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Abstract. We consider a system of nonlinear Schrodinger equations with periodic boundary
conditions of the form

i% + D?*uj = —fi(u,m), t=0, € (-2,2),

Uj(07w) :uj0($)7 T € (_272)7

DFu;(t,—2) = D*u;(t,2), t>0, k=0,1,
where D = 9/0z, j = 1,...,m, fj(u,u) = 9g(u,u)/du, and dg/du; = f, for some
homogenous function g(u, %) such that g(Au, \t) = A®g(u,@). We obtain sufficient conditions
for blow-up of solutions of this system in C"* ([0, to); H?(—2,2)).

Keywords: Schrodinger equations, blow-up, periodic boundary condition.

1 Introduction

In this paper, we consider a following system of nonlinear Schrodinger equations with
periodic boundary conditions of the form

i%JrDQuj:*fj(u’ﬂ)v t20, z€el, (D
u;(0,z) = ujo(z), xe€l, 2)
D*u;(t,—2) = D*u;(t,2), t>0, k=0,1, 3)
where D = 0/0x,j = 1,...,m, I = (—2,2), u = (uq,...,un) is a vector function,
u = (U1,...,Um), G; is complex conjugate to u;, and f;(u,%) are functions of 2m

variables. We assume that the functions f;(u, @) satisfy the following conditions:

1 Im )~ f(u,m); =0, 4)
j=1
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2) there exists a differentiable function g(u, @) of 2m variables such that

dg -

@ Gy, T gy =l A=Leom ®

o

(b) g(u,w) is a sixth-order homogeneous function, i.e.,
g, \T) = X (u, @), NER, (©6)

(c) the real part of g(u, ) is nonnegative for all u, i.e.,
Reg(u,u) > 0. 7

We suppose that the solution u of (1)—(3) is in C1([0,¢); H*(—2,2)). An example
of system (1) satisfying conditions (4)—(7) is the following system:

0

i% + D?uy = —[us|*fug|*us,

Ou

i—2 4+ D%y = —|uq [*|us|Pus, ®)
ot

0

i% + D?uz = —[ur|*fuz|us,

where g(u, %) = |u1|?|uz|?|us|?. Form = 1, system (1) generalizes the one-dimensional
Schrodinger equation
0
16—1; + D%u = —|ul*y, )
where g(u, ) = |ul8/3.
In this paper, we obtain a sufficient condition for the blow-up of solutions (1)—(3):
the solution of (1)—(3) blows up if

m
> IDuj| L2y — 00 as t— to
j=1

for some finite number ¢ty > 0.

The problems concerning blow-up and stabilization for nonlinear Schrodinger equa-
tions and systems of nonlinear Schrodinger equations were considered in [1-20]. The
blow-up problem of (9) in the whole real line R was considered by many authors, see
[6,7,11,16,19]. System (1) of Schrodinger equations for I = R™ is considered in [3,4].
The periodic solutions of Schrodinger equation are considered in [5,9, 15]. Ogawa and
Tsutsumi [15] found a sufficient condition for the blow-up of the periodic solution of the
Schrédinger equation (9) for I = (—2,2). We set

E(u(t)) :/Z|Duj|2dx7Re/g(u,ﬂ)dx
7 J=1 T
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and E(ug) = Fy. In the case I = R, the inequality E(ug) < 0 is a sufficient condition
for the solution of (1) and (2) to blow up in finite time t5 > 0 (see [3]). However, in
general, the condition E(ug) < 0 is not sufficient for the blow-up of (1)—(3). For example,
let us consider the initial-value problem of the following system of ordinary differential
equations:
az(;t(t) =—fi(,2), 20)=2z j=1,...,m. (10)
For any fixed zp; € C, problem (10) has a unique global solution. This solution is also
a solution of problem (1)—(3), although the condition E'(ug) < 0 is satisfied.

Before stating our result, let us first give some notation. Let KC?3(a, b) be the class
of all functions h : [a,b] — R satisfying the following conditions: D’h € C(a,b) N
L*(a,b) for j = 0,1,2, D3h may have a finite number of discontinuities in the interval
(a,b), D3h € L>=(a,b). Let p € KC3(R) be defined by

i

T, 0<r <,
CJr—(2-1)3 1<z<1+1/V3,
@) =\ ), 1+1/V3<a <2,
0, 2 < x,

where Dh(x) < O0forz > 1+ 1/v/3, DFh(2) = 0,k = 0,1,2, and ¢(—2) = ¢(—x).
Set

ﬁm=/ww@,

2
Mi =D, k=1,3, Mo= max(ﬁ, ”Dﬁ””), (an
¢ = max |g(u, w)). (12)

There it is known that M, < 537 + 297+/3 = 1051.419 .. . if h(z) is the sixth order
polynomial, see [17]. Note that the maximum (12) always exists because the unit sphere
|u| = 1 is a compact set and g is a continuous function. For example, ¢ = 1/27 for
system (8), and ¢ = 1/3 for (9). For a positive integer k, we define

Hy.q={veHI); D'v(-2) = D/v(2), j =0,1,....k—1}.
The sufficient conditions of blow up solution is the following theorem in [15].

Theorem 1. Let ug € H*(I), ug(—2) = uo(2) and E(ug) < 0. In addition we assume
that

M
2

2 2 1
([olut @) (21Duwltag +1) < 5,
I

0= —2E(ug) = 80(1 + M)*[luo| g2 1) — = lluollZ> sy > 0,
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where M = ZJ 1D @|| oo (1y. Then the solution u(t) in H'(R) of (1), 3), u;(t, —2) =
u;(t,2) blows up in a finite tlme

Our main result is the following theorem.

Theorem 2. Let ujo € H?2., u(t) be a solution of (1)-(3) in C*([0,t0); H*(—2,2)),

prd’
and let f;, 7 = 1,...,m, satisfy conditions (4)—(7). In addition, assume that
1 Mz 1
= —2F(ug) — (16M3 + 32(1 + M;)) ——— >0, 13
i/@(mﬂw (x)’2dm(2||Du- 12 +1> <1 (14)
j=17 7 n 7ONLAD T 432¢

Then the solution u(t) blows up in finite time, i.e., Z;n:l | Duj|| p2(ry — o0 as t — to.

Note that the inequalities in Theorem 1 are satisfied if are satisfied the corresponding
inequalities (13) and (14) in Theorem 2 for m = 1.

2 Proof of Theorem 2

In this section, we state several lemmas and prove Theorem 2.

Lemma 1. Let uj, € H? ( ) be a solution of (1)~(3), u;(t) € C'([0,t0); H? 4(I)),

prd’
and f; satisfy (4)—(7), j = 1,...,m. Then the following two conservation laws hold for
0<t<tp:
Y sl ey = D lugollza,s (15)
j=1 j=1
E(u(t)) = Ey. (16)
Proof. We multiply the jth equation of (1) by u;, integrate over I, take the sum over
7 =1,...,m, and take the imaginary part. Integrating by parts, we get that conditions (3)
and (4) yield (15).
Now we prove (16). Equalities (5) imply
99 99 99 99
Re —— =Re Im =—Im — 17
“ou, ou; ow T ou an
and

89 Quj _ o, 09 Ju;
S T T T

Hence,
m % B m ag 8u] _1 m ag 6@ m @%
2 Refivy; _ZR - 2Re T, 0t | = du; ot
J=1 Jj=1
B 1 89
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We multiply the jth equation of (1) by du;/0t, integrate over I, take the sum over j =
1,...,m, take the real part, and use (18) to obtain (16). L]

The following lemma is Lemma 2.1 in [15].

Lemma 2. Let v € HY(I), v(—2) = v(2), and p be a real-valued function such that
Dp € L* and p(—2) = p(2). Then we have
HPUHLOO(1<\Z|<2)

1/2
< V2|0l < oy 2102 D0] L2 (1< ol <2)

]1/2

1/2
+ V20020l oty < oy <2 T 10D 22 1<) <2) (19)

Lemma 3. Let 0 < t < to, and u;(t) be a solution of (1)-(3) in C'([0,t0); H},.y),
7 =1,...,m. Then we have

— Z Im/qbu] (t)Dﬂj (t) dz + ZIm/QSUjODajO dzx
Jj=1 T J=1 I

:/t<2i/D¢\Duj(s)]2dx—2Re/D¢9(uj(8),Uj(S)) dz
0 =17 I

_ ;Z/D3¢|uj(s)|2dx> ds, (20)
Jj=1 I
/¢|uj(t)‘2dx
T t
= /Q5|uj0|2dx—2/(Im/¢uj(s)Duj(s) das) ds, j7=1,...,m, (21
T 0 T

for 0 <t < tp.

Proof. We multiply the jth equation of (1) by ¢ Du;, integrate over I, take the sum over
7 =1,...,m, and take the real part. We use (17) and integrate by parts to obtain

“ 0 o m ou.:
- Z g Im/qﬁuj(t)Duj(t) dz — ZIm/DqSuj(t)a—tj dz
J=1 T =17
= Z / Do|Duy(t) |2 dz + Re / Dog(u(t),u(t)) dz. (22)
=17 T
The homogenous function g(u, @) satisfies the following Euler equality:

Z Fu, "t Z B, 6g. (23)
Jj=1 J=1
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Equalities (17) and (23) give

iRefju] iRe—u]: Re Z< agj>_3Reg (24)
j=1

We next multiply the complex conjugate of (1) by D¢u;, integrate both sides over I,
take the sum over j = 1,...,m, and take the real part. We use (24) and integrate by parts

to obtain
> Im / Dou,(t) =2
j=1

m

—Z/D¢>’u] )| dx—3Re/D¢g a(t)) dz
_ 52 / Do|uy (1)) da. (25)
J=1 I

Substituting (25) into (22) and integrating the both sides of (22) over (0, ¢), we obtain (20).

We next multiply the complex conjugate of (1) by Pu;, integrate both sides over I,
take the sum over j = 1,...,m, and take the imaginary part. We integrate by parts and
use the the equality #(—2) = &(2) to obtain (21). O

Lemma 4. Let uj(t) € H'(I), j = 1,...,m, [u]* = 37" [u;|* and I = (=2,2).
Then D|u| € L*(I) and

(1 — D¢)|ul® dz
1<|z|<2 m
<Bulfracuen Y. [ (1= DOIDwP da
J=1 1<|z|<2
+ (324 32M; + 16M3) [[ullf2 (1 < o <2)- (26)

Proof. The inequality

/’(D|u|)|2daz
/2”  D(Ju; %) /Z” DL
4|ul? |ul?
u Du
/271|y|u2271| il? m:/ZIDUj|2d$<OO 27)
7 J=t

gives D|u| € L?(I).
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We next estimate the integral [, _ ., _,(1 — D¢)gdz. Set p(z) = (1 — D(z))H/4.
We use inequalities (19) and

(a1 + ag +a3)?® < 2a3 4+ 4a3 +4a3, ar €R, k=1,2,3,
for the estimate
ptlul® dz < a2 <allpll o <<y
1<|z|<2
< 4full 7 (2|p* Dlu|| + V2| pull 2
= (1<]z|<2) L2(1<|z|<2) L2(1<x]<2)
2
+ [uDp® || L2(1<|0)<2))
2
< 32||UH%2(1<\$|<2)HP2D|U|||L2(1<‘1|<2) + 32||U||%2(1<\x|<2)||/)2U\|%2(1<\x|<2)
+ 16| G2(1 <o)<y PP [T e (1<) <2) (28)
We have (see the proof of Lemma 2.3 in [15])

HDpQHLoo(1<|x|<2) < My (29)
and
o2 Dlell oy <32 [ (1= DOIDu (0)
=1 <z|<2

The proof of (30) is similar to that of (27). Inequalities (28), (29), and (30) yield (26). [

Lemma 5. Let 0 < to < oo, and u;(t) be a solution of (1)~(3) in C*([0,t0); Hp,.y),
j=1,...,m. If u;(t) satisfy
m 9 1
D s Ol e 1cporcny < T (31
= (1<l=|<2) = /39¢

for 0 < t < ty, then we have

m

— Z Im/(ﬁu](t)Dﬂ](t) CLTC + Zlm/(i)UjoDﬂjo dZL’
j=1 I j=1 I

1 n M; 1
32¢v/32¢ 2 /32¢
where My, k = 1,2, 3, and c are defined in (11)—(12).

< <2E(uo) + (16M3 + 32(1 + My)) )t, 0<t< to,

Proof. From the conservation law (16) we have

> / |Du;|*do = By — > / |Duj|2d:c+Re/g(u(t),ﬂ(t))dx. (32)

I=1gl<1 = cz|<2 T
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Combining the equality D¢ = 1 for |z| < 1 and (20) with (32), we obtain
j=1 I j=1 I

= t — Ny U 2 x e u(t),u x
[(em=2> [ Ipuacser /g( (0),5(1)) d

0 =11 jz)<2

+2) / D¢’Duj(t)’2dx—2Re/D¢g(u(t)7ﬂ(t))dx
I

I=1 cpz)<2

- ;Z/D?’(b‘uj(t)’zdm) dt
j=1 I

:/t(2E0—2§: / (1 — D¢)|Du;(t)[* da

0 I= <2
+ 2Re / (1= D¢)g(u(t),u(t)) dz — ;Z/D%\uj(t)yzdx) dt. (33)
1<|z|<2 J=17

We use (12) to estimate the integral

Re / (1= D¢)g(u(t),u(t)) dz < c / (1 — D) |u|® d. (34)

1<|z|<2 1<|z|<2

The inequalities D¢ < 1 and (7) give us that the left-hand side of inequality (34) is
nonnegative. Inequalities (26), (31), and (34) imply

Re / (1 —Dg¢)g(u(t),u(t)) dz

1<|z|<2

<32culltaicppien S / (1— D¢)|Duy|? do
j:11<|z\<2
1

32V/32¢

+ (32 + 32M, + 16M>) (35)

Inequalities (31) and (35) and Eq. (33) yield

— Z Im / ¢Uj (t)Dﬂj (t) dx + Z Im / (,ZSUjoDﬂjo dz
Jj=1 I J=1 I
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t

g / (2E0 — 2(1 — 32CHUH%2(1<\$\<2)) Z / |D'U/J(t)|2 d(E
j=1

0 1<|z|<2
1 M
4 (32 4 32M, + 16M. + dt
( ! 2) 32v/32¢ 2\/320)

t

1 M,
< [ (2B, + (32 + 320, + 16M. n at
/ ( o+ ! oo 2\/320)

1 M
— (2E, + (32 + 32M, + 16 M. T £ O
< o+ ! 2)32\/320 2\/320)

Proof of Theorem 2. Suppose, on the contrary, that the solution of (1)—(3) does not blow
up for all ¢ > 0. We first prove that condition (31) holds for all ¢ > 0, while the
solution u(t) exists (does not blow up) if (14) is satisfied. Inequalities (14) and 1 < 2
for 1 < |z| < 2 yield

1

2
Z lwjollz2(1<)a)<2) < 2300

j=1

The continuity of |[w;(Z)||£2(1<||<2) gives us that inequality (31) holds in the interval
[0,t0) for some tg > 0. Suppose, on the contrary, that

m 1
> Huj(tO)Hi:'(1<|m\<2) T V32 .
j=1

The assumptions of Lemma 5 are satisfied for ¢ € [0, tg). Inequalities (13), (20), and (21)
and Lemma 5 imply

Z/@|uj(t)|2dx
Jj=1 I
m m
= Z/@‘UJUF dr — QtZIm/(ijoDﬂjo dx — ’I7t2
Jj=1 I j=1 T

m

1 2 1 m 2
= - (t + 5 Z Im / (ﬁu]'oDﬂjo d.l?) + 6 <Z Im / ¢Uj0Dﬂj0 dl‘)
J T 1 1

j=1 J=
+ Z/¢|Uj0|2 dx
j=1 I
(1
< Z (77|uj0||2L2(1)||Dujo||2Lz(I) + /¢|Uj0|2d37>7 0<t <to. (37
T

Jj=1
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We use the inequalities ¢? < 24 and (37) to obtain
- 2
Z/@’uj(t” dz
Jj=1 I
m ) 9
< Z/@(m)’ujo(m)‘ dx(Dujoiz(l) + 1), 0<t<tp. (38)
=17 g
Inequalities (14), (38), and 1 < 29 for 1 < |z| < 2 yield
- 2 - 2 1
S5Ol acprry <23 [ Blus(0f do < S
= = 21/32¢

for 0 < ¢ < to. The continuity of [|u;(t)|| £2(1<|z|<2) gives that

m 9 1
; s )12z <paren) < 5350

It is a contradiction to (36). Hence, inequality (31) is satisfied for ¢ > 0, while the solution
u(t) exists.
Finally, we prove that the solution u(¢) blows up. Inequality (37) implies that

i/¢|uj(t)|2dx

becomes negative in finite time. Hence,

Z/@\uj(t)ﬁdx 50, t—to, (39)
I

j=1

for some ¢y > 0. The inequality 1 < 2¢ for 1 < |z| < 2 and the limit (39) give

. 2 . 2
thg?() |u; ()] dz < tlg?o 20|u;(t)|" dz =0 (40)
1<|z|<2 1<|z|<2

and

Jim / Dél|u; ()] da

t—to
1<|z|<2

< My lim lu; ()P dz =0, j=1,...,m, A1)

t—to
1<|z|<2
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The equality
/D¢|uj(t)|2 dz = —2 Re/gbuj(t)Dﬂj(t) dw
I I

yields

‘ /D¢|uj(t)|2 dz
T

2

) 1/2 ) 1/
gz(/¢2|uj(t)\ dx) </|Duj(t)| dx) . Jj=1,...,m. (42)
1 1

The conservation law (15) and inequalities (40), (41), and (42) imply
Z / ujol? d
j=1 I

:Ztli_{?o ’uj(t)‘dezzltli% / Dd)|uj(t)‘2dx
1 J=

= e |z <1
= Ztlgg/DMuj(t)’ da
j=1 I
m ) 1/2 ) 1/2
< Z;thl% 2(/¢21uj(t)\ dx) </|Duj(t)y da:) : 43)
J= I I

The inequalities ¢? < 2 and (43) give
m m 9 1/2 9 1/2
2 .
Z/ lujol” da < Ztli)r?o (/2&15‘%-(15)’ dx> (/ !Duj(t)‘ dx) .4
7= j=1 T T
Note that (13) yields Z;ﬂ:l J; lujo? dz > 0. From (39) and (44) we have

/ |Duj(t)|2 dr — 0o, t—tg,
1

for some j = 1,...,m, i.e., the solution blows up. [
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