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Abstract. This paper is concerned with the mixed boundary value problem of the second order
singular ordinary differential equation

[@(p(t)2' () + f(t, z(t),2'(t)) =0, teR,
limy — oo z(t) = fjoo g(s,x(s),2'(s)) ds,

9]

lim;— 400 p(t)2' (t) = fjoooo h(s,z(s),z'(s))ds.

Sufficient conditions to guarantee the existence of at least one positive solution are established.
The emphasis is put on the one-dimensional p-Laplacian term [®(p(¢)z’(t))]" involved with the
nonnegative function p satisfying [ ¥ 1/p(s) ds = +o0.

Keywords: Second order differential equation with quasi-Laplacian on the whole line, integral type
boundary value problem, positive solution, fixed point theorem.

1 Introduction

The study of multi-point boundary value problems for linear second order ordinary differ-
ential equations was initiated by II’in and Moiseev [1], motivated by the work of Bitsadze
and Samarskii on nonlocal linear elliptic boundary problems [2]. Since then, more general
nonlinear multi-point boundary value problems (BVPs) were studied by several authors,
see the text books [2—4] and the survey papers [5, 6] and the references cited therein.

In [7], a class of boundary value problems for the second order nonlinear ordinary
differential equations on the whole line is studied. Two theorems are proved. The first
theorem is established by the use of the Schauder theorem and concerns the existence of
solutions, while the second theorem is concerned with the existence and uniqueness of
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Mixed boundary value on the whole line 461

solutions and is derived by the Banach contraction principle. To the author’s knowledge,
there is no paper concerned with the existence of positive solutions of the boundary value
problems to the second order differential equations

[p()® (' (1)) + f(t,x(t),2'(t)) =0, te (—o0,+00)=:R.

In [8], Bianconi and Papalini investigate the existence of solutions of the following
boundary value problem:

[@(x'(t)] + a(t,z(t))b(x(t),z'(t)) =0, teR,
:x(—00) =0, ey
tx(4o00) =1,

limt_)_oo T (t)
limt%Jroo x(t)
where @ is a monotone function which generalizes the one-dimensional p-Laplacian op-
erator. Some criteria for the existence and non-existence of solutions of BVP (1) are
established.
In [9,10], Avramescu and Vladimirescu study the following boundary value problem:
() +2f ()2 (t) + z(t) + g(t,xz(t)) =0, tER,
lim; 400 z(t) =: 2(F00) = 0, ()
limg_,y 100 @/ () =: 2/ (£o0) = 0,
where f and g are given functions. The existence of solutions of BVP (2) is obtained.
In [11], Avramescu and Vladimirescu study the following boundary value problem:

a(t) + f(t,x(t),2'(1) =0, teR,
1imt_,_oo m(t) = limt_H_OO Jf(t), (3)
1imt_>_oo .I‘/(t) = limt_>+oo Jfl(t),
under adequate hypothesis and using the Bohnenblust—Karlin fixed point theorem, the
existence of solutions of BVP (3) is established.
Cabada and Cid [12] prove the solvability of the boundary value problem on the whole
line
(@' ()] + f(t,2(t),2'(t)) =0, teR,
limy oo x(t) = —1, )
limt_)+oo Q?(t) = 1,
where f is a continuous function, ¢ : (—a,a) — R is a homeomorphism with a €
(0, +00), i.e., P is singular.
Calamai [13] and Marcelli, Papalini [14] discuss the solvability of the following
strongly nonlinear BVP:

[a(z(t))2(2' ()] + f(t,2(t),2'(t)) =0, tER,
) =G, 5
) =5,

limy_y oo 2(t

(
limt_>+oc l'(t
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462 Y. Liu

where o < 5, @ is a general increasing homeomorphism with bounded domain (singular
&-Laplacian), a is a positive, continuous function and f is a Carathéodory nonlinear
function. Conditions for the existence and non-existence of heteroclinic solutions are
given in terms of the behavior of y — f(¢t,z,y) and y — P(y) as y — 0, and of
t — f(t,x,y) as |[t| — +oo. The approach is based on fixed point techniques suitably
combined to the method of upper and lower solutions.

Motivated by mentioned papers, we consider the mixed boundary value problem
for second order singular differential equation on the whole line with quasi-Laplacian
operator

[@(p()z" ()] + (2, ( ) (1)) =0, teR,
limy—, oo 2(t) f x(s),2'(s))ds, (6)
limy s 10 p(t)2'(t) = er h(s,z(s),z'(s))ds,
where
e f,g,hdefinedon R x [0, +00) X [0, +00) are nonnegative Carathéodory functions,
e pe CYR,[0,00)) with p(t) > 0 for all ¢ # 0 satisfying conditions:

0 1 +oo 1
——ds < 400, /—ds:—i—oo.
/ ) e

e & : R — R is called a quasi-Laplacian if it is nonsingular (i.e., surjective), and
satisfies @ € C'(R) with @'(y) > 0 for all y # 0, ¢(0) = 0 and its inverse
function denoted by 1.

The purpose is to establish sufficient conditions for the existence of at least one
positive solution of BVP (6). The results in this paper generalize and improve some
known ones since the quasi-Laplacian term [@(p(t)z’(t))]’ involved with the nonnegative
function p that may satisfy p(0) = 0. It is easy to see that p-Laplacian ¢,(z) = |z[P~%z
with p > 1 is a quasi-Laplacian and &(z) = 23/(1 + 2?) is also a quasi-Laplacian.
BVP (6) is called a mixed boundary value problem.

The remainder of this paper is organized as follows: the preliminary results are given
in Section 2, the main results are presented in Section 3.

2 Preliminary results

In this section, we present some background definitions in Banach spaces, state an impor-
tant fixed point theorem and given some preliminary results.

Definition 1. Let X be a real Banach space. A nonempty convex closed subset P of X
iscalledaconein X ifax € Pforallz € Panda > Oand x € X and —z € X imply
z=0.
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Mixed boundary value on the whole line 463

Definition 2. A map « : P — [0, +00) is a nonnegative continuous convex functional
map provided « is nonnegative, continuous and satisfies

atr + (1 —t)y) < ta(z) + (1 - t)a(y),
forall z,y € Pandt € [0,1].

Definition 3. An operator T : X — X is completely continuous if it is continuous and
maps bounded sets into relatively compact sets.

Definition 4. Let 7(t) = [*__1/p(s)ds. Amap F : R x R x R — Ris called a Cara-
théodory function if it satisfies the following properties:

() t— f(t, (14 7(¢)x,1/p(t))y is measurable for any z,y € R;
() (z,y) — f(t, (1+7(t))x,1/p(t))y) is continuous for a.e. t € R;
(iii) for each r > 0, there exists nonnegative function ¢, € L'(R) such that |z|, |y| < r
implies
1

(t,(1+7(t))z, my) < ¢.(t), ae. teR.

Lemma 1. (See [4]). Let X be a real Banach space, P be a cone of X, (21, QLbe two
nonempty bounded open sets of P with 0 € {21 C {21 C {25. Suppose that T : {25 — P
is a completely continuous operator, and that:

(E1) Tx # Mx forall A € [0,1) and x € O82y;
(E2) Tx # Mx forall X € (1,+00) and x € Of2s;
(E3) inf{||Tx|: = € 021} > 0.

Then T has at least one fixed point x € 25 \ £2;.

LetT =7(t) = fioo 1/p(s) ds. Choose
X = {x 'R — R: x € C°(R), pz’ € C°(R) and the limits exist and are finite

. . :U(t) . ’ . /
t_lgllﬂoo T’T(t)’ tl}gloo TT(tY t_lgl_noo p(t)z' (), t—ligloo p(t)z'(t) ¢

For x € X, define the norm of x by

ol = max{sup 2L sup o0 .

One can prove that X is a Banach space with the norm ||z|| for x € X.
Choose k£ > 0 such that f:oko 1/p(s) ds < 1. Denote

—k
f—oo 9(15) ds

p=
14 ffoo ,,(15) ds
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464 Y. Liu

Let

P= {x € X: x(t) >0, 2/(t) >0forallt € R,
x(t) z(t) }

min ———— > usu
tel—kk (14 7(t)) — Mteg (1+7(t))

Define the operator 7" on X by

400
(T)(0) = [ glr.a(r).a') dr
70015 1 +oo +oo
— ! w, z(uw), 2’ (u)) du w, z(uw), 2’ (w)) du | ds
+_£p(s)‘ﬁ (45(_4 h(u, z(u), ' (u)) d >+S/f( cx(u), 2’ (u)) d >d

forx € X.

Lemma 2. The following properties hold:

@) for x € X, it holds that

[@(p(t)(T) (1) + f(t,2(t),2'(t)) =0, tER,

limy, oo (T)(t) = fjs g(u, x(u),z'(u)) du, 7
line s e (TR (1) = 722 R(s, (), 2'(5)) d:

(ii) T : P — P is well defined,
(iii) T : P — P is completely continuous;
(iv) x € P is a positive solution of BVP (6) if and only if  is a fixed point of T in P.

Proof. (i) Since x € X, f, g, h are Carathéodory functions, then

ol = maxsup 2O sup ) 0]} =7 < o ®

and

+oo +oo +o0
/f(mx(u),x'(u)) du, /g(u,x(u),x'(u)) du, /h(u,x(u),x'(u)) du (9)

—00 — 00 — 00

converge. Then (T)(t) is defined for all ¢ € R. From the definition of 7', by direct
computation, we get (7).

www.mii.Jt/NA



Mixed boundary value on the whole line 465

(ii) For x € P C X, since f, g, h are Carathéodory functions, then (8) holds and the
integrals in (9) converge. From lim;_, ., 7(¢) = 0, then T € C°(R) and there exist the
limits:

+o0

+oo
and
p(t)(T) (t)
+00 +oo
=@ 1 (@( / h(u, z(u), 2’ (u)) du) + / fu,z(u), ' (u)) du). (10)
It is easy to see that then t — p(¢)(T%)’ is continuous on R and there exist the limits
lim_p(t)(Tx) (1)
+oo +oo
=¢ ! (@( / h(u, z(u), 2 (u)) du) + / f(u,z(u), 2’ (u)) du),
—o0 . —o0
t_l,iinoo p(t)(Tx)'(t) = / h(u, z(u), 2’ (u)) du.

It follows that 7« € X. Since p, f, g, and h are nonnegative, then
Tx(t) >0 forall t € R. (11)

Now, we prove that (7%)(t) is concave with respect to

t

T=71(t) = / %ds.

It is easy to see that 7 € C(R, (0, +00)) and
dr 1
T o
dt  p(t)

Thus
d(Tr)  d(Tr)dr  d(Tw) 1 12)
dt — dr At dr pt) (

Nonlinear Anal. Model. Control, 2012, Vol. 17, No. 4, 460-480
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It follows that

Hence

{dﬁ (p(t)d(j;x))]/ _ (dgx)> dZ(Tz;x) %.
d(Te)  [B(p() *F))
Rt

dT2 @/(d(Tz
Since [@(p(t)(Tx)'(t))] < 0, ?'(y) > 0 (y # 0) and d7/dt > 0, we get that

So

d?(Tr)/dr? < 0. Hence (Tx)(t) is concave with respect to 7.
We need to prove that
() (1) (Te) (1)
> psup ———%. 13
1 1+7() = Mier1+7(0) (13
Since d7/dt > 0 for all t € R, there exists the inverse function of 7 = 7(¢). Denote the
inverse function of 7 = 7(¢t) by t = ¢(7).
Suppose that there exists ¢y € R such that sup,c (Tx)(t)/(1 + 7(t)) = (Tx)(to)/
(14 7(to)). One sees

min
te[—k,k

+oo
tligloo p(t)(Tr) (t) = / h(u,z(u), 2’ (u)) du > 0.

Since

[S(p(0(T) (1)] = —F (. 2(t),2' (1) <0,
then p(t)(Tk)'(¢t) > O for all t € R. Hence (T)(t) is increasing on R. It is easy to show
that (T)(t) > 0 for all t € R. Then

@
te[—k,k] 1 4 7(¢)

(Tr)(=k) 1
S e 1tk (Te) (¢ (=)

_ 1 1+ 7(to) — 7(—k) 7(—k) r(—k)
o 1+ T(k) (Tm) <t( 1+ T(to) 1+ T(fo) — 7'(_]{;) + 1+ T(tO)T(tO))>

=1 +17(k) [1 . Z(T)thg)(_k) (Tz) (t ( 1+ T(;S)_f)T(—k) ))

7(—k)
+ m(T@ (t(T(tO)))]

—k

1 1 1 (T (%)
Z T (k) / o(3) ST gy () 0) > pesup 12

—00
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Mixed boundary value on the whole line 467

We get (13). If sup,c p(T)(t) /(1 + 7(t)) = limy—+o0(T2)(t) /(1 + 7(t)), we choose
to € R. Similarly to above discussion, we get

i DO () (t)
te[~k,k] 1+ 7(t) 1+ 7(to)
Lett — 400, we get (13).

From (11) and (13), we see Tx € P. Hence T' : P — P is well defined.

(iii) Now we prove that 7" is completely continuous. The following five steps are
needed.

Step 1. We prove that the function 7" : X — X is continuous.
Let {z,} € X with z,, — xy as n — oo. Then
|(Ten) (2]

sup ||zn||= sup max{sup

sup p(t)(Tie,)' (1)
n=0,1,2, n=0,1,2,...

ter 1+7(t) " ter

Hence there exists ¢, € L'(R) such that

0< F(tyan(t),ay(1)) = f(t, (14 (1)) -2 1p<t>x;<t>) < 60 (1),

1+7

Xn(t
1+7(t) p(t)

h(t, (1+ (1)) =D 1p<t)x;(t>) < b(t).

0< g(t, In(t)v x;(t))

g(t, (1+7())

0 < h(t,zn(t),z),(t))

) n

From
(T (1)
—+oo
— [ o al), i (w) du
t 1 +oo +oo
—|—/@q’f1 (qﬁ( /h(u, mn(u),xib(u)) du)—&—/f(u,xn(u),x;(u)) du) ds,
forn =0,1,2,..., we need to prove that Tx,, — T as n — +0o0. One sees that

(Ten) () _ (Tro)(?)
1+7() 1+4+7(%)

_ S gl (), (w) du = J27 g, wo(w), 2 (w)) dul

- 1+ 7(t)
St o s O D T, (1), ), (1)) du) 4 [ (o, 20 (), 2, () ) ds
+ ‘ T+
It @RS S, wo(w), xh(w)) dw)+ [7F (u, xo(u), 2 (u)) du) ds
B 1+7(t) '
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Since

+0oo too
@(/h(u,xn(u),x;(u)) du) +/f(u,xn(u),x;(u)) du

S

— 00

+o0 +oo
<@</h(u,z0(u),z6(u)) du) +/f(u,xo(u),z6(u)) du>|

S

—+oo “+oo
§2@</¢T(s)ds)+2/¢T(s)ds—:r0<+oo, n=0,1,2,...,

and &~ is uniformly continuous on [0, 7], then there exists M > 0 (independent of ¢
and n) such that

+oo +o0
&1 (@(/h(u,xn(u),x%(u)) du) +/f(u,xn(u),:c'n(u)) du)

— 00 S

¢! <€Z5( /_;OO h(u, zo(u), z((w)) du> + 7>Of(u, zo(u), z((u)) du)

S

< M,

n=1,23,....

So

’(Txn)() Ta?o t ‘
1+7() 1+7(
oo |9 (u, zn(u), 27, (u)) = g(u, zo(u), xg(u))] du ‘f_oo 5 dSM'

= T+ 1+7(0)

§2/¢T(s)d3—|—M, n=123,..., t€R.

— 00

Since f, g, h are Carathéodory functions, by Lebesgue dominated convergence theorem,

wehave (Tr.)(t)  (Two)(t)
e Zo o
L+7(t) 1+7(t) ‘ =0 (14

lim sup
n—+4o0o teR

Similarly we get

|p(t)(T)' (£) = p(t)(Tiwo)' (1)

+o0 +oo
¢! (@(/h(u,xn(u),x;(u)) du) +/f(u,xn(u),x;(u)) du)

— 00 t
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Mixed boundary value on the whole line 469

+oo “+o0
— ! (@( / h(u, zo(u), z)(w)) du) + / f(u, zo(u), zj(w)) du) ,
and so
lirf sup |p(t) () (t) — p(t)(Tro)' ()| = 0. (15)

Hence (14) and (15) imply that Tx,, — Ty as n — +o0c0. Then 7" is continuous.

Step 2. We show that T' is maps bounded subsets into bounded sets. Let D C X be
bounded. Then there exists M > 0 such that D C {z € X: ||z|| < M}. So there exists
én € LY(R) such that

0 < Fltale). /() = £ (1 (1 70) g o020 < S ()
0= 9(t.0(0.2'0) =9 (1 (14 70) 2 s, ~p2'()) < o)
0 < h(t0(0).a'0) = (1, (1+7(0) 20— p0(0)) < 010
So
(2)(1)]
1+ 7(t)
12 g, a(u),a’ () du
B 1+7(t)
I SN @S b, x(u), 2/ (w) du) + [ f(u, 2(w), o' () du) ds
+ 1+7(0)
2o ‘ L qsp=1(p( [+ r)dr oo s)ds
< [outrars Lxdin o O o))+ [22 ot

oo o0 +oo
< /¢M(T)d1"+¢1<€T’</¢M(r)dr>+/¢M(s)ds> =: M;.

Furthermore, we have

400 %)
ot (@( / h(u, z(u), 2’ (u)) du) +/f(u,:c(u),x’(u)) du)

o0 —+oo
<q5—1<q$< qSM(r)dr) + / ¢>M(s)ds> =: M.

oo

p()](Tr) ()] =

Nonlinear Anal. Model. Control, 2012, Vol. 17, No. 4, 460-480
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Then

||(Ta:)” = max{flelg m, ilellgp(t)“Tx)/(tH} < oo.

So {Txz: z € D} is bounded.
Step 3. We prove that both {Tx/(1 + 7(t)): * € D} and {p(¢)(Tx)": x € D} are equi-

continuous on each subinterval of R.
Let D C {z € X: |lz|| < M}. Forany K > 0, t1,t2 € [-K, K] with t; < t5 and
x € X , since f, g, h are Carathéodory functions, then there exists ¢; € L*(R) such that
|f(t,x(t),x'(t))| < ¢A1(t)a te R7
lg(t,z(t), 2" ()| < om(t), tE€R,
|h(t,x(t),2(t))| < ¢um(t), te€R.
Then

+0oo +oo
@(/h(u,x(u),w’(u)) du) —|—/f(u,x(u),x'(u)) du

— 00

< 45( 7¢M(T)d7“) + 70¢M(3)d5 =

Since @1 (s) is uniformly continuous on [0, 7], then for each € > 0 there exists u > 0
such that |s; — so| < pu with s1, so € [0, 7] implies that [®~1(s;) — &7 1(s2)| < .
Since

|2 (p(t1)(T2)'(t1)) — D (p(t )(Tx)'( 2))|
/f (u,z(u), 2’ (v)) du

< /ng dr — 0 uniformly as t; — to,
t1
then there exists ¢ > 0 such that |t; — t1| < o implies that |®(p(t1)(Tx) (t1)) —
D(p(t2)(Tx) (t2))| < p. Thus |t; — t2| < o implies that
’p(tl)(Tx)/(tl) - P(tz)(Tx)/(tQ)‘
= |87 (@(p(t1)(Tx) (11))) — &~ (S (p(t2)(Tw) (t2)) )| < €. (16)
Furthermore, we have

‘ (Te)(t1) — (Tr)(t2)

1+T(t1) 1+T(t2)

‘f w), 2’ (u)) du ST glu, x(u), ' (u)) du
1+T(t1) 1+ 7(t2
‘filoo p(ls)é_l(é(fj—;o h(u, z(u), 2’ (u)) du) + jjoof (u, z(u), z'(v)) du) ds
_|_
]. +’T(t1)
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S22 @S b, w(w), 2! (w) du) + [T f(u, 2(u), 7' (u)) du) ds
1+ T(tg)

“+o0
< / dar(r) dr|r(ty) — 7(t2)]|

fl S U hlu(w), @ () du) + [ f (@ (), @' (u)) du) ds
1 + T(tl)

to “+o0

+ / ﬁ@‘l (@(Th(u,x(u),x/(u))du)+/f(u,x(u),x'(u)) du> ds

1 1
X —
‘1+T(t1) 1+T(t2)

+oo
< / Gai(r) drlr(ty) — 7(t)]

+jds¢ <¢< / ori(r dr) 70¢M(r>dr>
o [ o (o Tt o) st
< +/ orrr)drlr(1) — (1)
+ / e ( ( / e dr) +/W¢M(r)dr>
(@( / ¢M<r>dr> ¥ / asM(r)dr){T(tl)T(ta)Ho

uniformly as t; — ¢ on [— K, K].
Then there exists oo > 0 such that [¢; — ¢2| < o9 implies

(Tr)(t) _ (To)(t2) | _
1—|—7'(t1) 1+7’(t2)

A7)

Then (16) and (17) imply both {Tx/(1 + 7(t)): € D} and {p(¢)(Tx): x € D} are
equi-continuous on [— K, K]. So both {T%/(1 4+ 7(t)): « € D} and {p(¢)(Tx)": x € D}
are equi-continuous on each subinterval on R.
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Step 4. We show that both {Tx/(1+ 7(t)): = € D} and {p(¢t)(Tx): = € D} are
equiconvergent at +0o0 and —oo respectively.

Since
+oo
D(p(t)(Tw)' (t)) — / h(u, z(u), 2 (u)) du
= /f(u,x(u),x’(u)) du| < /QSM(r) dr —0
t t
uniformly as ¢ — +o00, we get similarly that
“+o0
p(t)(Tx) (t) — D! ( / h(r,z(r),z'(r)) dr) | — 0 uniformly as ¢ — +o0.

In fact, for any € > 0, there exists o1 > 0 such that |s; — s3| < o1 implies that [~ (s1) —
@ 1(s2)| < €/2. So there exists Ty . > 0 such that ¢t > T  implies that

—+oo

D(p(t)(Tr)' (t)) — / h(u, z(u), 2’ (u)) du| < o7.
Hence
+oo
p(t)(Tx) (t) — &1 ( / h(u, z(u), 2 (u)) du) ‘
S N
= |71 (®(p(t)(Tx) (1)) — 45—1( / h(u, z(u), 2’ (u)) du) < %, t>Te.
Then _
+oo
p(t)(Tx)' (t) — ¢_1< / h(u, z(u), 2’ (u)) du) <e t>Ti.. (18)

— 00

Furthermore, we have

(Te) (1)
1+ 7(t)

+oo
—/h(r,x(T),x’(r)) dr

— 00

+o0

[ ot ato, o' du

—0o0

1
1+7(t)

S e S @ @S B a(r), 2/ () dr) + [ flu, (), @' (u)) du) ds
1+ 7(t)

+
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“+oo
- / h(u, z(u), ' (u)) du
fj;: G (1) dr
- 1+7()
S e 5@ @S R w(u), 2 (w) du) + [ f(u,2(w), 2’ (u)) du) ds
+
14+ 7(t)
S R, (), 2 0) du+ [ s dsB (S B w(w), 2! (1) du)
a 14 7(t)
_ 2fj;° dar(r)dr
- 1+ 7(t)
S e s @@ Rl w(u), 2 (w) du) + [ f(u, 2(w), 2/ (u)) du) ds
+
14+ 7(t)
oo 5 ds@7H @[3 h(u, 2(u), 2/ (u)) du))
a 1+7(t) '
Since
“+oo “+oo
@( / h(r,z(r),2'(r)) dr) + / fu,z(u), 2’ (v)) du
—00 . . t
_@( / qSM(s)ds) + / dp(s)ds =:r,
together with
+0o0 +oo
@( /h( du) /f u, z(u du@( / h(u, z(u), 2’ (u)) du)
/f u x( du —0

uniformly as ¢ — +oc, and ¢! is uniformly continuous on [0, 7], then

— 0 uniformly as ¢t — 4o0.

+oo
(Tr) (1) /
=i / h(u, z(u), 2’ (u)) du

—00
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Then there exists T . > 0 such that

+o00
(T)(t) /
) - / h(u,z(u),x (u)) du

— 00

So (18) and (19) imply that both {p(¢)(Tx)": = € D} and {Tx/(1 + 7(t)): = € D} are
equiconvergent at +0o0.

Similarly we can prove that both {Tx/(1 + 7(t)): « € D} and {p(t)(Tx)": = € D}
are equiconvergent at —oo. The details are omitted.

Therefore, the operator 7' : P — P is completely continuous. The proof is complete.

O

(iv) It is easy to see that z € P is a positive solution of BVP (6) if and only if z is a

fixed point of 7" in P. The proof is complete.

<e, t>Th.. (19)

3 Main theorems
Choose k > 0 sufficiently large such that 7(—k) = f__oli 1/p(s)ds < 1. Let
—k 1
= oo m ds
k 1 !
1+ o ds

Theorem 1. Suppose that ¢ € L*(R) is nonnegative, Ly < Lo and a < b are positive
numbers. Denote

JE Sl M [ ¢(r) dr) ds N
L+ (k) —“}

“+oo
Wy = inf{W >0: 1 (W / o(r) dr) > Ll},
+oo - “+o0 “+o0
Ey = Sup{E: E / o(r)dr + @1 (@(E / o(r) dr) +FE / o(r) dr) <b,
- +00 +_o:O -
¢—1<¢<E / o(r) dr) +FE / ¢(r)dr> ng}.

My = inf{M > 0:

Z MO¢(t)7 te [_kvk]v S [Maaa]a Y € [OaLl]v

y)ZWW@,tGRﬂfWﬂLyEMML
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1
f(tv (1 + T(t))l‘, p(t) y) < EO¢(t)7 te Ra S [Oab]a y e [OaLQ]a
1
g(u (1), o y) < Fyolt), teR, we(0b], ye L,
1
h(u (14 (), p(t)y) < FBod(t), tER, x€[0.b], ye 0L
then BVP (6) has at least one positive solution x satisfying
(t) /
a < sup <b, 0<supp(t)a'(t) < Lo (20)
ter 1 +7(1) tER
or
x(t) /
0 < sup <b, Li<supp(t)z'(t) < Lo. 21)

ter 1 +7(t) teR

Proof. Let X, P and the operator 1" be as in Section 2. By Lemma 2, T : P — Pis
completely continuous, and x is a positive solution of BVP (6) if and only if x is a fixed

point of T"in P.
Define

x(t)
ren 1+7(0)
2 ={z€P: a(z) <a, B(z) < L1},
2 ={z € P: a(z) <b, B(z) < Lo }.

a(z) =

Bz) =supp(t)]a'(t)], x€X,
teR

It is easy to see that o and 3 are convex functionals and {2; and {25 are nonempty bounded

open subsets of P.

Let
Cir={z€P:a(z)=a, Bz) <L},
Dy ={z € P: a(z) <a, B(z) =L},
Cy = {ac € P: a(x) =05, B(x) < LQ},
Dy ={xz € P: a(z) <b, B(z) = Lo }.
Then

0§21 C Cy U Dy, 0829 C Cy U Ds.
For x € (1, we have

x(t)
1+ 7(t)

pa <

Then

f(t, (1+7(t)), p(lt)y> > Mop(t), te€[-k,k], =€ [pa,a], ye]0,L].
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From (7), we see that p(t)(Tx)'(t) > 0 for all t € R. So we have (Tx)(¢t) > 0 for all
t € R. Then

a(Tx)
B J22 9w, w(u), 2/ (u)) du
~ien L+ ()
fioop(ls)é_l(@(fj:oo h(u, z(u), 2’ (u)) du)—s-f;roof(u, x(u),z'(u)) du) ds
+ 1+ 7(t)

oo g(u, z(u), 2’ (u)) du

— O

- 1+T(k

f_oo @ M@ T hlu(u), @' () du) + [ f(u,2(u), @' (u)) du) ds
1+ 7(k)

fkgwx() '(u)) du
- )
f_k S Y @[5, hu,2(u), 2 (w) du) + [F f(u,2(w), o' (u)) du) ds
14+ 7(k)
> ffk p(1s)¢71(fsk f(u, x(u), 2’ (u)) du) ds S f k p(s) (Mo fsk ¢(r)dr)ds -
= 1+rw) = 1+ 7(k) =
For z € Dq, we have

x(t)
01

<a, 0<p(t)a'(t) <Ly, teR.

Then
1

f(t, (1 + T(t))x, e
From (7), we get p(t)(Tx)’(¢t) > 0 and (Tx)(¢t) > 0 forall t € R. So
B(Tr) = sup p(t)]|(Tr)'(8)]

y | >Wop(t), t€R, z€][0,a], y<€][0,L].

—+oo

> fgg@*l (@( 7ooh(u,x(u),x’(u)) du) + / f(u,z(u), 2’ () du)

—o00 t

+oo

+oo
- ¢_1< / f(u,ac(u),x’(u)) du) > 925_1< / o(r)Wo dr) > 1.

— 00

We claim that

Tr# Mx forall A€ [0,1) and = € (2. (22)
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In fact, if Tx = Az for some A € [0,1) and = € 92, then either z € C; or x € D;.

If z € C4, we get from above discussion that «(7%) > a. On the other hand, we have

a(Tr) = Aa(z) < a(z) = a, a contradiction.

If z € D;, from above discussion, we have §(Tx) > L;. On the other hand, we have

B(Tx) = AB(x) < B(x) = L1, a contradiction too.
For x € (5, we have

z(t)
O< it =Y

0 < p(t)z'(t) < Ly, te€R.

f(t, (1+T<t))m,y> < Bod(t), te R ze(0.8], yel0 L,
1) < B, t€R sl ye L,

h(t, (1+7(t)), 1y) < Eop(t), teR, z€(0,b], yel0,Ls

So
a(Tx)

_ (T)(t)
TR 1+T()
+oo

[foo 9(u, z(u), 2’ (u)) du
14+ 7(t)

= sup
teR

[t (@ hu, w(u), o (w) du)+ [T f(u, 2(w), 2/ (u)) du) ds

oo

o0 p(s)
* 1+7(0)

teR

+oo
< sup L / g(u,w(u), 2’ (u)) du

oo

+fi,o L dsdH(@( 72 h(u, x(u), 2/ () du)+ [ 722 f(u, 2(u), o/ (u)) du)

p(s) 0
1+ 7(t)
+oo
< /g(u,z(u),x (u)) du
h +o0 +oo
+ ¢! ((15( / h(u, z(u), 2’ (u)) du) + / f(u,z(u), 2" (u)) du)

o0 400 oo
< Ey / o(r)dr + @1 <(15 <Eo / o(r) dr> + FEy / o(r) dr) <b.
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For x € D5, we have

B(Tw) = sup p(t)|(Tw)'(1)|

teER
- :gg o1 (@( +/Ooh(u, z(u), z'(u)) du) + +/Oof(u, z(u), ' (u)) du)
<o T

We claim that
Tx # Ax forall A € (1,+00) and = € 92s. (23)

In fact, if Tc = A\x for some A € (1, +00) and x € 929, then either x € Cs or x € Ds.

If x € Cy, we get from above discussion that a(7T’x) < b. On the other hand, we have
a(Tr) = Aa(z) > a(z) = b, a contradiction.

If z € D5, from above discussion, we have 3(Tx) < Lo. On the other hand, we have
B(Tx) = \B(z) > B(x) = Lo, a contradiction too.

Forz € 0 = 2, = {z € P: a(z) < a, 5(x) < L1}, we have either a(x) = a > 0
or f(z) = L1 > 0. Then

x(u)

pa < T <a, 0<p(u)z'(u)<Li.
Since
+oo
(Tx)(t) = /g(r,x(r),x’(r)) dr
70015 . +oo +oo
Jrép(s)@ <Q3 (Zoh(mx(u),x (u)) du) + S/f(u,x(u),x’(u)) du) ds,
+oo

+oo
p(t)(Tx) (t) = 71 (@( / h(u, z(u), 2" (u)) du) + / f(u,z(u), 2’ (u)) du>

t

— 00

and

T ; }
1+T(t) teER ’

| T = max{sup (
teR
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Mixed boundary value on the whole line 479

together with

f(t, (1 + T(t))as, p(lt)y> > Mog(t), te€[—kk], € lpa,al, yel0,L],

we have

—k
k
> ¢—1<M0 / 6(u) du>
—k
It is easy to see that
inf{||Tz|: z € 062, } > 0. (24)

It follows from (22), (23), (24) and Lemma 1 that 7" has at least one fixed point
x € 5\ £21. So BVP (6) has at least one positive solution x such that x € (25 \ £2; which
imply that x satisfies (20) and (21). The proof is complete. O
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