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Abstract. The research of a nuclear reactor model has been observed, where the system consists
of two differential equations with one delay. A linear analysis has been performed, the asymptotic
stability model of the area D0 and D2 has been defined, in which a stable periodic solution of one
frequency appears. In the nonlinear analysis the analytical expression of the solution is presented
with the help of bifurcation theories. In the numerical experiment using the scientific simulation
program “Model Maker” numerical Runge–Kutta IV series method asymptotically stable solution
and a stable periodic solution has been received and compared to the stable periodic solution
received in nonlinear analysis with the help of bifurcation theories.
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1 Introduction

Nuclear (atomic) reactor is a device to initiate and control a sustained nuclear chain
reaction. In the nuclear reactor uranium 235, plutonium 239 and uranium-238 are con-
trolled by the time and quantity aspects fission into lighter atoms, releasing large amount
of neutrons which have much kinetic energy. These neutrons, gradually impacting the
reactor walls or nuclei borders transform kinetic energy into thermal energy. Therefore,
the nuclear reactor walls are retarders (moderators) of the atoms in the nuclei fission
reactions and transformers of the neutron from kinetic energy into thermal energy [1].

In reactivity transient analysis, the heat transfer from the fuel to the coolant is crucial.
This heat transfer is significantly affected by the behaviour of the gas gap between the
fuel and the cladding, but also by the heat transfer conditions at the cladding surface. It
affects, on one side, the fuel temperature, being a significant safety and neutron kinetics
feedback parameter. The heat transfer crisis can occur at the cladding surface leading to
the wall superheating, which results in the cladding destruction [2].

When the heat transfer situations include extremely high temperature gradients, ex-
tremely large heat fluxes, or an extremely short transient duration, the heat propagation
speeds are finite, and the heat conduction mode is propagative and non diffusive.
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Although of radial fuel element the thickness of the gap is quite small, the low thermal
conductivity of gases causes a large temperature drop across the gap. Because the gap
spacing of radial fuel element is not uniform and the heat conduction transfer process is
very complex.

For the nuclear fuel case, the physical meaning of this term suggests that there is an
effect of heat transfer due to the rapid change of the source term, i.e., the neutron power,
and this effect occurs in nuclear reactors, due to changes in the disturbances reactivity of
different physical effects, mainly by Doppler [2].

According to the purpose, nuclear reactors are subdivided into energy, isotopic and
research [1].

Since the linear theory dass not sufficiently evaluate nuclear reactors stationary mode
stability, therefore, adjudicating stability problems are essential to investigate the nonlin-
ear mathematical model of the nuclear reactor [3].

Whereas nuclear reactors are objects with distributed parameters and their sufficiently
strict mathematical models are expressed in the nonlinear differential equations with
partial derivatives or to certain additional simplifications – equations with a delayed argu-
ment [3]. Each nuclear reactor unit can be described in various types and complications
of differential or integration-differential equations [4].

The difficulty of a nuclear power reactor’s stationary modes analysis is associated with
a modern reactor design complexity, a large variety of different processes in the reactors
and interrelationships. Determining dynamics of the reactors stationary conditions, a re-
search of various theoretical characteristics is relevant, e.g. temperature, power, a nuclear
fuel cycle [3].

Instability analysis in boiling water reactor (BWR) plays a central role in the under-
standing of the physical mechanism that induces the observed power oscillations, which
are unstable and occur at low-core flow and relatively high-power conditions [5].

Complex heterogeneous processes tangle in the reactor and form internal reversible
links. According to certain equations the feedback connections are described and divided
into: mathematical, concentrated, distributed and hybrid. Neutron density changes in
the reactor lay by heat amount exude changes, as a result various environments and
reactor’s design elements of temperature and density change. When these feedbacks are
sufficiently strong, reactor parameters change has the required phase offset, hence reactors
stationary conditions are unstable. Additional feedbacks, determined by management and
regulatory organ also may be the reason for the reactor’s unstable operation. Instability of
the stationary conditions can contain different forms, where the most common are non-
periodic and periodic [4].

While the rapid growth of nuclear reactors and their complexity is significant, scien-
tists are creating and analyzing mathematical models to describe dynamics of processes
occurring in nuclear reactors.

Some recent research works on this topic [6–24].

We studied reactor used for scientific research.
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2 Dynamics model of the nuclear reactor

We are analyzing the point model of a nuclear reactor dynamics, which ignores the
effect of delayed neutrons, however considers the power and temperature reactivity coef-
ficients and the delays while changing the reactivity of thermal convection. The system
of the model consists of differential equations with one delay, which has been partly
analyzed [13]. {

Ṅ(t) = N(t)
{
−AT (t− h)−B

[
N(t)−N0

]}
,

Ṫ (t) = k
[
N(t)−N0 − T (t)

]
.

(1)

There N(t) is the power of the reactor. N0 is its stationary value. T (t) is the tempera-
ture deviation from the stationary value. A is the coefficient of the temperature reactivity.
B is coefficient of power, k is a positive constant, h is a steady time delay, t is time. We
analyze system (1), when k = 1, h = 1.

3 Linear analysis

We consider the stability of stationary solution

T (t) = 0, N(t) = N0. (2)

For this purpose we use D-decomposition method [25].
We performed an amendment have in the system (1)

x(t) = T (t), y(t) = N(t)−N0. (3)

We obtain a system of differential equations{
ẏ(t) =

(
−Ax(t− 1)−By

)
(y +N0),

ẋ(t) = y − x,

where the linear part is system of differential equations{
ẏ(t) =

(
−Ax(t− 1)−By

)
N0,

ẋ(t) = y − x.
(4)

Let us note a = AN0, b = BN0. Then the characteristic quasipolynomial of sys-
tem (4) is defined as

P (λ) = λ2 + (1 + b)λ+ ae−λ + b. (5)

Equation (5) has a zero root λ = 0, when

a+ b = 0. (6)
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Line (6) becomes one of theD-decomposition curves on the plane ab. Let us conceive
that quasipolynomial (5) has a purely imaginary root λ = iσ. After the set of λ = iσ in
Eq. (5) and the separation of real and imaginary parts, we get the remaining parametric
equations of D-decomposition curves

a =
(σ2 + 1)σ

σ cosσ + sinσ
, b =

σ(σ sinσ − cosσ)

σ cosσ + sinσ
. (7)

The analysis of formulas (6) and (7) allows us estimate, that when σ → 0, gets co-
ordinates of reversible point (0.5;−0.5). Furthermore, the second equation of system (7)
follows, that b = 0, when σ sinσ − cosσ = 0, σ 6= 0. As a result we obtain the equation

σ = ctg σ, σ 6= πk, k = 0, 1, 2, . . . . (8)

Equation (8) is valid only when σ ∈ (πk;π/2 + πk), k = 0, 1, 2, . . . .
With a direct calculation we estimate that (8) is legitimate at σ ∈ (0;π/2], when

σ ≈ 0.86 radians, then a ≈ 1.13. Taking into account the periodicity of functions sinσ
and cosσ, we obtain values of parameter a, where b = 0.

Further, considering equality (7) we estimate, that increasing the parameter a, the
parameter b also increases, when σ ∈ (0;π/2).

Furthermore it is necessary to emphasize that:

1. If σ ∈ (0; 5π/18], then a > 0, −0.5 < b 6 0.
2. If σ ∈ (5π/18;π/2], then a > 0, b > 0.

Subsequent calculations pointed out that π/2 +α < σ 6 π, a < 0, b < 0, parameters
a and b are growing together. However, when π < σ 6 3π/2, then negative value a
matches positive value b, and a decreases, when b increases.

If 3π/2 < σ 6 2π, then a > 0, b < 0, so a increases, b decreases and when
2π < σ 6 2π + π/2, then parameters a > 0, b > 0 increase.

Taking into account the periodicity of functions sinσ and cosσ, also considering
conditions (8), as well as the previous reasoning we estimate curves of D-decomposition.

Figure 1 shows D-decomposition curves on the parameters a and b in the plane.

Fig. 1. D-decomposition curves.
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We are to find the area of the asymptotic stabilityD0, which corresponds to quasipoly-
nomial, where real parts of all roots are negative [25]. For the set of areaD0, it is sufficient
to find at least one point that corresponds to the quasipolynomial, where real parts of all
roots are negative [26].

From solution (2) of the stability point a = 0, b = b∗ > 0 follows that the area D0 is
the asymptotic stability domain, because quasipolynomial (5) at this point has only two
roots in λ1 = −b∗, λ2 = −1, which real parts are negative.

We are to analyze the characteristic quasipolynomial (5) in the case when b is fixed
and the parameter a > 0. We are to ascertain the case, when the parameter a increases
two purely imaginary roots ±iσ0 that appear in the characteristic quasipolynomial (5) for
the first time, while the remaining roots have negative real parts. It is, when

a0 = σ0

√
1 + b2 + σ2

0 ,

where σ0 is only root of equation ctg σ = (σ2 − b)/((1 + b)σ), that belongs to the
interval (0;π/2 + α), where α < 0.43 is radians. This follows from the preceding
reasoning.

Let us define a = a0+ε, where ε is a small parameter. Then, changing ε in the interval
[−ε0; ε0], two roots of characteristic quasipolynomial (5) appears on the imaginary axis.
Denoting these roots λ = τ(ε)± iσ(ε), we have equalities τ(0) = 0 and σ(0) = σ0 > 0.

Lemma. The right inequality for what τ ′0 = (d/dε)τ(ε)|ε=0 > 0.

Proof. The argument. Let us take that λ(ε) is a root of (5). Then from the identity

λ2(ε) + (1 + b)λ(ε) + (a0 + ε)e−λ(ε) + b ≡ 0

follows that

τ ′0 = −cosσ0((1 + b)− a0 cosσ0)− (2σ0 + a0 sinσ0) sinσ0
|P (iσ0)|2

.

After the accomplished transformations, we obtain

τ ′0 =
2σ0 sinσ0 + a0 − (1 + b) cosσ0

|P (iσ0)|2
.

As |P (iσ0)|2 > 0, so the τ ′0 sign depends on the fractional counter, which certify
A = 2σ0 sinσ0 + a0 − (1 + b) cosσ0.

1. Let us take that π/2 6 σ0 6 2π + α is α < 0.43 radians. Then cosσ0 6 0 and
−(1 + b) cosσ0 > 0, so it follows that A > 0. In this case τ ′0 > 0.

2. Since 0 < σ0 < π/2. Then, using the condition (1 + b)σ − a sinσ = 0, we
transform A:

A = a0 + 2σ0 sinσ0 −
1

σ0
a0 sinσ0 cosσ0 = a0 + 2σ0 sinσ0 −

a0
2σ0

sin 2σ0

=
a0(2σ0 − sin 2σ0) + 4σ2

0 sinσ0
2σ0

.

Nonlinear Anal. Model. Control, 2013, Vol. 18, No. 1, 1–13
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Since a0 > 0, σ0 > 0 and 0 < σ0 < π/2, so the inequality is veracious 2σ0 >
sin 2σ0, because and A > 0. So in this case, when 0 < σ0 < π/2 we obtain that τ ′0 > 0.

Lemma has been substantiated.

Thus, transitioning parameters a and b from the area D0 to area D2, two complex
conjoint roots λ(ε) and λ(ε) with positive real parts appear.

4 Nonlinear analysis

We are to consider the system of nonlinear equations (1), when a = a0 + ε. After the
use of substitution (3), we will replace the system of differential equation with one of the
second series with a delay:

ẍ(t) + (1 + b)ẋ(t) + bx(t) + (a0 + ε)x(t− 1)

= γ1x(t− 1)
(
ẋ(t) + x(t)

)
+ γ2

(
ẋ2(t) + 2x(t)ẋ(t) + x2(t)

)
, (9)

where γ1 = −A, γ2 = −B.
Let us suppose, that

x(τ, ξ) = ξ cosσ0τ + ξ2x2(τ) + ξ3x3(τ) + · · · , (10)

ε(ξ) = b2ξ
2 + b4ξ

4 + · · · ≡ Ψ(ξ), (11)

c(ξ) = c2ξ
2 + c4ξ

4 + · · · . (12)

Since τ ′0 > 0, differential equations with a delay solution construction method can be
applied to the differential equation (9) [22].

On the ground she, in Eq. (9) the substitution t = (1 + c)τ , (|c| < 1), we be fixed by
the time and record lines (10)–(12) in Eq. (9), we obtain, that the differential equation (9)
will become a formal identity

x′′(τ, ξ) + (1 + c)(1 + b)x′(τ, ξ) + (a0 + ε)(1 + c)2x

(
τ − 1

1 + c
, ξ

)
+ (1 + c)2x(τ, ξ) + b(1 + c)x′(τ, ξ)

≡ γ1
(

(1 + c)x′(τ, ξ)x

(
τ − 1

1 + c
, ξ

)
+ (1 + c)2x(τ, ξ)x

(
τ − 1

1 + c
, ξ

))
+ γ2

(
x′2(τ, ξ) + (1 + c)2x2(τ, ξ) + 2(1 + c)x(τ, ξ)x′(τ, ξ)

)
. (13)

The obtained identities of the left and right sides located ξ degrees and equated the
coefficients to equal ξ the degrees, we get differential equations, which after appropriate
modifications are:

x′′2(τ) + (1 + b)x′2(τ) + a0x2(τ − 1) + bx2(τ)

=
γ1
2

(cosσ0 − σ0 sinσ0) +
γ2
2
σ2
0 −

(
σ0γ1

2
cosσ0 −

γ2σ0
2

sinσ0 + γ2

)
sin 2σ0τ

+ 0.5
(
γ1 sinσ0 + γ1 cosσ0 − γ2σ2

0

)
cos 2σ0τ, (14)

www.mii.lt/NA



Linear and nonlinear stability in nuclear reactors with delayed effects 7

x′′3(τ) + (1 + b)x3(τ) + a0x3(τ − 1) + bx3(τ)

= σ0 sinσ0τ − b2(cosσ0τ cosσ0 + sinσ0τ sinσ0)

− c2
(
2a0 cosσ0(τ − 1)− a0σ0 sinσ0(τ − 1) + 2b cosσ0τ − bσ0 sinσ0τ

)
+ x′2(τ)

(
γ1 cosσ0(τ − 1) + 2γ2σ0 sinσ0τ − 2γ2 cosσ0τ

)
+ x2(τ)

(
γ1 cosσ0(τ − 1) + 2γ2 cosσ0τ + 2γ2σ0 sinσ0τ

)
+ x2(τ − 1)(γ1 cosσ0τ − γ1σ0 sinσ0τ). (15)

Equation (14) is a second series linear of a not homogeneous differential equation
with steady coefficients. Therefore, we are looking for the solution in the form

x2(τ) = A0 +A2S sin 2σ0τ +A2C cos 2σ0τ. (16)

After inserting solution (16) to Eq. (14) we obtain

A0 =
1

2(a0 + b)

(
γ1(cosσ0 − σ0 sinσ0) + γ2σ

2
0

)
,

A2S =
MI −NR
|P0(2iσ0)|2

, A2C =
NI −MR

|P0(2iσ0)|2
,

where

M = 0.5γ1 sinσ0 − 0.5γ1 cosσ0 − γ2,
N = 0.5

(
γ1σ0 sinσ0 + γ1 cosσ0 − γ2σ2

0

)
,

when

I = ImP0(2iσ0), R = ReP0(2iσ0), P0(2iσ0) ≡ P
(
λ(ε)

)∣∣
ε=0

λ=2iσ0

.

Alternatives of Fredholm [26,27] follows, that the differential equation (16) has a pe-
riodic solution when these equalities are satisfied

σ0
π

2π/σ0∫
0

f3(τ) sinσ0τ dτ = 0,
σ0
π

2π/σ0∫
0

f3(τ) cosσ0τ dτ = 0. (17)

There f3(τ) is equal to Eqs. (15) right side.
From conditions (17) we get a system with two linear equations in regard to variables

b2 and c2: {
−b2 sinσ0 + c2(a0σ0 cosσ0 − 2a0 sinσ0 + bσ0) = Q1,

−b2 cosσ0 − c2(2a0 cosσ0 + a0σ0 sinσ0 + 2b) = Q2,
(18)

where

Q1 = γ2K + σ0(1 + 2Kγ2σ0 − 2K1γ2 + 2A0γ2 −K1γ2 −A0γ1)

+ γ1(A0 − σ0K − 0.5K1) sinσ0 + γ1(0.5K − σ0K1) cosσ0

+ 0.5γ1(K1 − σ0K) sin 2σ0τ + 0.5γ1(K1σ0 +K) cos 2σ0τ,

Nonlinear Anal. Model. Control, 2013, Vol. 18, No. 1, 1–13
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Q2 = γ1(A0 −K) + γ2(2K1σ
2
0 + 3σ0K +K1 +A0)

+ γ1(0.5K −K1σ0) sinσ0 + γ1(Kσ0 +A0 + 0.5K) cosσ0

+ 0.5γ1(K −K1σ0) sin 2σ0 + 0.5γ1(K1 −Kσ0) cos 2σ0,

when
K = MI −NR, K1 = NI −MR.

From system (18) we obtain

b2 =
∆b2

∆
, c2 =

∆c2

∆
,

where

∆ =

[
− sinσ0 a0σ0 cosσ0 − 2a0 sinσ0 + bσ0
− cosσ0 −2a0 cosσ0 − a0σ0 sinσ0 − 2b

]
,

∆b2 =

[
Q1 a0σ0 cosσ0 − 2a0 sinσ0 + bσ0
Q2 −2a0 cosσ0 − a0σ0 sinσ0 − 2b

]
, ∆c2 =

[
− sinσ0 Q1

− cosσ0 Q2

]
.

Theorem. Only a set of functions (10)–(12) exists to satisfy identity (13) [26].

It follows from the theorem, that the scalar equations ε = ψ(ξ) each solution ξ = ξ(ε)
corresponds to a periodic solution of a differential equations

x(t, ε) = x(τ, ξ).

Let us note that ξ∗(ε), when |ε| 6 ε0 is a scalar equations ε = ψ(ξ) root belonging to
the interval (0, ξ0).

Let us say, that ε is chosen so, that the equation

ε = ψ(ξ) (19)

has only simple roots.
When b2 > 0 we get the differential equation (9) as well as a periodic solution of

system (1) defined by
x(t, ε) ≈ ξ∗ cosσ0τ + ξ2∗x2(τ), (20)

when

σ0 =
π

2h
, ξ∗ ≈

√
ε

b2
, τ =

t

1 + c(ξ)
,

and x2(τ) is defined in equality (16). Solution (20) is stable, when τ ′0(d/dξ)Ψ(ξ)|ξ=ξ∗>0
and unstable, if τ ′0(d/dξ)Ψ(ξ)|ξ=ξ∗ < 0.

When b2 < 0, then scalar equations (19) have no solutions, therefore, the differential
equation (9) also has no periodic solutions either.

However, in this case (19) solutions exist, which leaves zero environment in the course
of time, because τ ′0(ε−Ψ(ξ)) > 0.
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5 Numerical experiment

When the qualitative analysis of model (1) had been performed, we obtained the results
using the numerical experiment. We are to search the differential equation with one delay
numerical solution using Runge–Kutta IV series method.

Asymptotically stable solution of the differential equation (9) obtained by the nu-
merical method is presented in Fig. 2, under the following parameter values: a = 0.9;
b = 0.34; h = 1; x0 = 0.9; y0 = 0.8, where a and b values are taken from the domainD0.

In Fig. 2 we observe, that the temperature coefficient of reactivity a and coefficient
of power b selected from domain D0, is the temperature deviation of the nuclear reactor,
where the stationary value is asymptotically stable. Moving neutrons at different reactor’s
height are increasing its temperature. The reactivity of temperature together with the
power of reactor asymptotically approach to the equilibrium state.

A stable periodic solution of the differential equation (9) obtained by the numerical
method is represented in Fig. 3, under the following parameter values: a = 1.2; b = 0.04;
h = 1; x0 = 0.9; y0 = 0.8, where a and b values are taken from the area D2.

Figure 3. We observe that the temperature coefficient of reactivity a and coefficient of
power b selected from domain D2, is the temperature deviation of the nuclear reactor
where the stationary value is a stable periodic solution. The negative temperature of
reactivity affects the power o the reactor’s stabilization [16]. As the temperature solution
is periodically stable, the reactor’s power has a stable periodic mode.

After inserting ξ, σ0, τ , x2(τ) in (20) we get the formula, which we will use to present
a stable periodic solution (dotted line) in Fig. 4:

x(t) ≈ 0.1625 cos 0.9479t

+ 0.0264(0.3038 + 0.5011 sin 1.8959t+ 0.4699 cos 1.8959t). (21)

Fig. 2. The asymptotic stable solution received with the help of numerical method.

Nonlinear Anal. Model. Control, 2013, Vol. 18, No. 1, 1–13
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Figure 4. We obtained a stable periodic solution of the temperature derived from
formula (21).

We represent the stable periodic solution (continuous line) of the differential equa-
tion (9) obtained by a numerical method and a stable periodic solution obtained (21) by
the formula (dotted line).

Figure 5. We compared the stable periodic solution of the temperature obtained
by a numerical method and the stable periodic solution of the temperature obtained by
analytical methods.

Fig. 3. The stable periodic solution received with the help of numerical method.

Fig. 4. The stable periodic solution received with the help of equation (21).
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Fig. 5. Comparison of stable periodic solutions.

6 Conclusions

After performing the linear analysis of the reactor mathematical model described by two
differential equations with one delay (1) by the D-decomposition method were obtain
the asymptotic stability area D0 and area D2, which appears a stable periodic solution
of one frequency. Nonlinear analysis of model has been performed using the bifurcation
theory and the analytical expression of a stable periodic solution has been constructed
in the area D2. Sustaining obtained results with a simulation package “Model Maker”
in the linear analysis of the numerical experiment, a stable asymptomatic solution and
a stable periodic solution have been received with the help of a numerical method, which
acceptably very well with the obtained stable periodic solution in the nonlinear analysis
constructed with the help of bifurcation theories.
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12 K. Bučys et all.

6. M.N. Aly, E.S. Elaraby, A.M. Gaheen, M.S. Nagy, Simulation and analysis of IAEA benchmark
transien, Prog. Nucl. Energy, 49, pp. 217–229, 2007.

7. F.J. Bonettob, G.G. Theler, On the stability of the point reactor kinetics equations, Nucl. Eng.
Des., 240, pp. 1443–1449, 2010.

8. J. Bouillard, L. Huilin, S. Qiaoqun, W. Shuai, W. Shuyan, L. Xiang, Simulations of flow
behavior of fuel particles in a conceptual helium-cooled spout fluidized bed nuclear reactor,
Nucl. Eng. Des., 239, pp. 106–115, 2009.
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