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Abstract. In this paper we introduce the concept of coincidentally commuting pair in the context of
coupled fixed point problems. It is established that an arbitrary family of mappings has a coupled
common fixed point with two other functions under certain contractive inequality condition where
two specific members of the family are assumed to be coincidentally commuting with these two
functions respectively. The main result has certain corollaries. An example shows that the main
theorem properly contains one of its corollaries.
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1 Introduction

In a recent work Bhaskar and Lakshmikantham have established a coupled contraction
mapping principle [1]. Following this work many authors created coupled fixed point
theorems for a variety of mappings and in various spaces. Some instances of this work are
noted in [2–16]. It has a large share in the recent development of fixed point theory.

An important category in fixed point theory is the common fixed point problems. An
early result was established by Jungck under commuting conditions [17]. The concept
of commuting has been generalized in various directions and in several ways over the
years. One such notion is “coincidentally commuting”, also known as “weak compati-
bility” which was introduced in [18]. Several works have been done on fixed points of
“coincidentally commuting” mappings as, for instances, in [19–21].

Coupled common fixed point and coincidence point problems were first addressed
by Lakshmikantham and Ciric [9] in which the authors extended the work of Bhaskar
and Lakshmikantham [1]. Following this result other coupled coincidence point results
appeared in [3] and [5].
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A coupled common fixed point theorem for a family of mappings 15

In this paper we define the concept of “coincidentally commuting” for two mappings
F : X × X → X and g : X → X and establish some coupled common fixed point
results. Our main result is for family of mappings which is not necessarily countable. It
has several corollaries and an illustrative example. This example shows that the corollaries
are effectively included in the main theorem. We have also shown with an example that
the concept of “coincidentally commuting” is strictly weaker than the prior concept of
“commuting” given in [9].

2 Mathematical preliminaries

Definition 1. (See [1].) An element (x, y) ∈ X × X , is called a coupled fixed point of
the mapping F : X ×X → X if

F (x, y) = x and F (y, x) = y.

Definition 2. (See [9].) An element (x, y) ∈ X × X , is called a coupled coincidence
point of the mappings F : X ×X → X and g : X → X if

F (x, y) = gx and F (y, x) = gy.

Definition 3. (See [9].) An element (x, y) ∈ X ×X , is called a coupled common fixed
point of the mappings F : X ×X → X and g : X → X if

F (x, y) = gx = x and F (y, x) = gy = y.

Definition 4. (See [9].) LetX be a non-empty set and F : X×X → X and g : X → X .
We say F and g are commutative if

gF (x, y) = F (gx, gy) for all x, y ∈ X.

Definition 5. Let X be a non-empty set and F : X ×X → X and g : X → X . F and
g are said to be coincidentally commuting if they commute at their coupled coincidence
points; that is, if gx = F (x, y) and gy = F (y, x) for some (x, y) ∈ X ×X , then

gF (x, y) = F (gx, gy) and gF (y, x) = F (gy, gx).

Example 1. Let X = [0,∞). Let F : X × X → X and g : X → X be defined
respectively as follows:

F (x, y) =

{
1/3 if x > 1 and 0 < y < 1,

0 otherwise
and gx =


0 if x = 0,

100 if 0 < x < 1,

1 if x = 1,

20 if x > 1.

Here, the functions g and F commute at their only coupled coincidence point (0, 0).
Therefore, the pair of functions (g, F ) is coincidentally commuting. But the pair of func-
tions (g, F ) is not commuting.
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In view of the above example we have the following observation.

Remark 1. Every commuting pair is a coincidentally commuting pair but its converse is
not true.

3 Main result

Theorem 1. Let (X, d) be a complete metric space. Let {Fα : X ×X → X: α ∈ Λ} be
a family of mappings and h, g : X → X be two self mappings such that:

(A) h(X) and g(X) are closed subsets of X , and
(B) there exist α0, β0 ∈ Λ such that:

(i) Fα0
(X ×X) ⊆ g(X), Fβ0

(X ×X) ⊆ h(X),
(ii) the pairs (h, Fα0

) and (g, Fβ0
) are coincidentally commuting,

(iii) d(Fα0
(x, y), Fα(u, v)) 6 ad(hx, gu) + bd(hy, gv) +Lmin{d(Fα0

(x, y), gu),
d(Fα(u, v), hx), d(Fα0

(x, y), hx), d(Fα(u, v), gu)} for all α ∈ Λ and for all
x, y, u, v ∈ X , where a, b and L are non-negative real numbers with a+ b < 1.

Then, there exists a unique (x, y) ∈ X ×X such that x = hx = gx = Fα(x, y) and
y = hy = gy = Fα(y, x) for all α ∈ Λ, that is, h, g and {Fα: α ∈ Λ} have a unique
coupled common fixed point in X . Moreover, any coupled common fixed point of h, g,
Fα0

and Fβ0
is a coupled common fixed point of h, g and {Fα: α ∈ Λ}.

Proof. Suppose that h, g and {Fα: α ∈ Λ} have two coupled common fixed points (x, y)
and (p, q). Then, for all α ∈ Λ,

x = hx = gx = Fα(x, y) and y = hy = gy = Fα(y, x), (1)
and

p = hp = gp = Fα(p, q) and q = hq = gq = Fα(q, p). (2)

From the condition (iii), using (1) and (2), we have

d(x, p)

= d
(
Fα0

(x, y), Fα(p, q)
)

6 ad(hx, gp) + bd(hy, gq)

+ Lmin
{
d
(
Fα0

(x, y), gp
)
, d
(
Fα(p, q), hx

)
, d
(
Fα0

(x, y), hx
)
, d
(
Fα(p, q), gp

)}
= ad(x, p) + bd(y, q). (3)

Again, from the condition (iii), using (1) and (2), we have

d(y, q)

= d
(
Fα0

(y, x), Fα(q, p)
)

6 ad(hy, gq) + bd(hx, gp)

+ Lmin
{
d(Fα0

(y, x), gq), d(Fα(q, p), hy), d
(
Fα0

(y, x), hy
)
, d(Fα(q, p), gq)

}
= ad(y, q) + bd(x, p). (4)
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A coupled common fixed point theorem for a family of mappings 17

From (3) and (4), we have

d(x, p) + d(y, q) 6 (a+ b)
[
d(x, p) + d(y, q)

]
.

Since a+ b < 1, it follows from the above inequality that

d(x, p) + d(y, q) = 0,

which implies d(x, p) = 0 and d(y, q) = 0, that is, x = p and y = q, that is, (x, y) =
(p, q). Hence, the coupled common fixed point of h, g and {Fα: α ∈ Λ}, if it exists, is
unique.

Now suppose that (w, z) ∈ X ×X is a coupled common fixed point of h, g, Fα0
and

Fβ0
. Then

w = hw = gw = Fα0(w, z) = Fβ0(w, z),

z = hz = gz = Fα0(z, w) = Fβ0(z, w).
(5)

For any α ∈ Λ, from (iii) using (5), we have

d
(
w,Fα(w, z)

)
= d
(
Fα0

(w, z), Fα(w, z)
)

6 ad(hw, gw) + bd(hz, gz) + Lmin
{
d
(
Fα0

(w, z), gw
)
, d
(
Fα(w, z), hw

)
,

d
(
Fα0

(w, z), hw
)
, d
(
Fα(w, z), gw

)}
= 0,

that is,
Fα(w, z) = w for all α ∈ Λ. (6)

Again, for any α ∈ Λ, from (iii) using (5), we have

d
(
z, Fα(z, w)

)
= d
(
Fα0

(z, w), Fα(z, w)
)

6 ad(hz, gz) + bd(hw, gw) + Lmin
{
d
(
Fα0

(z, w), gz
)
, d
(
Fα(z, w), hz

)
,

d
(
Fα0

(z, w), hz
)
, d
(
Fα(z, w), gz

)}
= 0,

that is,
Fα(z, w) = z for all α ∈ Λ. (7)

From (5), (6) and (7), we have w = hw = gw = Fα(w, z) and z = hz = gz = Fα(z, w)
for all α ∈ Λ, that is, (w, z) is a coupled common fixed point of h, g and {Fα: α ∈ Λ}.
Hence, any coupled common fixed point of h, g, Fα0

and Fβ0
is a coupled common fixed

point of h, g and {Fα: α ∈ Λ}. The converse part is trivial.
Let x0, y0 be two points in X . Since Fα0

(X ×X) ⊆ g(X), Fβ0
(X ×X) ⊆ h(X),

we define the sequences {xn} and {yn} in X as follows for all n > 0:

p2n = gx2n+1 = Fα0
(x2n, y2n), p2n+1 = hx2n+2 = Fβ0

(x2n+1, y2n+1), (8)
q2n = gy2n+1 = Fα0

(y2n, x2n), q2n+1 = hy2n+2 = Fβ0
(y2n+1, x2n+1). (9)
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From the condition (iii), using (8) and (9), we have

d(p2n, p2n+1)

= d
(
Fα0(x2n, y2n), Fβ0(x2n+1, y2n+1)

)
6 ad(hx2n, gx2n+1) + bd(hy2n, gy2n+1)

+ Lmin
{
d
(
Fα0(x2n, y2n), gx2n+1

)
, d
(
Fβ0(x2n+1, y2n+1), hx2n

)
,

d
(
Fα0(x2n, y2n), hx2n

)
, d
(
Fβ0(x2n+1, y2n+1), gx2n+1

)}
= ad(p2n−1, p2n) + bd(q2n−1, q2n). (10)

From the condition (iii), using (8) and (9), we have

d(q2n, q2n+1)

= d
(
Fα0

(y2n, x2n), Fβ0
(y2n+1, x2n+1)

)
6 ad(hy2n, gy2n+1) + bd(hx2n, gx2n+1)

+ Lmin
{
d
(
Fα0(y2n, x2n), gy2n+1

)
, d
(
Fβ0(y2n+1, x2n+1), hy2n

)
,

d
(
Fα0(y2n, x2n), hy2n

)
, d
(
Fβ0(y2n+1, x2n+1), gy2n+1

)}
= ad(q2n−1, q2n) + bd(p2n−1, p2n). (11)

From (10) and (11), we have

d(p2n, p2n+1) + d(q2n, q2n+1) 6 (a+ b)
[
d(p2n−1, p2n) + d(q2n−1, q2n)

]
. (12)

Again, from the condition (iii), using (8) and (9), we have

d(p2n+1, p2n+2)

= d(p2n+2, p2n+1) = d
(
Fα0

(x2n+2, y2n+2), Fβ0
(x2n+1, y2n+1)

)
6 ad(hx2n+2, gx2n+1) + bd(hy2n+2, gy2n+1)

+ Lmin
{
d
(
Fα0

(x2n+2, y2n+2), gx2n+1

)
, d
(
Fβ0

(x2n+1, y2n+1), hx2n+2

)
,

d
(
Fα0

(x2n+2, y2n+2), hx2n+2

)
, d
(
Fβ0

(x2n+1, y2n+1), gx2n+1

)}
= ad(p2n+1, p2n) + bd(q2n+1, q2n) = ad(p2n, p2n+1) + bd(q2n, q2n+1). (13)

From the condition (iii), using (8) and (9), we have

d(q2n+1, q2n+2)

= d(q2n+2, q2n+1) = d
(
Fα0

(y2n+2, x2n+2), Fβ0
(y2n+1, x2n+1)

)
6 ad(hy2n+2, gy2n+1) + bd(hx2n+2, gx2n+1)

+ Lmin
{
d(Fα0

(y2n+2, x2n+2), gy2n+1), d
(
Fβ0

(y2n+1, x2n+1), hy2n+2

)
,

d
(
Fα0

(y2n+2, x2n+2), hy2n+2

)
, d
(
Fβ0

(y2n+1, x2n+1), gy2n+1

)}
= ad(q2n+1, q2n) + bd(p2n+1, p2n) = ad(q2n, q2n+1) + bd(p2n, p2n+1). (14)
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A coupled common fixed point theorem for a family of mappings 19

From (13) and (14), we have

d(p2n+1, p2n+2) + d(q2n+1, q2n+2) 6 (a+ b)
[
d(p2n, p2n+1) + d(q2n, q2n+1)

]
. (15)

It follows from (12) and (15) that

d(pn, pn+1) + d(qn, qn+1) 6 (a+ b)
[
d(pn−1, pn) + d(qn−1, qn)

]
.

Set rn = d(pn, pn+1) + d(qn, qn+1) and δ = a+ b, then

0 6 rn 6 δrn−1 6 δ2rn−2 6 · · · 6 δnr0.

Now, we show that both {pn} and {qn} are Cauchy sequences. For each m > n, we have

d(pm, pn) 6 d(pm, pm−1) + d(pm−1, pm−2) + · · ·+ d(pn+1, pn)

and
d(qm, qn) 6 d(qm, qm−1) + d(qm−1, qm−2) + · · ·+ d(qn+1, qn).

Therefore,

d(pm, pn) + d(qm, qn)

6 rm−1 + rm−2 + · · ·+ rn 6
(
δm−1 + δm−2 + · · ·+ δn

)
r0 6

δn

1− δ
r0.

Since δ < 1, we have

lim
n,m→∞

[
d(pm, pn) + d(qm, qn)

]
= 0,

which implies that

lim
n,m→∞

d(pm, pn) = 0 and lim
n,m→∞

d(qm, qn) = 0.

It follows that {pn} and {qn} are Cauchy sequences in X . From the completeness of X ,
there exist x, y ∈ X such that

lim
n→∞

pn = x and lim
n→∞

qn = y. (16)

Therefore, from (8), (9) and (16), we have

lim
n→∞

p2n = lim
n→∞

gx2n+1 = lim
n→∞

Fα0
(x2n, y2n) = lim

n→∞
p2n+1

= lim
n→∞

hx2n+2 = lim
n→∞

Fβ0
(x2n+1, y2n+1) = x (17)

and
lim
n→∞

q2n = lim
n→∞

gy2n+1 = lim
n→∞

Fα0
(y2n, x2n) = lim

n→∞
q2n+1

= lim
n→∞

hy2n+2 = lim
n→∞

Fβ0
(y2n+1, x2n+1) = y. (18)
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Since Fα0(X ×X) ⊆ g(X), Fβ0(X ×X) ⊆ h(X) and h(X), g(X) are closed subsets
of X , from (17) and (18), it is clear that x, y ∈ h(X) ∩ g(X). Then there exist r, s ∈ X
such that hr = x and hs = y and there exist w, z ∈ X such that gw = x and gz = y.

From the condition (iii), we have

d(Fα0
(r, s), Fβ0

(x2n+1, y2n+1))

6 ad(hr, gx2n+1) + bd(hs, gy2n+1)

+ Lmin
{
d
(
Fα0

(r, s), gx2n+1

)
, d
(
Fβ0

(x2n+1, y2n+1), hr
)
,

d
(
Fα0

(r, s), hr
)
, d
(
Fβ0

(x2n+1, y2n+1), gx2n+1

)}
.

Taking n→∞ in the above inequality, using (17) and (18), we have

d
(
Fα0

(r, s), x
)

= 0; that is, x = Fα0
(r, s).

Therefore, we have
x = hr = Fα0

(r, s). (19)

Similarly, we can prove
y = hs = Fα0

(s, r). (20)

Again, from the condition (iii), we have

d
(
Fα0(x2n, y2n), Fβ0(w, z)

)
6 ad(hx2n, gw) + bd(hy2n, gz)

+ Lmin
{
d
(
Fα0(x2n, y2n), gw

)
, d
(
Fβ0(w, z), hx2n

)
,

d
(
Fα0(x2n, y2n), hx2n

)
, d
(
Fβ0(w, z), gw

)}
.

Taking n→∞ in the above inequality, using (17) and (18), we have

d(x, Fβ0(w, z)) = 0; that is, x = Fβ0(w, z).

Therefore, we have

x = gw = Fβ0
(w, z). (21)

Similarly, we can prove
y = gz = Fβ0

(z, w). (22)

From (19), (21) and (20), (22), we have respectively

x = hr = Fα0
(r, s) = gw = Fβ0

(w, z) (23)

and
y = hs = Fα0

(s, r) = gz = Fβ0
(z, w). (24)

From (23) and (24), it follows that (r, s) is a coupled coincidence point of h and Fα0 .
Since the pair (h, Fα0) is coincidentally commuting, we have

hFα0(r, s) = Fα0(hr, hs) and hFα0(s, r) = Fα0(hs, hr),
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that is,
hx = Fα0(x, y) and hy = Fα0(y, x). (25)

Again, from (23) and (24), it follows that (w, z) is a coupled coincidence point of g and
Fβ0

. Since the pair (g, Fβ0
) is coincidentally commuting, we have

gFβ0
(w, z) = Fβ0

(gw, gz) and gFβ0
(z, w) = Fβ0

(gz, gw),

that is,
gx = Fβ0

(x, y) and gy = Fβ0
(y, x).

From the condition (iii), using (23), (24) and (25), we have

d
(
Fα0

(x, y), x
)

= d
(
Fα0

(x, y), Fβ0
(w, z)

)
6 ad(hx, gw) + bd(hy, gz) + Lmin

{
d
(
Fα0

(x, y), gw
)
, d
(
Fβ0

(w, z), hx
)
,

d
(
Fα0

(x, y), hx
)
, d
(
Fβ0

(w, z), gw
)}

= ad
(
Fα0

(x, y), x
)

+ bd
(
Fα0

(y, x), y
)
. (26)

Again, from the condition (iii), using (23), (24) and (25), we have

d
(
Fα0

(y, x), y
)

= d
(
Fα0

(y, x), Fβ0
(z, w)

)
6 ad(hy, gz) + bd(hx, gw) + Lmin

{
d
(
Fα0

(y, x), gz
)
, d
(
Fβ0

(z, w), hy
)
,

d
(
Fα0

(y, x), hy
)
, d
(
Fβ0

(z, w), gz
)
}

= ad
(
Fα0

(y, x), y
)

+ bd
(
Fα0

(x, y), x
)
. (27)

From (26) and (27), we have

d
(
Fα0

(x, y), x
)

+ d
(
Fα0

(y, x), y
)
6 (a+ b)

[
d
(
Fα0

(x, y), x
)

+ d
(
Fα0

(y, x), y
)]
.

Since a+ b < 1, it follows from the above inequality that

d
(
Fα0(x, y), x

)
+ d
(
Fα0(y, x), y

)
= 0,

which implies that

d
(
Fα0

(x, y), x
)

= 0 and d
(
Fα0

(y, x), y
)

= 0,

that is,

Fα0
(x, y) = x and Fα0

(y, x) = y. (28)

From (25) and (28), we have

hx = Fα0
(x, y) = x and hy = Fα0

(y, x) = y. (29)

Similarly, we can prove that

gx = Fβ0
(x, y) = x and gy = Fβ0

(y, x) = y. (30)
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From (29) and (30), we have

x = hx = gx = Fα0(x, y) = Fβ0(x, y)

and
y = hy = gy = Fα0

(y, x) = Fβ0
(y, x).

Therefore, (x, y) is a coupled common fixed point of h, g, Fα0
and Fβ0

.
By what we have already proved, (x, y) is the unique coupled common fixed point of

h, g and {Fα: α ∈ Λ}.

Note. The contractive inequality (iii) of Theorem 1 is an analogue of Condition B which
was introduced by Babu, Sandhya and Kameswari [22] in 2008.

Since every commuting pair of functions is a coincidentally commuting pair, we have
the following corollary.

Corollary 1. Let (X, d) be a complete metric space. Let {Fα : X ×X → X: α ∈ Λ}
be a family of mappings and h, g : X → X be two self mappings such that:

(A) h(X) and g(X) are closed subsets of X , and
(B) there exist α0, β0 ∈ Λ such that:

(i) Fα0
(X ×X) ⊆ g(X), Fβ0

(X ×X) ⊆ h(X),

(ii) the pairs (h, Fα0) and (g, Fβ0) are commuting,

(iii) d(Fα0
(x, y), Fα(u, v)) 6 ad(hx, gu) + bd(hy, gv) +Lmin{d(Fα0

(x, y), gu),
d(Fα(u, v), hx), d(Fα0

(x, y), hx), d(Fα(u, v), gu)} for all α ∈ Λ and for all
x, y, u, v ∈ X , where a, b and L are non-negative real numbers with a+ b < 1.

Then, there exists a unique (x, y) ∈ X ×X such that x = hx = gx = Fα(x, y) and
y = hy = gy = Fα(y, x) for all α ∈ Λ, that is, h, g and {Fα: α ∈ Λ} have a unique
coupled common fixed point in X. Moreover, any coupled common fixed point of h, g, Fα0

and Fβ0
is a coupled common fixed point of h, g and {Fα: α ∈ Λ}.

Corollary 2. Let (X, d) be a complete metric space. Let {Fα : X ×X → X: α ∈ Λ}
be a family of mappings and h, g : X → X be two self mappings such that:

(A) h(X) and g(X) are closed subsets of X , and
(B) there exist α0, β0 ∈ Λ such that:

(i) Fα0
(X ×X) ⊆ g(X), Fβ0

(X ×X) ⊆ h(X),

(ii) the pairs (h, Fα0
) and (g, Fβ0

) are coincidentally commuting,

(iii) d(Fα0
(x, y), Fα(u, v)) 6 ad(hx, gu) + bd(hy, gv) for all α ∈ Λ and for all

x, y, u, v ∈ X , where a and b are non-negative real numbers with a+ b < 1.

Then, there exists a unique (x, y) ∈ X ×X such that x = hx = gx = Fα(x, y) and
y = hy = gy = Fα(y, x) for all α ∈ Λ, that is, h, g and {Fα: α ∈ Λ} have a unique
coupled common fixed point in X. Moreover, any coupled common fixed point of h, g, Fα0

and Fβ0
is a coupled common fixed point of h, g and {Fα: α ∈ Λ}.
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Proof. Taking L = 0 in Theorem 1, we have the required proof.

Corollary 3. Let (X, d) be a complete metric space. Let {Fα : X ×X → X: α ∈ Λ}
be a family of mappings and h, g : X → X be two self mappings such that:

(A) h(X) and g(X) are closed subsets of X , and
(B) there exist α0, β0 ∈ Λ such that:

(i) Fα0
(X ×X) ⊆ g(X), Fβ0

(X ×X) ⊆ h(X),

(ii) the pairs (h, Fα0) and (g, Fβ0) are coincidentally commuting,

(iii) d(Fα0(x, y), Fα(u, v)) 6 k/2[d(hx, gu) + d(hy, gv)] for all α ∈ Λ and for all
x, y, u, v ∈ X , where k ∈ [0, 1).

Then, there exists a unique (x, y) ∈ X ×X such that x = hx = gx = Fα(x, y) and
y = hy = gy = Fα(y, x) for all α ∈ Λ, that is, h, g and {Fα: α ∈ Λ} have a unique
coupled common fixed point in X. Moreover, any coupled common fixed point of h, g, Fα0

and Fβ0 is a coupled common fixed point of h, g and {Fα: α ∈ Λ}.

Proof. Taking a = b = k/2 , where k ∈ [0, 1) and L = 0 in Theorem 1, we have the
required proof.

Corollary 4. Let (X, d) be a complete metric space. Let h : X → X , g : X → X ,
F : X × X → X and G : X × X → X be four mappings such that the following
conditions are satisfied:

(i) F (X ×X) ⊆ g(X), G(X ×X) ⊆ h(X),

(ii) h(X), g(X) are closed subsets of X ,

(iii) (h, F ) and (g,G) are coincidentally commuting pairs,

(iv) d(F (x, y), G(u, v)) 6 ad(hx, gu)+bd(hy, gv)+Lmin{d(F (x, y), gu), d(G(u, v),
hx), d(F (x, y), hx), d(G(u, v), gu)} for all x, y, u, v ∈ X , where a, b and L are
non-negative real numbers with a+ b < 1.

Then there exists a unique (x, y) ∈ X × X such that x = hx = gx = F (x, y) =
G(x, y) and y = hy = gy = F (y, x) = G(y, x); that is, h, g, F and G have a unique
coupled common fixed point in X .

Proof. Considering {Fα: α ∈ Λ} = {F,G} in Theorem 1, we have the required
proof.

Corollary 5. Let (X, d) be a complete metric space. Let F : X × X → X and G :
X ×X → X be two mappings. Suppose there exist non-negative real numbers a, b and
L with a+ b < 1 such that

d
(
F (x, y), G(u, v)

)
6 ad(x, u) + bd(y, v)

+ Lmin
{
d
(
F (x, y), u

)
, d
(
G(u, v), x

)
, d
(
F (x, y), x

)
, d
(
G(u, v), u

)}
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for all x, y, u, v ∈ X . Then there exists a unique (x, y) ∈ X×X such that x = F (x, y) =
G(x, y) and y = F (y, x) = G(y, x); that is, F and G have a unique common coupled
fixed point in X .

Proof. Considering {Fα: α ∈ Λ} = {F,G} and h, g to be the identity mappings in
Theorems 1, we have the required proof.

Corollary 6. Let (X, d) be a complete metric space. Let F : X×X → X be a mapping.
Suppose there exist a constant k ∈ [0, 1) such that

d
(
F (x, y), F (u, v)

)
6
k

2

[
d(x, u) + d(y, v)

]
for all x, y, u, v ∈ X . Then there exists a unique (x, y) ∈ X ×X such that x = F (x, y)
and y = F (y, x); that is, F has a unique coupled fixed point in X .

Proof. Considering {Fα: α ∈ Λ} = {F}, a = b = k/2, where k ∈ [0, 1), L = 0 and
h, g to be the identity mappings in Theorems 1, we have the required proof.

Example 2. Let X = [0,∞) and the metric d on X be defined as d(x, y) = |x − y| for
x, y ∈ X .

Then (X, d) is a complete metric space.
Let Λ = {1, 2, 3, . . .} and for every α ∈ Λ, Fα : X ×X → X be defined as follows:

for α ∈ Λ with α 6= 1, 2,

Fα(x, y) =

{
0 if 0 6 x 6 1,

2α/(α+ 1) if x > 1,

F1(x, y) =

{
1/3 if x > 1 and 0 < y < 1,

0 otherwise

and

F2(x, y) =

{
1 if x > 1 and y > 1,

0 otherwise.

Let h, g : X → X be defined as follows:

hx =


0 if x = 0,

100 if 0 < x < 1,

1 if x = 1,

20 if x > 1

and gx =

{
x/2 if 0 6 x 6 1,

200 if x > 1.

Then F1(X × X) ⊆ g(X), F2(X × X) ⊆ h(X), the pairs (h, F1) and (g, F2) are
coincidentally commuting and also h(X), g(X) are closed subsets of X . Let a = 1/2,
b = 1/3 and L is any arbitrary non-negative real number. Then the inequality (iii) of
Theorem 1 is satisfied. Hence all the required conditions of Theorems 1 are satisfied and
it is seen that (0, 0) ∈ X × X is the unique coupled common fixed point of h, g and
{Fα: α ∈ Λ}.
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Remark 2. Corollary 5 is an extension of Theorem 2.1 [10] to a pair of maps, and
Corollary 6 is just Theorem 2.1 and 2.2 [1] in metric space setting.

Remark 3. In Example 2, Fα ⊆ g(X) for only α = 1 but the pair (h, F1) is not com-
muting so that this example is not applicable to Corollary 1. Hence Theorem 1 properly
contains Corollary 1.
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