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Abstract. A dynamical model is proposed and analyzed to discuss the effect of population on
a resource biomass by taking into account the crowding effect. It is assumed that the resource
biomass, which has commercial importance, is subjected to harvesting. The harvesting effort is
assumed to be a dynamical variable and taxation is being used as a control variable. The optimal
harvesting policy is discussed using the Pontryagin’s maximum principle.
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1 Introduction

With the rapid growth of industrialization and population, the exploitation of several
resources has increased significantly. Although the exploitation of resource is necessary
for the growth and development of any country, however, unplanned exploitation will
eventually lead to the extinction of these resources and consequently affecting the growth
and survival of species dependent on these resources. In the last few decades, many
researchers have done work on optimal management of renewable resources. The issues
associated with these resources have been discussed in detail by Clark [1, 2]. Clark and
De Pee [3] have discussed the implication of restricted malleability of capital for the
optimal exploitation of a renewable resource stock. Chaudhuri [4, 5] proposed combined
harvesting of two competiting fish species and analyzed the bio-economic and dynamic
optimization. Kitabatake [6] discussed a model for fishing resource and proved that if
the trawling efficiency in the catch of prey species is improved, then the use of diesel-
powered trawling may lead to the extinction of predator as well as prey species. Dai and
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Tang [7] proposed a prey-predator system with constant rate of harvesting. They studied
how to approximate the region of asymptotic stability in biological terms in the initial
states that ultimately lead to co-existence of two-species. An optimal policy for combined
harvest of two ecologically independent species which grow logistically and are harvested
at a rate proportional to both stock and effort was discussed by Mesterton-Gibbons [8].
Ragozin and Brown [9] proposed a prey-predator model in which predator is selectively
harvested and prey has no commercial value. Pradhan and Chaudhuri [10] analyzed the
dynamics of a single species fishery in which fish species follows the Gompertz law
of growth. A resource based model in three species fishery consisting of two predators
and one prey with competition amongst predators was discussed by Chottopadhyay et
al. [11]. They also found the conditions for persistence and global stability of the system.
Dubey et al. [12] proposed a model for fishery resource system in an aquatic environment
that consists of two zones: a free fishing zone and a reserve zone. This model is further
modified by Kar and Misra [13]. Kar et al. [14] proposed a model to study the dynamics of
two competing species which are harvested in the presence of a predator. Kar et al. [15]
further studied the dynamics of a prey-predator model with non-monotonic functional
response where both the species are harvested with constant efforts.

Regulation of renewable resources is a very important problem where an immediate
attention is required to be paid. Taxation, license fees, lease of property rights, seasonal
harvesting, fishing period control, creating reserve zones, etc. can be used as possible
control instruments. In fishery resource management, some investigations have been car-
ried out with taxation as a control instrument. Pradhan and Chaudhuri [16] proposed
a mathematical model to study the growth and exploitation of a schooling fish species
by imposing a tax on the catch to control the overexploitation of fish species. Dubey et
al. [17] discussed a dynamical model for a single-species fishery, which depends partially
on a logistically growing resource with functional response and taxation as a control
instrument to protect fish population from over-exploitation. Dubey et al. [18] further
analyzed a non-linear mathematical model to study the dynamics of an inshore-offshore
fishery under variable harvesting by considering taxation as a control instrument. They
also proved that the fishery resources can be protected from overexploitation by increasing
the tax and discounted rate. Pradhan and Chaudhuri [19] also proposed and analyzed
a dynamical reaction model of two species fishery with taxation as a control variable and
then discussed its optimal harvesting policy. Ganguly and Chaudhuri [20] also discussed
the bionomic exploitation of single-species fishery using taxation as a control variable.
Recently, Huo et al. [21] extended the result of Dubey et al. [12] by considering the
taxation as a control parameter.

In this present paper, we propose a model of resource biomass and population, where
both of them grow logistically and population utilize resource for its own growth and
development. The harvesting effort is considered to be a dynamical variable and tax as
a control variable. Then we find existence of non-negative equilibria, condition of local
as well as global stability analysis. Finally, choosing an appropriate Hamiltonian function
the optimal harvesting policy is discussed. The main objective of this paper is to find
an optimal taxation policy to give maximum profit to the harvesting community and to
sustain the resource biomass at a desied level.
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2 Mathematical model

Consider a habitat when a renewable resource is growing logistically. Then the dynamics
of this resource biomass is governed by

dB

dt
= a0B − a1B2 = a0B

(
1− B

M

)
, (1a)

whereB(t) is the resource biomass density, a0 is its intrinsic growth rate andM = a0/a1
is the corresponding carrying capacity which the environment can support.

Now we assume that the resource biomass is being utilized by population of density
N(t) at any time t > 0 which may affect the intrinsic growth rate and carrying capacity
of the resource biomass, and a0 and M in Eq. (1a) may be regarded as a function of N .
Thus, Eq. (1a) can be written as

dB

dt
= a0(N)B − f0B

2

M(N)
, (1b)

where f0 is a positive constant. We take the following assumptions:

(i) The intrinsic growth rate a0(N) is a decreasing function of N and it satisfies
a0(0) = r > 0, a′0(N) 6 0 for N > 0.

We take a particular from of a0(N) as

a0(N) = r − α1N.

(ii) The carrying capacity M(N) is also a decreasing function of N and it satisfies
M(0) = m0 > 0, M ′(N) 6 0 for N > 0.

We take a particular form of M(N) as

M(N) =
m0

1 +m1N
.

Let us denote K = rm0/f0 and α2 = m1f0/m0.
Then Eq. (1b) can be rewritten as

dB

dt
= rB

(
1− B

K

)
− α1NB − α2NB

2.

Now we assume that the population of densityN(t) is growing logistically and its growth
rate as well as carrying capacity increases as the resource biomass density increases. Then
in a similar way, the dynamics of population may be governed by the following differential
equation:

dN

dt
= sN

(
1− N

L

)
+ β1NB + β2NB

2.
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In this equation, s is the intrinsic growth rate of population, L is its carrying capacity
in the absence of resource biomass, β1 and β2 are the growth rates of population in the
presence of resource biomass.

Next, we assume that the resource biomass is subjected to a harvesting rate h(t) =
qEB, where q is a positive constant and in fishery resource it is known as catchability
coefficient, E is the harvesting effort. Let p be the fixed selling price per unit biomass and
c the fixed cost of harvesting per unit of effort. Then the economic revenue is

R0(t) = pqEB − cE.

In order to conserve the resource biomass, the regulating agency imposes a tax τ > 0
per unit harvested resource biomass. Then the net economic revenue to the harvesting
agency is

R(t) = (p− τ)qEB − cE.
Thus, the dynamics of the harvesting effort can be governed by the following differ-

ential equation:
dE

dt
= α0E

{
(p− τ)qB − c

}
,

where α0 is the stiffness parameter measuring the strength of reaction of effort to the
perceived rent.

Keeping the above aspect in view, the dynamics of the system can be governed by the
following system of differential equations:

dB

dt
= rB

(
1− B

K

)
− α1NB − α2NB

2 − qEB, (2a)

dN

dt
= sN

(
1− N

L

)
+ β1NB + β2NB

2, (2b)

dE

dt
= α0E

{
(p− τ)qB − c

}
, (2c)

B(0) > 0, N(0) > 0, E(0) > 0.

In the next section, we shall discuss the stability analysis of model (2).

3 Stability analysis

First of all, we state the following lemma which represents a region of attraction of the
model system (2a)–(2c).

Lemma 1. The set

Ω =

{
(B,N,E) ∈ R+

3 : 0 6 B 6 K, 0 6 N 6 L0, 0 6 B(t) + E(t) 6
2rK

δ0

}
is a region of attraction for all solutions initiating in the interior of positive orthant, where
L0 = (L/s)(s+β1K+β2K

2) and δ0 = min{r, α0(p− τ)qK−α0c}, p > c/(qK) + τ .
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The above lemma shows that all solutions of the model (2a)–(2c) are non-negative and
bounded, thus the model is biologically well-behaved.

The proof of this lemma is similar to [22, 23], so omitted.
To study the behavior of equilibrium points, we note that the model system (2a)–(2c)

has the following six equilibrium points:

P0(0, 0, 0), P1(K, 0, 0), P2(0, L, 0),

P3(B̃, Ñ , 0), P4(B̄, 0, Ē) and P ∗(B∗, N∗, E∗).

The equilibria P0, P1 and P2 always exist. We show the existence of other equilibria as
follows.

Existence of P3(B̃, Ñ , 0). Here B̃ and Ñ are the positive solutions of the following
algebraic equations:

r

(
1− B

K

)
− α1N − α2NB = 0, (3a)

s

(
1− N

L

)
+ β1B + β2B

2 = 0. (3b)

From Eq. (3b), we get

N =
L

s

(
s+ β1B + β2B

2
)
.

Putting the value of N , in Eq. 3a, we get a cubic equation in B, i.e.,

a1B
3 + a2B

2 + a3B + a4 = 0, (3c)

where

a1 = α2β2LK,

a2 = (α2β1 + α1β2)LK,

a3 = rs+ α1β1LK + sα2LK,

a4 = (α1L− r)sK.

Equation (3c) has a positive solution in B if

r > α1L. (3d)

Knowing the value of B = B̃, the value of Ñ can then be calculated from (3b).

Existence of P4(B̄, 0, Ē). Here B̄ and Ē are the positive solutions of the algebraic
equations

r

(
1− B

K

)
− qE = 0, (4a)

α0

(
(p− τ)qB − c

)
= 0. (4b)
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Solving the above equation, we get

B̄ =
c

(p− τ)q
and Ē =

r

q

{
1− c

Kq(p− τ)

}
.

This shows that Ē exists if

0 < τ < p− c

Kq
and p > τ (4c)

hold.
Existence of P ∗(B∗, N∗, E∗). HereB∗,N∗ andE∗ are the positive solution of following
algebraic equations:

r

(
1− B

K

)
− α1N − α2NB − qE = 0, (5a)

s

(
1− N

L

)
+ β1B + β2B

2 = 0, (5b)

(p− τ)qB − c = 0. (5c)

Solving the above equations, we get

B∗ =
c

q(p− τ)
, (6a)

N∗ =
L

s

(
s+ β1B

∗ + β2B
∗2), (6b)

and

E∗ =
1

q

{
r −

(
rB∗

K
+ α1N

∗ + α2N
∗B∗

)}
. (6c)

Thus, E∗ exists if the following hold:

p > τ, r >
(α1 + α2B

∗)N∗K

K −B∗
, B∗ < K. (7)

From these conditions, we can conclude that, the non-zero equilibrium point exists if the
intrinsic growth rate of the resource biomass must be larger than a threshold value.

Now we discuss the local and global stability behavior of these equilibrium points. For
local stability analysis, first we find variational matrices at each equilibrium point. Then
by using eigenvalue method and Routh–Hurwitz criteria, we get the following results:

(i) The point P0 is a saddle point with unstable manifold in the B−N plane and stable
manifold in the E-direction.

(ii) If 0 < τ < p − c/(Kq), then the point P1 is always a saddle point with stable
manifold in the B-direction and unstable manifold in the N − E plane.

(iii) (a) If the point P3 exists, then the point P2 is a saddle point with unstable manifold
in the B-direction and stable manifold in the N − E plane.

(b) If the point P3 does not exists, then P2 is always locally asymptotically stable.
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(iv) (a) If 0 < τ < p − c/(qB̃), then P3 is a saddle point with stable manifold in the
B −N plane and unstable manifold in the E-direction.

(b) If τ > p− c/(qB̃), then P3 is locally asymptotically stable.

(v) The point P4, whenever it exists, is a saddle point with stable manifold in the B−E
plane and unstable manifold in the N -direction.

To study the local stability behavior of the interior equilibrium P ∗, we note that the
characteristic equation of the variational matrix computed at P ∗ is given by

λ3 + ā1λ
2 + ā2λ+ ā3 = 0, (8a)

where

ā1 =
rB∗

K
+ α2N

∗B∗ +
sN∗

L
,

ā2 =

(
rB∗

K
+ α2N

∗B∗
)
sN∗

L
+
(
α1B

∗ + α2B
∗2)(β1N∗ + 2β2N

∗B∗)

+ α0q
2B∗E∗(p− τ),

ā3 =
α0sq

2B∗N∗E∗

L
(p− τ).

By Routh–Hurwitz criteria, it follows that all roots of Eq. (8a) have negative real parts
iff

ā1 > 0, ā3 > 0 and ā1ā2 > ā3. (8b)

Clearly ā1is always positive, ā3 > 0 iff p > τ . It is easy to cheek that ā1ā2 > ā3 holds
true. Thus we can now state the following theorem.

Theorem 1. The interior equilibrium P ∗, whenever exists, is locally asymptotically
stable.

In the next theorem, we show that P ∗ is globally stable.

Theorem 2. The interior equilibrium P ∗, whenever exists, is globally asymptotically
stable.

Proof of Theorem 2 is given in Appendix.
In the next section, we discuss the bionomical equilibrium of the model system (2).

4 Bionomical equilibrium

The bionomical equilibrium is said to be achieved when the total revenue (TR) obtained
by selling the harvested biomass is equal to the total cost (TC) for effort, i.e., the economic
rent is completely dissipated.

Then net economic revenue at time t is given by

π(B,E, t) = (pqB − c)E.
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The bionomical equilibrium is P∞(B∞, N∞, E∞), where B∞, N∞, E∞ are the positive
solutions of

Ḃ = Ṅ = Ė = π = 0. (9a)

Solving (9a), we get

B∞ =
c

pq
, (9b)

N∞ =
L

s

[
s+

β1c

pq
+
β2c

2

p2q2

]
, (9c)

E∞ =
r

q

(
1− c

Kpq

)
−
(
α1 +

cα2

pq

)
N∞
q
. (9d)

It is clear that E∞ > 0 if

r

q

(
1− c

Kpq

)
>

(
α1 +

cα2

pq

)
N∞
q
. (10)

Thus the bionomical equilibrium P∞(B∞, N∞, E∞) exists under condition (10).
If E > E∞, then the total costs exceed the total revenues. In such a case, some users

will lose money and eventually some will drop out, thus reducing the level of harvesting
effort. IfE < E∞, then the total revenues exceed the total costs. In such a case, it attracts
additional user and thus increasing the level of harvesting effort.

Remark 1. From (9b) and (10), it may be noted that B∞ = c/(pq) < K.

5 The maximum sustainable yield

The maximum rate of harvesting of any biological resource biomass is called maximum
sustainable yield (MSY) and any larger harvest rate will lead to the depletion of resource
eventually to zero. In absence of any population, the value of MSY is given by [1]

h0MSY =
rK

4
.

If the resource biomass is subjected to the harvesting by a population, the sustainable
yield is given by

h = qEB∗ = rB∗
(

1− B∗

K

)
− α1N

∗B∗ − α2N
∗B∗2.

We note that ∂h/∂B∗ = 0 yields B∗ = K(r − α1N
∗)/(2(r + α2KN

∗)) and
∂2h/∂B∗2 < 0.

Thus, hMSY = K(r − α1N
∗)2/(4(r + α2N

∗K)), when B∗ = K(r − α1N
∗)/

(2(r + α2KN
∗)).
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From the above equations, it is interesting to note that, whenN∗ = 0, thenB∗ = K/2
and

hMSY =
rK

4
= h0MSY.

This result matches with the result of Clark [1].
If h > hMSY, then it denotes the overexploitation of the resource and if h < hMSY,

then the resource biomass is under exploitation.

6 Optimal harvesting policy

A regulatory agency adopts the optimal harvesting policy to maximize the total discounted
net revenue using taxation as a control instrument on the resource biomass.

The present value J of a continuous time-stream of revenues is given by

J =

∞∫
0

e−δt
(
pqB(t)− c

)
E(t) dt,

where δ is the instantaneous rate of annual discount. Thus our objective is to

max J

subject to the state equation (5a)–(5c) and to the control constraint

τmin < τ < τmax.

To find the optimal level of equilibrium, we use Pontryagins’s maximum principle. The
associated Hamiltonian function is given by

H = e−δt(pqB − c)E + λ1

[
rB

(
1− B

K

)
− α1NB − α2NB

2 − qEB
]

+ λ2

[
sN

(
1− N

L

)
+ β1NB + β2NB

2

]
+ λ3

[
α0E

{
(p− τ)qB − c

}]
, (11)

where λi, i = 1, 2, 3, are adjoint variables.
From Eq. (11), we note that H is linear in the control variable τ , hence the optimal

control will be a combination of bang-bang control and singular control.
For H to be maximum on the control set τmin < τ < τmax, we must have

∂H

∂τ
= 0, i.e., λ3 = 0. (12)

This gives a necessary condition for a singular control to be optimal.
Note from the maximum principle,

dλ1
dt

= −∂H
∂B

,
dλ2
dt

= −∂H
∂N

,
dλ3
dt

= −∂H
∂E

.
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The above equation can be written as

dλ1
dt

= −e−δtpqE − λ1
[
r

(
1− 2B

K

)
− α1N − 2α2NB − qE

]
− λ2[β1N + 2β2NB]− λ3α0E(p− τ)q,

dλ2
dt

= λ1
[
α1B + α2B

2
]
− λ2

[
s

(
1− 2N

L

)
+ β1B + β2B

2

]
,

dλ3
dt

= −e−δt(pqB − c) + λ1(qB) = 0.

Using (5a)–(5c) and (12), these three previous equations can be re-written as

dλ1
dt

= −e−δtpqE + λ1

[
rB

K
+ α2NB

]
− λ2[β1N + 2β2NB], (13a)

dλ2
dt

= λ1
[
α1B + α2B

2
]

+ λ2
sN

L
, (13b)

λ1 = e−δt
(
p− c

qB

)
. (13c)

Thus µ(t) = λ1(t)eδt = p− c/(qB) is the usual shadow price along the singular path.
Putting the values of λ1 in Eq. (13b), we get

dλ2
dt
−A1λ2 = −A2e−δt, (14)

where

A1 =
sN

L
, A2 = −

(
p− c

qB

)(
α1B + α2B

2
)
.

The solution of (14) is

λ2 =
A2

A1 + δ
e−δt +K0eA1t.

Now when t→∞, then the shadow price λ2eδt is bounded if K0 = 0.
Thus the solution is

λ2 =
A2

A1 + δ
e−δt.

Substituting the value of λ1 and λ2 in (13a), a little algebraic manipulation yields

E =
p− c

qB

pq

{(
δ +

rB

K
+ α2NB

)
+

(α1B + α2B
2)(β1N + 2β2NB)
sN
L + δ

}
, (15)

τδ = p− c

qB
. (16)

Hence solving Eqs. (5a)–(5b) with the help of Eqs. (15) and (16), we get an optimal
solution (Bδ, Nδ, Eδ) and the optimal tax τδ .
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7 Numerical simulation

For the numerical simulation part of the model system (2a)–(2c), we choose the following
set of values of parameters (others sets of values of parameters may exist):

r = 1.6, s = 1.2, K = 100, L = 100, p = 0.5, q = 0.01, α0 = 0.1,

α1 = 0.001, α2 = 0.0001, β1 = 0.01, β2 = 0.0001, c = 0.001, τ = 0.1.
(17)

For the above set of values of parameters, we note that the positive equilibrium
P ∗(B∗, N∗, E∗) exists and is given by

B∗ = 0.25, N∗ = 100.2089, E∗ = 149.3286.

It may also be noted that P ∗ is locally as well as globally asymptotically stable.
Now we plot the dynamics of the system for the set of values of parameters given

in (17) with the help of MATLAB 6.1. The behavior ofB, N and E with respect to time t
is plotted in Fig. 1. From this figure, we note that B and N increase for a very short time
and then they decrease and finally settle down at its steady state. However, E increases
with time and attains its equilibrium level.

Figure 2 shows the behavior of B, N and E with different initial values. From Fig. 2,
we see that all trajectories starting with different initial points converge to
P ∗(0.25, 100.2089, 149.3286). Thus P ∗ is globally asymptotically stable.

Again we observe that α2 and β2 are important parameter in the model. We plot B,
N and E with respect to time t for different values of α2 and β2. Here we observe the
change of the behavior of B, N and E for different values of α2 and β2 as shown in
Fig. 3 and Fig. 4, respectively. From these figures we note that if α2 increases, then B
and N initially decrease. But after a threshold value of α2, the behavior is changed. If α2

increases beyond this threshold value, then B and N decrease as α2 decreases. Again B
tends to zero level and N tends to its equilibrium level.

0 200 400 600 800 1000
0

20

40

60

80

100

120

140

160

B
,N

,E

t

 

 

B−resource

N−population

E−harvesting effort

Fig. 1. Plot of B, N and E verses t for the
values of parameters given in Eq. (17).

Fig. 2. Global stability of P ∗.
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For the set of parameters given in (17) with δ = 5, solving Eqs. (15) and (16) with the
help of Eqs. (5a)–(5c), we get optimal level of solution

Bδ = 0.28491, Nδ = 100.2381, Eδ = 149.2348 and τδ = 0.149.

We observe that τ is also an important parameter which governs the dynamics of the
system. The behavior of B, N and E with respect to time t for different values of τ
are shown in Figs. 5–7, respectively. From these figure, we note that the densities of
the resource biomass and population increase as τ increases, but the density of effort
decreases as τ increases. For an optimal level of the tax imposed on per unit of harvested
biomass, the resource biomass, the population and the effort settle down at their respective
optimal level.
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50

t

B
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0

100

200

N

t

0 200 400 600 800 1000
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100

200

t

E

α
2
=0.0001

α
2
=0.00015

α
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=0.0002

Fig. 3. Plot of B, N and E with respect to
time t for different values of α2, others values
of parameters are same as given in Eq. (17).
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Fig. 4. Plot of B, N and E with respect to
time t for different values of β2, others values
of parameters are same as given in Eq. (17).
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Fig. 5. Plot of B with respect to time t
for different values of τ , others values of

parameters are same as given in Eq. (17).
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Fig. 6. Plot of N with respect to time t
for different values of τ , others values of

parameters are same as given in Eq. (17).
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Fig. 7. Plot of E with respect to time t
for different values of τ , others values of

parameters are same as given Eq. (17).

8 Conclusions

In this paper, a mathematical model has been discussed where the resource biomass,
which has commercial importance, is harvested according to catch-per-unit-effort hypoth-
esis. The harvesting effort has been considered as a dynamical variable. The population
utilizes the resource for its own growth and development. The population and the resource
both are growing logistically. The existence of equilibrium points has been discussed
and stability analysis has been carried out by eigenvalue method, Routh–Hurwitz criteria
and Liapunov direct method. A threshold level of the intrinsic growth rate of resource
biomass has been found and it has been shown that if the intrinsic growth rate of the
resource biomass is larger than a threshold value and price of the per unit harvested
biomass is larger than the tax imposed on it, then the non-zero equilibrium point P ∗

exists. And whenever P ∗ exists, it is always locally and globally asymptotically stable.
When the population does not have any direct effect on the resource biomass, and the
resource biomass is being continuously harvested, then Eq. (4c) gives a range of tax.
This range of tax may be very useful by the regulatory agency at the time of formulating
tax structure on per unit harvested resource biomass. But when the resource biomass is
utilized by a population and it is also harvested, then the range of tax should be slightly
modified as given in Eq. (7) keeping in view some other thresholds on the intrinsic
growth rate of resource biomass. It has been also found that if the price of the harvested
resource increases faster than cost of harvesting, then the resource biomass density shifts
to a lower equilibrium level. This shows that price of the per unit harvested resource
should not increase beyond a critical level, otherwise the survival of resource biomass
will be threatened. It has also been observed that q (harvesting coefficient or catchability
coefficient) increases with the advancement of technology due to which the resource
biomass may further shift to a lower equilibrium level. Equation (6a) shows that the
equilibrium level of resource biomass may be increased by increasing tax to a certain level
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on the harvested resource biomass. The bionomical equilibrium of the model has been
found and it has been shown that the bionomical equilibrium of the resource biomass does
not depend upon the growth rate and carrying capacity of population utilizing the resource
biomass. The maximum sustainable yield (MSY) of the model has been obtained and it
has been observed that if h > hMSY, then the resource biomass will tend to zero and if
h < hMSY, then the resource biomass and population can be maintained at appropriate
levels. In Section 5, we have derived a formula for hMSY, which shows that maximum
sustainable yield depends upon the carrying capacity of the resource biomass and the
equilibrium level of population. The optimal harvesting policy has been discussed using
Pontryagin’s maximum principle. Constructing an appropriate Hamiltonian function the
optimal tax policy has been found. A computer simulation has been performed to illustrate
all theoretical results. We have used tax on the per unit harvested resource biomass as
a regulatory instrument to derive the optimal tax trajectory. It has been shown that if
resource biomass, population and harvesting effort all kept along this path, then resource
biomass and population both can be maintained at an appropriate level.
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Appendix: Proof of Theorem 2

Consider the positive definite function about P ∗:

W =

(
B −B∗ −B∗ ln

B

B∗

)
+ c1

(
N −N∗ −N∗ ln

N

N∗

)
+ c2

(
E − E∗ − E∗ ln

E

E∗

)
.

Differentiating W with respect to time t along the solutions of model (2) and by
choosing c2 = 1/(α0(p− τ)), a little algebraic manipulation yields

dW

dt
= −

(
r

K
+ α2N

∗
)

(B −B∗)2 − c1s

L
(N −N∗)2

+
[
c1β2(B +B∗) + c1β1 − α2B − α1

]
(B −B∗)(N −N∗).

Sufficient condition for dW/dt to be negative definite is that the following condition
holds:

a212 < 4a11a22. (A.1)

If we choose c1 = α1/(β1 + β2(K + B∗)), then condition (A.1) is satisfied. Thus,
W is a Liapunov function with respect to all solutions initiating in the interior of the
positive orthan, proving the theorem.
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