γI(t)− (µ+ δ)R(t),

(2)

where the parameters A, α, β, γ, µ, ε and τ are positive constants in which A is the
constant recruitment rate into the population, µ is the natural death rate of the population,
ε is the disease-induced death rate, β is the average number of adequate contacts of an
infectious individuals per unit time, γ is the recovery rate of infectious individuals, τ is
a time delay representing the latent period of the disease. The parameter δ is a nonnegative
constant representing the rate at which an individual in the recovered class reverts to the
infective class, and δ > 0 implies that the recovered individuals would lose the immunity,
δ = 0 implies that the recovered individuals acquire permanent immunity.

The initial conditions for system (2) take the form

S(θ) = φ1(θ), E(θ) = φ2(θ), I(θ) = φ3(θ), R(θ) = φ4(θ),

φi(θ) > 0, θ ∈ [−τ, 0], φi(0) > 0, i = 1, 2, 3, 4,
(3)

where (φ1(θ), φ2(θ), φ3(θ), φ4(θ)) ∈ C([−τ, 0],R4
+0), the Banach space of continuous

functions mapping the interval [−τ, 0] into R4
+0, where R4

+0 = {(x1, x2, x3, x4): xi > 0,
i = 1, 2, 3, 4}.

For continuity of the initial conditions, we require

E(0) =

0∫
−τ

βeµθ
φ1(θ)φ3(θ)

1 + αφ3(θ)
dθ. (4)

It is well known by the fundamental theory of functional differential equations [21],
system (2) has a unique solution (S(t), E(t), I(t), R(t)) satisfying the initial condi-
tions (3) and (4). It is easy to show that all solutions of system (2) with initial condi-
tions (3) and (4) are defined on [0,+∞) and remain positive for all t > 0.

The organization of this paper is as follows. In the next section, by analyzing the
corresponding characteristic equations, the local stability of a disease-free equilibrium
and an endemic equilibrium is established. In Section 3, by using suitable Lyapunov func-
tionals and LaSalle’s invariance principle, we prove that if the basic reproduction number
is less than unity, the disease-free equilibrium is globally asymptotically stable; and if
the basic reproduction number is greater than unity, the endemic equilibrium is globally
asymptotically stable. A brief discussion is given in Section 4 to conclude this work.
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2 Local stability

In this section, we study the local stability of a disease-free equilibrium and an endemic
equilibrium of system (2) by analyzing the corresponding characteristic equations, re-
spectively.

System (2) always has a disease-free equilibrium E1(A/µ, 0, 0, 0). Using a similar
argument as that in [14] one may obtain the basic reproduction number for system (2) as

R0 =
Aβe−µτ

µ(µ+ γ + ε− γδ/(µ+ δ))
.

R0 is the average number of secondary transmissions of a single infectious individual in
a fully susceptible population. It is easy to show that if R0 > 1, system (2) has a unique
endemic equilibrium E2(S

∗, E∗, I∗, R∗), where

S∗ =
A

µR0
(1 + αI∗), E∗ =

β(1− e−µτ )S∗I∗

µ(1 + αI∗)
,

I∗ =
µ

αµ+ β
(R0 − 1), R∗ =

γ

µ+ δ
I∗.

(5)

The characteristic equation of system (2) at the disease-free equilibrium E1(A/µ, 0, 0, 0)
takes the form

(λ+ µ)2
[
λ2 + P1(τ)λ+ P0(τ) +

(
Q1(τ)λ+Q0(τ)

)
e−λτ

]
= 0, (6)

where

P0(λ) = (µ+ δ)(µ+ γ + ε)− γδ, P1(λ) = µ+ δ + µ+ γ + ε,

Q0(λ) = −
Aβe−µτ (µ+ δ)

µ
, Q1(λ) = −

Aβe−µτ

µ
.

Clearly, Eq. (6) always has a negative real root λ = −µ. Other roots of Eq. (6) are
determined by the following equation:

λ2 + P1(τ)λ+ P0(τ) +
(
Q1(τ)λ+Q0(τ)

)
e−λτ = 0. (7)

When τ = 0, Eq. (7) becomes

λ2 +
(
P1(0) +Q1(0)

)
λ+ P0(0) +Q0(0) = 0. (8)

By calculation we derive that

P0(0) +Q0(0) = (µ+ δ)

(
µ+ γ + ε− γδ

µ+ δ

)
(1−R0),

P1(0) +Q1(0) = µ+ δ +
γδ

µ+ δ
+

(
µ+ γ + ε− γδ

µ+ δ

)
(1−R0).
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Hence, if R0 < 1, the equilibrium E1 is locally asymptotically stable when τ = 0.
If iω(ω > 0) is a solution of (7), separating real and imaginary parts, it follows that

ω2 − P0(τ) = Q0(τ) cosωτ +Q1(τ)ω sinωτ,

P1(τ)ω = Q0(τ) sinωτ −Q1(τ)ω cosωτ.
(9)

Squaring and adding the two equations of (9), we obtain that

ω4 +
(
P 2
1 (τ)− 2P0(τ)−Q2

1(τ)
)
ω2 + P 2

0 (τ)−Q2
0(τ) = 0. (10)

Clearly, P 2
0 (τ)−Q2

0(τ) > 0. A direct calculation shows that if R0 < 1, then

P 2
1 (τ)− 2P0(τ)−Q2

1(τ) = (µ+ δ)2 + 2γδ + (µ+ γ + ε)2 −
(
Aβe−µτ

µ

)2

> 0.

Hence, if R0 < 1, Eq. (10) has no positive roots. Noting that the equilibriumE1 is locally
asymptotically stable when τ = 0, by the general theory on characteristic equations of
delay differential equations from [22, Thm. 4.1] we see that if R0 < 1, E1 is locally
asymptotically stable.

Let
f1(λ) = λ2 + P1(τ)λ+ P0(τ) +

(
Q1(τ)λ+Q0(τ)

)
e−λτ .

If R0 > 1, it is easy to show that, for λ real,

f1(0) = (µ+ δ)

(
µ+ γ + ε− γδ

µ+ δ

)
(1−R0) < 0, lim

λ→+∞
f1(λ) = +∞.

Hence, Eq. (7) has a positive real root, which yields that the disease-free equilibrium E1

is unstable if R0 > 1.
The characteristic equation of system (2) at the endemic equilibrium E2(S

∗, E∗,
I∗, R∗) is of the form

(λ+µ)
[
λ3+p2(τ)λ

2+p1(τ)λ+p0(τ)+
(
q2(τ)λ

2+q1(τ)λ+q0(τ)
)
e−λτ

]
= 0, (11)

where

p0(τ) =

(
µ+

βI∗

1 + αI∗

)[
(µ+ δ)(µ+ γ + ε)− γδ

]
,

p1(τ) =

(
µ+

βI∗

1 + αI∗

)
(µ+ γ + ε+ µ+ δ) + (µ+ δ)(µ+ γ + ε)− γδ,

p2(τ) = µ+
βI∗

1 + αI∗
+ µ+ γ + ε+ µ+ δ,

q0(τ) = −
[
(µ+ δ)(µ+ γ + ε)− γδ

] µ

1 + αI∗
,

q1(τ) = −
(
µ+ γ + ε− γδ

µ+ δ

)
(µ+ µ+ δ)

1

1 + αI∗
,

q2(τ) = −
(
µ+ γ + ε− γδ

µ+ δ

)
1

1 + αI∗
.
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Clearly, Eq. (11) always has a negative real root λ = −µ. Other roots of Eq. (11) are
determined by the following equation:

λ3 + p2(τ)λ
2 + p1(τ)λ+ p0(τ) +

(
q2(τ)λ

2 + q1(τ)λ+ q0(τ)
)
e−λτ = 0. (12)

When τ = 0, Eq. (12) becomes

λ3 +
(
p2(0) + q2(0)

)
λ2 +

(
p1(0) + q1(0)

)
λ+ p0(0) + q0(0) = 0. (13)

If R0 > 1, by calculation we derive that

p0(τ) + q0(τ) =
(µα+ β)I∗

1 + αI∗
[
(µ+ δ)(µ+ γ + ε)− γδ

]
> 0,

p1(τ) + q1(τ)

=

(
µ+

βI∗

1 + αI∗

)
(µ+ γ + ε+ µ+ δ)− µ

(
µ+ γ + ε− γδ

µ+ δ

)
1

1 + αI∗

+
αI∗

1 + αI∗
[
(µ+ δ)(µ+ γ + ε)− γδ

]
> 0,

p2(τ) + q2(τ) = µ+ µ+ δ +
γδ

µ+ δ

1

1 + αI∗
+
[
α(µ+ γ + ε) + β

] I∗

1 + αI∗
> 0,

and(
p1(τ) + q1(τ)

)(
p2(τ) + q2(τ)

)
−
(
p0(τ) + q0(τ)

)
=

{(
µ+

βI∗

1 + αI∗

)
(µ+ γ + ε+ µ+ δ)− µ

(
µ+ γ + ε− γδ

µ+ δ

)
1

1 + αI∗

+
αI∗

1 + αI∗
[
(µ+ δ)(µ+ γ + ε)− γδ

]}
×
{
(α(µ+ γ + ε) + β)I∗

1 + αI∗
+

γδ

µ+ δ

1

1 + αI∗

}
+ (µ+ µ+ δ)

[
µ(µ+ γ + ε+ µ+ δ)− µ

(
µ+ γ + ε− γδ

µ+ δ

)
1

1 + αI∗

]
+ (µ+ µ+ δ)

{
βI∗

1 + αI∗
(µ+ γ + ε+ µ+ δ)

+
αI∗

1 + αI∗
[
(µ+ δ)(µ+ γ + ε)− γδ

]}
− (µα+ β)I∗

1 + αI∗
[
(µ+ δ)(µ+ γ + ε)− γδ

]
> 0.

Therefore, if R0 > 1, the endemic equilibrium E2 of system (2) is locally asymptotically
stable when τ = 0.

If iω(ω > 0) is a solution of (12), separating real and imaginary parts, it follows that

p1(τ)ω − ω3 =
(
q0(τ)− q2(τ)ω2

)
sinωτ − q1(τ)ω cosωτ,

p2(τ)ω
2 − p0(τ) =

(
q0(τ)− q2(τ)ω2

)
cosωτ + q1(τ)ω sinωτ.

(14)
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Squaring and adding the two equations of (14), we obtain that

ω6+
(
p22(τ)− 2p1(τ)− q22(τ)

)
ω4

+
(
p21(τ)− 2p0(τ)p2(τ) + 2q0(τ)q2(τ)− q21(τ)

)
ω2 + p20(τ)− q20(τ) = 0. (15)

Clearly, p20(τ)− q20(τ) > 0. By direct calculations, it is easy to show that

p22(τ)− 2p1(τ)− q22(τ)

=

(
µ+

βI∗

1 + αI∗

)2

+ (µ+ δ)2 + 2γδ + (µ+ γ + ε)2

−
(
µ+ γ + ε− γδ

µ+ δ

)2
1

(1 + αI∗)2
> 0,

and

p21(τ)− 2p0(τ)p2(τ) + 2q0(τ)q2(τ)− q21(τ)

=

(
µ+

βI∗

1 + αI∗

)2

(µ+ δ)2 + 2γδ

(
µ+

βI∗

1 + αI∗

)2

+ (µ+ δ)2
(
µ+ γ + ε− γδ

µ+ δ

)2
αI∗(2 + αI∗)

(1 + αI∗)2

+

(
µ+

βI∗

1 + αI∗

)2

(µ+ γ + ε)2

−
(
µ+ γ + ε− γδ

µ+ δ

)2
µ2

(1 + αI∗)2
> 0.

Hence, if R0 > 1, Eq. (15) has no positive roots. Noting that the equilibriumE2 is locally
asymptotically stable when τ = 0, by the general theory on characteristic equations of
delay differential equations from [22, Thm. 4.1], we see that if R0 > 1, the endemic
equilibrium E2 of system (2) exists and is locally asymptotically stable.

We therefore obtain the following results.

Theorem 1. For system (2), we have:
(i) If R0 < 1, the disease-free equilibrium E1(A/µ, 0, 0, 0) is locally asymptotically

stable; if R0 > 1, E1 is unstable.
(ii) If R0 > 1, system (2) has a unique endemic equilibrium E2(S

∗, E∗, I∗, R∗) which
is locally asymptotically stable.

3 Global stability

In this section, we are concerned with the global stability of the disease-free equilibrium
E1(A/µ, 0, 0, 0) and the endemic equilibrium E2(S

∗, E∗, I∗, R∗) of system (2). The
technique of the proofs is to use suitable Lyapunov functionals and LaSalle’s invariance
principle.
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We note that the variable E(t) does not appear in the first, the third and the fourth
equations of system (2). Therefore, we first consider the following subsystem of sys-
tem (2):

Ṡ(t) = A− µS(t)− βS(t)I(t)

1 + αI(t)
,

İ(t) =
βe−µτS(t− τ)I(t− τ)

1 + αI(t− τ)
+ δR(t)− (µ+ γ + ε)I(t),

Ṙ(t) = γI(t)− (µ+ δ)R(t).

(16)

Clearly, system (16) always has a semi-trivial equilibrium E0
1(A/µ, 0, 0). Further, if

R0 > 1, system (16) has a unique positive equilibrium E0
2(S
∗, I∗, R∗), where S∗, I∗

and R∗ are determined in (5). From Section 2, we see that if R0 < 1, the equilibrium E0
1

is locally asymptotically stable; and if R0 > 1,E0
1 is unstable and the positive equilibrium

E0
2 is locally asymptotically stable.

We now first give a result on the global stability of the semi-trivial equilibrium E0
1 of

system (16).

Theorem 2. If R0 < 1, the semi-trivial equilibrium E0
1(A/µ, 0, 0) of system (16) is

globally asymptotically stable.

Proof. Let (S(t), I(t), R(t)) be any positive solution of system (16) with initial condi-
tions (3). Denote S0 = A/µ. Define

V11(t) = S − S0 − S0 ln
S

S0
+ eµτI +

δeµτ

µ+ δ
R.

Calculating the derivative of V11(t) along positive solutions of system (16), it follows that

d

dt
V11(t) =

(
1− S0

S(t)

)[
A− µS(t)− βS(t)I(t)

1 + αI(t)

]
+ eµτ

[
βe−µτS(t− τ)I(t− τ)

1 + αI(t− τ)
+ δR(t)− (µ+ γ + ε)I(t)

]
+

δeµτ

µ+ δ

[
γI(t)− (µ+ δ)R(t)

]
=

(
1− S0

S(t)

)[
A− µS(t)− βS(t)I(t)

1 + αI(t)

]
+
βS(t− τ)I(t− τ)
1 + αI(t− τ)

− eµτ
[
µ+ γ + ε− γδ

µ+ δ

]
I(t). (17)

On substituting A = µS0 into (17), we derive that

d

dt
V11(t) =

(
1− S0

S(t)

)[
−µ(S(t)− S0)

]
− βS(t)I(t)

1 + αI(t)
+

βS0I(t)

1 + αI(t)

+
βS(t− τ)I(t− τ)
1 + αI(t− τ)

− eµτ
[
µ+ γ + ε− γδ

µ+ δ

]
I(t). (18)
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Define

V1(t) = V11(t) +

t∫
t−τ

βS(u)I(u)

1 + αI(u)
du. (19)

It then follows from (18) and (19) that

d

dt
V1(t) =

(
1− S0

S(t)

)[
−µ(S(t)− S0)

]
+

βS0I(t)

1 + αI(t)

− eµτ
[
µ+ γ + ε− γδ

µ+ δ

]
I(t)

=

(
1− S0

S(t)

)[
−µ(S(t)− S0)

]
+

βS0I(t)

1 + αI(t)

− βS0I(t) + βS0I(t)− eµτ
[
µ+ γ + ε− γδ

µ+ δ

]
I(t)

= −µ (S(t)− S0)
2

S(t)
− αβS0I

2(t)

1 + αI(t)

+ eµτ
(
µ+ γ + ε− γδ

µ+ δ

)
(R0 − 1)I(t). (20)

Clearly, if R0 < 1, then we obtain from (20) that V ′1(t) 6 0. By Theorem 5.3.1 in [21],
solutions limit toM, the largest invariant subset of {V ′1(t) = 0}. Clearly, it follows from
(20) that V ′1(t) = 0 if and only if S = S0, I = 0. Noting thatM is invariant, for each
element inM, we have I = 0, I ′(t) = 0. We therefore obtain from the second equation
of system (16) that

0 = I ′(t) = δR(t),

which leads to R = 0. Hence, V ′1(t) = 0 if and only if (S, I,R) = (S0, 0, 0). Note
that if R0 < 1, the equilibrium E0

1 is locally asymptotically stable. Therefore, the
global asymptotic stability of E0

1(A/µ, 0, 0) follows from LaSalle’s invariance principle
for delay differential systems (see, for example, [23]). This completes the proof.

Corollary 1. If R0 < 1, the disease-free equilibrium E1(A/µ, 0, 0, 0) of system (2) is
globally asymptotically stable in the interior of R4

+ and the disease dies out.

Proof. Let (S(t), E(t), I(t), R(t)) be a positive solution of system (2) with initial condi-
tions (3) and (4).

It follows from the second equation of system (2) and (4) that

E(t) =

t∫
t−τ

βI(u)S(u)

1 + αI(u)
e−µ(t−u) du. (21)

From Theorem 2, we see that if R0 < 1, then

lim
t→+∞

S(t) =
A

µ
, lim

t→+∞
I(t) = 0, lim

t→+∞
R(t) = 0. (22)
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By l’Hôspital’s rule, we derive from (21) and (22) that

lim
t→+∞

E(t) = lim
t→+∞

t∫
t−τ

βI(u)S(u)

1 + αI(u)
e−µ(t−u) du

= lim
t→+∞

[
βI(t)S(t)

1 + αI(t)
− βI(t− τ)S(t− τ)

1 + αI(t− τ)
e−µτ

]
= 0. (23)

Noting that if R0 < 1, the disease-free equilibrium E1(A/µ, 0, 0, 0) of system (2) is
locally asymptotically stable, we conclude that E1 is globally asymptotically stable. This
completes the proof.

We are now in a position to study the global stability of the endemic equilibrium E2

of system (2). To this end, we first consider the global stability of the positive equilibrium
E0

2(S
∗, I∗, R∗) of system (16).

Theorem 3. If R0 > 1, then the positive equilibrium E0
2(S
∗, I∗, R∗) of system (16) is

globally asymptotically stable.

Proof. Let (S(t), I(t), R(t)) be a positive solution of system (16) with initial condi-
tions (3).

Define

V21(t) = S − S∗ − S∗ ln S

S∗
+ k1

(
I − I∗ − I∗ ln I

I∗

)
+ k2

(
R−R∗ −R∗ ln R

R∗

)
,

here k1 and k2 are positive constants to be determined later.
Calculating the derivative of V21(t) along positive solutions of system (16), we derive

that
d

dt
V21(t) =

(
1− S∗

S

)[
A− µS(t)− βS(t)I(t)

1 + αI(t)

]
+ k1

(
1− I∗

I

)[
βe−µτS(t− τ)I(t− τ)

1 + αI(t− τ)
+ δR(t)− (µ+ γ + ε)I(t)

]
+ k2

(
1− R∗

R

)[
γI(t)− (µ+ δ)R(t)

]
. (24)

On substituting A = µS∗ + βS∗I∗/(1 + αI∗) into (24), it follows that

d

dt
V21(t) =

(
1− S∗

S(t)

)[
−µ(S(t)− S∗) + βS∗I∗

1 + αI∗

]
− βS(t)I(t)

1 + αI(t)
+

βS∗I(t)

1 + αI(t)

+ k1

[
βe−µτS(t− τ)I(t− τ)

1 + αI(t− τ)
+ δR(t)− (µ+ γ + ε)I(t)

]
+ k1

[
−βe

−µτI∗S(t− τ)I(t− τ)
I(t)(1 + αI(t− τ))

− δI∗R(t)
I(t)

+ (µ+ γ + ε)I∗
]

+ k2

[
γI(t)− (µ+ δ)R(t)− γR∗ I(t)

R(t)
+ (µ+ δ)R∗

]
. (25)
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Letting

k1 = eµτ , k2 =
δeµτ

µ+ δ
,

we derive from (25) that

d

dt
V21(t) =

(
1− S∗

S

)[
−µ(S(t)− S∗) + βS∗I∗

1 + αI∗

]
− βS(t)I(t)

1 + αI(t)
+

βS∗I(t)

1 + αI(t)

+
βS(t− τ)I(t− τ)
1 + αI(t− τ)

− (µ+ γ + ε)eµτI(t)

− βI∗S(t− τ)I(t− τ)
I(t)(1 + αI(t− τ))

− δeµτI∗R(t)
I(t)

+ (µ+ γ + ε)eµτI∗

+ k2

[
γI(t)− γR∗ I(t)

R(t)
+ (µ+ δ)R∗

]
. (26)

Define
V2(t) = V21(t) + V22(t), (27)

where

V22(t) = β

t∫
t−τ

[
S(u)I(u)

1 + αI(u)
− S∗I∗

1 + αI∗
− S∗I∗

1 + αI∗
ln

(1 + αI∗)S(u)I(u)

S∗I∗(1 + αI(u))

]
du. (28)

A direct calculation shows that

d

dt
V22(t) =

βS(t)I(t)

1 + αI(t)
− βS∗I∗

1 + αI∗
ln

(1 + αI∗)S(t)I(t)

S∗I∗(1 + αI(t))

− βS(t− τ)I(t− τ)
1 + αI(t− τ)

+
βS∗I∗

1 + αI∗
ln

(1 + αI∗)S(t− τ)I(t− τ)
S∗I∗(1 + αI(t− τ))

. (29)

It then follows from (26)–(29) that

d

dt
V2(t) =

(
1− S∗

S

)[
−µ(S(t)− S∗) + βS∗I∗

1 + αI∗

]
+

βS∗I∗

1 + αI∗
(1 + αI∗)I(t)

I∗(1 + αI(t))
− (µ+ γ + ε)eµτI∗

I(t)

I∗

− βS∗I∗

1 + αI∗
(1 + αI∗)S(t− τ)I(t− τ)
S∗I(t)(1 + αI(t− τ))

− δeµτR∗ I
∗

R∗
R(t)

I(t)

+ (µ+ γ + ε)eµτI∗ + k2γI
∗ I(t)

I∗
− k2γI∗

R∗

I∗
I(t)

R(t)
+ k2(µ+ δ)R∗

+
βS∗I∗

1 + αI∗
ln
S(t− τ)I(t− τ)(1 + αI(t))

S(t)I(t)(1 + αI(t− τ))
. (30)
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Noting that

k2(µ+ δ)R∗ = k2γI
∗ = (µ+ γ + ε)eµτI∗ − βS∗I∗

1 + αI∗
, (31)

we derive from (30) and (31) that

d

dt
V2(t) =

(
1− S∗

S

)[
− µ(S(t)− S∗) + βS∗I∗

1 + αI∗

]
+

βS∗I∗

1 + αI∗
(1 + αI∗)I(t)

I∗(1 + αI(t))

− βS∗I∗

1 + αI∗
I(t)

I∗
− βS∗I∗

1 + αI∗
(1 + αI∗)S(t− τ)I(t− τ)
S∗I(t)(1 + αI(t− τ))

− k2γI∗
I∗

R∗
R(t)

I(t)
+ k2γI

∗ +
βS∗I∗

1 + αI∗
− k2γI∗

R∗

I∗
I(t)

R(t)
+ k2γI

∗

+
βS∗I∗

1 + αI∗
ln
S(t− τ)I(t− τ)(1 + αI(t))

S(t)I(t)(1 + αI(t− τ))
. (32)

Note that

ln
S(t− τ)I(t− τ)(1 + αI(t))

S(t)I(t)(1 + αI(t− τ))

= ln
(1 + αI∗)S(t− τ)I(t− τ)
S∗I(t)(1 + αI(t− τ))

+ ln
S∗

S(t)
+ ln

1 + αI(t)

1 + αI∗
. (33)

It therefore follows from (32) and (33) that

d

dt
V2(t)

= −µ (S(t)− S
∗)2

S(t)
− βS∗I∗

1 + αI∗

(
S∗

S
− 1− ln

S∗

S

)
− βS∗I∗

1 + αI∗

[
(1 + αI∗)S(t− τ)I(t− τ)
S∗I(t)(1 + αI(t− τ))

− 1− ln
(1 + αI∗)S(t− τ)I(t− τ)
S∗I(t)(1 + αI(t− τ))

]
− βS∗I∗

1 + αI∗

[
1 + αI(t)

1 + αI∗
− 1− ln

1 + αI(t)

1 + αI∗

]
+ k2γI

∗
[
2− I∗

R∗
R(t)

I(t)
− R∗

I∗
I(t)

R(t)

]
+

βS∗I∗

1 + αI∗

[
1 + αI(t)

1 + αI∗
− 1− I(t)

I∗
+

(1 + αI∗)I(t)

I∗(1 + αI(t))

]
= −µ (S(t)− S

∗)2

S(t)
− βS∗I∗

1 + αI∗

(
S∗

S
− 1− ln

S∗

S

)
− βS∗I∗

1 + αI∗

[
(1 + αI∗)S(t− τ)I(t− τ)
S∗I(t)(1 + αI(t− τ))

− 1− ln
(1 + αI∗)S(t− τ)I(t− τ)
S∗I(t)(1 + αI(t− τ))

]
− βS∗I∗

1 + αI∗

[
1 + αI(t)

1 + αI∗
− 1− ln

1 + αI(t)

1 + αI∗

]
+
γδeµτ

µ+ δ
I∗
[
2− I∗

R∗
R(t)

I(t)
− R∗

I∗
I(t)

R(t)

]
− αβS∗(I − I∗)2

(1 + αI∗)2(1 + αI(t))
. (34)
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Noting that if R0 > 1, S∗, I∗, R∗ > 0, we have that V ′2(t) 6 0. By Theorem 5.3.1 in [21],
solutions limit toM, the largest invariant subset of {V ′2(t) = 0}. It is readily seen from
(34) that V ′2(t) = 0 if and only if S = S∗, I = I∗, R = R∗. Note that if R0 > 1, the
equilibrium E0

2 is locally asymptotically stable. Using a similar argument as that in the
proof of Theorem 2 and by LaSalle’s invariance principle, the global asymptotic stability
of the equilibrium E0

2 follows. This completes the proof.

Using a similar argument as that in the proof of Corollary 1, one can obtain the
following result.

Corollary 2. If R0 > 1, then the endemic equilibrium E2(S
∗, E∗, I∗, R∗) of system (2)

is globally asymptotically stable in the interior of R4
+ and the disease becomes endemic.

4 Discussion

In this paper, we have formulated an SEIR epidemic model with disease relapse, a satu-
ration incidence and a time delay describing the latent period of the disease. The global
dynamics of system (2) has been completely established. By means of suitable Lyapunov
functionals and the LaSalle invariance principle, we have shown that if the basic re-
production number R0 is less than unity, the disease-free equilibrium of system (2) is
globally asymptotically stable and the disease dies out while the endemic equilibrium is
not feasible; and if the basic reproduction number R0 is greater than unity, the endemic
equilibrium of system (2) is globally asymptotically stable and therefore the disease be-
comes endemic. To control the disease, a strategy should reduce the reproduction number
to below one. From the expression of R0, we see that latency period τ and the constant
rate δ at which an individual in the recovered class reverts to the infective class do affect
the value of the basic reproduction number. Clearly, if τ increases or δ decreases, the basic
reproduction number decreases. On the other hand, the contact rate β is also an important
parameter for the basic reproduction number. Decreasing the contact rate is helpful for
the decrease of the value of R0.
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