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Abstract. Third order initial boundary value problem is studied in a bounded plane domain o
with C** smooth boundary do. The existence and uniqueness of the solution is proved using Galer-
kin approximations and a priory estimates. The problem under consideration appear as an auxiliary
problem by studying a second grade fluid motion in an infinite three-dimensional pipe with non-
circular cross-section.
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1 Introduction

In the paper we study the following initial boundary value problem in a bounded two—

dimensional domain o:
O(v — alAv) —vAv + (U - V) (v — aAv) = f,
v|oe =0, v(z’,0) = vo(z'),

)

where 9; denotes 9/0t. Problem (1) appears as auxiliary by studying the incompressible
non-Newtonian second grade fluid flow in a three-dimensional pipe Il = {z = (2/,z3) €
R3: 2’ € 0, x3 € R} with cross-section o. The corresponding equations have the form

O(u — aAu) — vAu + curl(u — aAu) x u+ Vp =f,

divu =0,

ulom =0, u(x,0) =ug(x), )

/u;;(xﬂx;;,,t) dz’ = F(t).

g

Here u is the velocity of the fluid, p is the pressure, f is the external force, uy is the initial
velocity, « is the normal stress module, v is the kinematic viscosity (« and v are positive
constants) and the last condition in (2) prescribes the flux F'(t) over the cross-section o.
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In two-dimensional channels and three-dimensional pipes with rotational symmetry
problem (2) has the unidirectional Poiseuille type solutions [1]. However, in a three-
dimensional pipe with non-circular section o secondary flows appear and the velocity
field has all three components. Let us suppose that the data f and uy do not depend on the
coordinate x3 and have the form

uy(z) = (uor(z'), uo2(z’), uos (),

f(x7t) = (fl(xlvt)7 fg(ﬂ?/,t>, fS(xlvt))'

Moreover, suppose that the necessary compatibility condition

/ vo(z) da’ = F(0) 3)

(o2

holds. Then we can look for the solution (u(z,t), p(x,t)) of system (2) in the form

u(z,t) = (Ui (', 1), Us(a', 1), Us(2', 1)),

plat) = (e’ 1) — a(t)es + pol), @

where po(t) is an arbitrary function. Substituting (4) into (2) we get the following problem
onol =0 x (0,7):
0;(U" — aAU") — vAU’ + curl(U’ — aAU’) x U’
— Us(V(Us — aAU3)) + Vi = f,
01(Us — aAUs) — vAU3 + (U - V) (Us — aAUs) = f + q(t),
div, U =0, (5)
Uloo =0, Uslo, =0, U'(2',0) =ug(a’), Us(a',0) = wvo(a'),

/Ug(x',t) da’ = F(t),

where

f/(xlv t) = (fl (xlv t)v f2($/, t))a u()(x) = (uOl(x,)a UOQ(Z/))a
f@' 1) = f3(2',t), wo(2') = ups(a’), U'(a/,t) = (Ui(2, 1), Ua(a’,1)).
Notice that in (5) functions ug(z’), f(2’,t) and F'(¢t) are given, while U(a’, 1), p(a’, 1)
and ¢(t) are unknown and have to be found. For small data problem (5) can be solved by
iterations dividing it into two problems:
0 (U — aAU’) — vAU’ + curl(U’ — aAU’) x U’ + Vp
=Us (V(Ug — OéAUg)) + f/,
div, U’ =0,
U/|80 =0, U/(xlvo) = ué)(‘r/)a

(6)
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with given U3 and
8t(U3 — OéAU3) — Z/AUg + (UI . V)(Ug — CkAUg) = f + q(t),
U3|5<T = 07 U3(117/, 0) = UO(I/)a

/Ug(ar’,t) dz’ = F(t),

o

)

with given U’. Problem (6) with the given right-hand side is the standard initial boundary
value problem describing the motion of the second grade fluid in a bounded plane domain.
Such two- and three-dimensional problems has been studied by several authors (e.g. [2—
17], etc.). Problem (7) is the inverse problem (the function ¢ in the right-hand side is
unknown). In the case @ = 0 system (2) coincide with the Navier—Stokes system. The
corresponding inverse problem was studied in [12]. If U’(z’,¢) = 0, we have equation
describing unidirectional flow of the second grade fluid. The existence of a unique solution
in this case is proved in [1].

By studying the inverse problem (7) it is convenient to reduce it to the case of zero f
and the homogeneous initial condition. This could be done by subtracting the solution v
of problem (1) which we study here. We prove the existence of the solution to (1) using
the Galerkin method and choosing the special sufficiently smooth basis. Constructing this
basis and getting a priori estimates of Galerkin approximations we follow ideas proposed
by D. Cioranescu and E. Quazar (see [2—4]).

The inverse problem (7) and complete analysis of problem (5) will be done in the
forthcoming paper.

2 Main notations and a special basis

Let ¢ C R? be a bounded domain. In the paper we use the standard notations for Sobolev
spaces [18]. Denote by W; (o) the adjoint space to Wi (o). The notation V(o) (or
V(6T), 0T = o x (0,T)) means subspace of the space V(c) (or of V(¢ 7)) consisting
of functions equal to zero (in the sense of traces) on do. Vector-valued functions are
denoted by bold letters; spaces of scalar and vector-valued functions are not distinguished

in notations. The vector-valued function u = (uq,...,uy) belongs to the space V, if
w € Vi =1,...,n,and |Jully = 3 |lus|lv. Below we will need the following
spaces:

X(o) = {ve Wi (o): V(v —alAv) € Ly(0)},

2

with the norm Hu||)n((g)

= ullfy; () + IV = adu)lf7, )
W(UT) ={v: Dv € Ly(c"), |a| < 3; 0w € La(0"); VO € Ly(o7); v]ge = 0},

with the norm Hv”?/“v(aT) = a1z D203, (ory + 100017, oz + 10:V V[T, (yry: and

]O/(UT) = {V € W(JT): divv = O}.
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Note that in the case do € C® the space X (o) is equivalent to W3 (o) N Wi(o).
Indeed, if u € W3 () N W3 (0), then, obviously, u € X(0) and [[ul| () < cllullw (o)
On the other hand, according to the Necas inequality (see [15])

1A% 2, 0) < (| AUl + VAU L o) < c(IVUllLy(o) + VAU L, 0))-

Therefore, considering w as a solution to the Poisson equation
—Au = —Au,
ulos =0,
we get the estimate
lullws (o) < (AU Ly(0) + VAU Ly(0))
< e([IVullLy o) + VAUl L,(0)) < cllufl 5(y- @®)

Let us construct a special basis in the space X (¢). Let {\} and {w(z')} C X (o)
be eigenvalues and eigenfunctions' of the following problem:

/V(wk(m’) — aAwg(z")) - V(p(z') — aAp(z)) da’

=\ — 1) / (wip(x') + aVwy(a') - Vp(z')) dz’ Vp € X (o). 9)

o

Theorem 1. Let 0 C R? be a bounded simply connected domain with the boundary
do € C*. Then
o (9) defines a countable set of eigenvalues A\, > 1, k = 1,2, .. .; the corresponding
eigenfunctions wy, constitute bases in X (), Wi (o) and Ly (o).
o The eigenfunctions wy, can be orthonormalized

/(w’“(x/)“’l(x/) +aVuy - V) da’ = {(1) :fﬁ (10)
Then
/V(wk(fcl) - aAwk) -V(w; — aAw;) dz’ = 0, k#1, an
M —1, k=L

o The eigenfunctions of (9) belongs to W3 (o).

Proof. The proof of the first property is standard for elliptic equations (e.g. [7]). The
second property follows from the identity (9). To prove the third property, we denote
p — aAp = p and rewrite integral identity (9) in the form

/V(wk(x’) — alAwy(2')) - Veda' = (\p — 1)/wkg0 dz’.

g

li.e. wy («) are nontrivial solutions of (9)
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Obviously, if p € )D(o(a), then ¢ € W (o), and, oppositely, for any ¢ € Wi (o) there
exists a unique p € X (o) such that p — aAp = . Therefore, wy — aAwy, € Wi (o) can
be interpreted as a weak solution to the following Neumann problem:

—A(wk — aAwk) = ()\k — 1)w;€,
O(wg, — aAwy)

=0.
on P

Since wy, € Lo(c), we conclude that wy, — aAwy, € W2 (o). Consider now wy, — aAwy,
as a solution of the Dirichlet problem:

wg — aAwy, = wy — aAwy,

wk|86 = 0.
Since o € C*, we conclude that wy, € Wi (o) N Wi (o). O

In the paper we suppose that the function U’ € V(o7) is given and satisfies the
following condition:
st U llx0) + 10 lypor, < o (12)

te[0,T)

where dj is a sufficiently small constant.

3 Construction of an approximate solution

The function v € W(UT) is called a weak solution of problem (1) if it satisfies for all
t € [0, 7] the integral identity

//8vn+a@ Vo - Vn)dxdT—i—l///Vv Vndx' dr

0
//fndx dT+// n(v — aAv)da'dr Vn€W2 ( a3

and the initial condition v(z’, 0) = vo(z’).
Let f € La(c7), vg € W3 (o). Then we can express them by the Fourier series

=3 frwe(a), vo(@') = apwp(a’)
k=1 k=1

where f(t) = [ fa(2',t)wy(2') da’, ax = [ vo(z')wy(2") da’.
We look for the approximate solutions v(N) (2/, t) in the form

Zyk (t) wk

www.mii.Jt/NA
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where coefficients y,(CN) (t) are found from the integral equalities

/(atv Ny, + aVouY) . - Vwy,) da’ +1//Vv N) . Vwy, dz’

/f(N)wkdx +/U Vwk —ozAv(N))da:, k=1,...,N, (14

and the initial condition v™) (2, 0) = véN)(z’), where f(V) (2, t) = ij:l fru(@®)wg(z'),
(N)(y — N ’
vy (@) = 3 p—y axwi(a).

Since the eigenfunctions wy, are smooth (wy, € Wi (c)), the approximations v(™¥) (2, ¢)
are solutions to the following initial boundary value problems:

3 (V™) —aAv™M) —p AV (U V) (v ) — @A) = ),

(15)
vWM5e =0, oM (2/,0) = v(()N)(m’).

Using (9), (10) we derive from (14) the Cauchy problem for the system of ordinary
linear differential equations:

(N) +Z( + my (t )J(CN)(t):fk(t), k=1,...,N,

y](cN)(O):ak, kzl,"'aNa

where my;(t) = — [ ((v/a)wrw; — (U’ - V)w;(wy, — «Awy)) dz’. The last system can
be rewritten in the vector form:
Y () 4+ (@O + 2N (1) YN ) = £(2), 6
Y<N>( ) =a
Here Ny
0 f a
YN (1) = : , f=| ], a=| |,
un () In an
JWN) = diag(v/a, ..., v/a) - diagonal matrix, AN (¢) is (N x N) matrix with elements
mg; (t)

Lemma 1. Let f € Ly(oT), vo € Wi(0). Suppose that U’ € V(oT) is given and
satisfies (12). Then there exist a unique solution Y V) € W3(0,T) of system (16).

Proof. Letus prove that the elements my;(t) of the matrix (™) (¢) are bounded. We have
|5 (2))

’/—wk Jw;(2") — (U (', 1) - VIw;(z) (wi(2) — alwy(2)) da’
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< g + ‘ / (U/($I7t) . v) (wk(ﬁﬁ/) - aAwk(x’))wj(x’) da’
< =4[O gy o IV w0 = adwi)] o lsllzo)

: I

< P +CHU/(~7t) ‘VU/ H1/2 HV wy — aAwg) HLQ(U |V’LU7HL2(J)

LQ(O’)
12
< v —|—c<>\k 1) sup ||U’ ||1/2 bup ||VU’ ||2/2((r < v + ¢dp.
« « tc[0,T] «

Here we have used equalities (10), (11), the well known inequality
ull7, o) < ellulli, o IVull7, oy < ellVuli, e

which holds for any function u € W21(0') and the condition (12). Thus, all elements of
the matrix 21(") (¢) are bounded functions and, therefore, the existence of the unique so-
lution to problem (16) follows from standard results of the theory of ordinary differential
equations (e.g., [16]). O

4 A priori estimates

Lemma 2. Let U € V( T satisfies condition (12) with sufficiently small 5y (8¢ is
subject to inequalities (27), (29), (32) below). Suppose that do € C4 f € Wi(o) and
vy € W3(o) N\ Wi(o). Then for the approximate solution vN)(a/ t) the following
estimate:

tes[%pT H“(N)HX(g) n HU(N)HW C(||f(N)HW21(GT) + ””(()N)H;zw)) (17)

holds. Here c¢ does not depend on N.
Proof. Multiply equalities (14) by y,(CN) (t) and sum by k from 1 until N:

1d

5 (’U(N)‘2+Q‘VU(N)’2) de—u/]Vv(N)‘de'

g

:/f(N)v(N)dx'—a/(U’-V)AU(N)v(N) da’

_2€/|f | da’ —|—c€/|Vv(N}dx

+a SUP |U/|HU(N)HLQ(U)HVA”(N) HL2(U)

_2€/|f s’ + A gauf? +65/|w<N| a.

www.mii.Jt/NA
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Here we applied Cauchy inequality with € and the inequality

sup |U’| + sup |[VU'|

z'eo z' o

Sc“ﬂMgwSch%erﬂhmMT—aAwawﬂSc%, (18)

which follows from the Sobolev embedding theorem, (8) and (12). Taking ¢ = v/(2¢)
yields

% (|U(N)|2+Q|VU(N)|2) dx/—|—u/|Vv(N)|2dx’
< e [VAE, he / 1FOP da. (19)
Denote
M (2 1) = (U V) (o) — aAv™M)) — pAN) — f(N), (20)

Since the eigenfunctions wy, € Wi (c), it follows that ®(N) € W3 (o).
Let us rewrite equalities (14) in the form:

/ (BtU(N)wk +aVo,u™M . Vwy) dz’ + / WMy da’ = 0. (21)

o o

Denote by W) (-, 1) € Wi (o) N W3 (o) the solution of the following problem:

—aAWWN) Ly N) = (N

(22)
w| . =o.

Then
/ (aVW ) vy + WMy da’ = /<I>(N)77 d’ Wne W;(a) (23)

Taking in (22) n = wy, we obtain from (21) the relations

/ (3tU(N)wk + aVo,u™) . V) dz’ + / (V[/(N)w;C +aVW ). Vw) dz’ = 0.

o o

By the definition of the eigenfunctions wy, (see (9)) we can rewrite the last equalities in
the form

1
o (@v(N)wk—i-on@tv(N) -Vwk—i—V(@tv(N) —ozA@tv(N)) V(wg—alAwy)) dz’
k
7
+>\f (VV(N)UJ;c +a VW N Vwe +V(W(N) —aAW(N)) -V (wy, —ozAwk)) da’
k

o

=0.
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Multiplying these relation by /\ky,(cN) (t) and summing from 1 to N yields
1d N) |2 N) |2 N N 2
T (o™ + a| Vo™ + |V (0™ — aAv™)[7) da’

o

" / (WM™ 1 oauw ). 7p(N)) da!
+ /V(W(N) — ozAW(N)) 'V(’U(N) alAv N)) d2’ = 0.

From (22), (23) it follows that

1d

L [ (R 4+ a7 4 [T - a8 ™)) s

o

+/(I)(N)’U(N) dac’—l—/V(v(N) —aAv(N)) VW) da’ = 0.

o

Substituting the expression (20) of the function W) into (24) gives:
1d

3t [ (O 4+ alTo 4 [90 - asu) 7)o

g

+o</U’~Vv(N)Av(N) dx'+u/|Vv(N)|2dx’

+ / V[U- V) (6™ = aro®™))] - (0™ — aAe®)) da’

g

(24)

/|V (v — aAv ™) | da’ — — /VU(N) (v — aAv™M) da’

:/f(N)v(N)dx/—i—/Vf(N) V(o™ — aAv™)) da’

o

(25)

The right-hand side of (25) contains the term with the fourth order derivative. How-
ever, this term can be estimated by the integral containing only derivatives up to the third
order. The operations below are correct because the functions wy, belong to the space

W3H(o). Denote for simplicity v(¥) — aAv) = 4. We have

/ VU 9) (o™ —ato™M)] - V(0™ — arv™) da’

o

= /V[(U/ V)u] - Vudz' = /{VU/ -V}iu-Vudr + /(U' -V)Vu - Vuda'

o g [ea

www.mii.Jt/NA
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1
:/{VU’-V}u-Vudw’—i—f/(U’~V)|Vu|2dx’

/{VU’ Viu - Vuda' —f/v U'|Vu|? d’ —/{VU’ Viu - Vudz'

I /\

/|VU’||Vu|2 dz’ < csup |VU’\/\VU|2dx’ < 650/\Vu\2d$’
z'€o

cdo / |V’U(N) — onAv(N)‘de’. (26)

Here we have denoted {VU’ - V} = VU0, + VU20,, and applied (18).
Using (26) from (25) we get the estimate

1d

L (WO 4 al 9o ™ 4 ]9 — 0o ™)) e

+u/‘Vv(N)’2dx’+§/‘V(v(N) —aAv(N))’2dx’
—a/U' VAN W) qo + = /VU(N) V( () — aAv(N))d
/V U’ (N) — ozAv(N))} -V(U(N) — ozAv(N)) da’

+/f(N)U(N) da:’—!—/Vf(N) V(™) — aAv™) da’
(N) (N)
< asup [U[VAS o [lo™0], )

14
+ EHV”(N)HLQ(U)HV(”(N) —atv™) HLg(o)

+218(/|f(N)|2dx’+/|Vf(N)|2dx’>

+ (;+C(5(])/’V(W(N)—OZA’U(N))|2d£L'/+;/|V'U(N)‘2dl'/
< — 05 /|VAU | da’ +5/|VU(N d:v + - /|VU(N |dm

+ (e + ¢dp) /}V aAvN))| dz’
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+i/‘f(N)‘de'—&—i/‘Vf(N)lzdm’
2¢e 2¢e
<( 103 +€+025()>/|V ) _ aAv(N)’ da’ +€/|V'U(N)|dx

1+5 /|V N)|dx+ /|f(N)| da’ + — /|va)| da’.

Taking ¢ = min{v/2,v/(4a)} and assuming that d is sufficiently small, i.e.

6162

+ 960 < 4— Q27)

from the latter inequality we obtain

& T £ af9e + 96 e as

+u/|Vv(N)‘2dx’+g/|V(v(N) —aAv(N))’2dx’

gc</|f<N>¢2dx'+/Wf<N>|2dx'+/|vU<N>|2dx'). (28)

Integrating inequality (19) by ¢ gives the estimates

¢
/(}U(N)(:E’,t)‘z+a|VU(N)(x’,t)|2) d:c/Jrz///‘Vv(N)fdx/dT
o 0 o

t t
gasg//|VAU<N>\2dx’dT+c//|f<N>;2dx’dT
0 o 0 o

+ / (‘véN)|2 + a|Vv(()N)|2) dz’

¢ ¢
§c§§//|V(U(N)_QAU(N))’2dx’dT+6358//|VU(N)}2dm/dT
0 o

0 o

t
vo [ [P asar+ [ (o +af 7ol do
0 o

g

If

302 < (29)

AR
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the last inequality yields the estimate

¢
//‘VU(N)’2d$/dT
0 o

¢
Scég//’V(v(N)—aAv(N))‘de'dT

0
t

+c//\f(N)\de’dTJr/(]véN)]Z+a]VvéN)\2) da’. (30)
0 o

(o2

Integrating inequality (28) with respect to ¢ and estimating the last term in right-hand side
by (30) we obtain

/ (|U(N)(:c',t)|2 + a‘Vv(N)(x’,t)f + |V(U(N)(£L’/7t) — aAv(N)(x',t))|2) da’

o

t t
+V//|V1}(N)|2dxld7'+//|V(’U(N)*OtAU(N))|2dI/dT
0 o 0 o

t t
SC(//’f(N)|2dx'dT+//|vf(N)’2dx/dT>
0 o 0 o

t

+C45(2]//|V(11(N)—ozAv(N))|2dx/dT
0 o

+ c/ (‘véN)|2 + a|Vv(()N)|2 + ’V(U(SN) - aAvéN))|2) dz’. (31)

Assuming that
1
c16f < ok (32)
from (31) we derive the estimate

/ (W™ (@, )" +a| Vo™ @ ) + |V (0N (@', 1) - ade™ (@, 1))[*) do’

g t
+//(1/|VU(N)|2+]V(v(N)—aAv(N))‘Q) dz’ dr
0 o
t
<o [ [QrOF + 97 arar
0 o

+ c/ (‘v(()N)‘Z + a‘Vv(()N)IQ + ’V(véN) - ozAvéN))‘Z) dz’. (33)

o
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Let us multiply equalities (14) by dy,(CN) (t)/dt and sum them by k from 1 to N:

vd
/(|atU(N)|2+a|V8tv(N)‘2)da:’+ia/‘Vv(N)fdx’

g

:/(U’~V)( M) — aAv™)) ™) da’ +/f V9,0 d

<5 _ sup |U’| /\V aAU(N))| da’

z'€o
+€/|8tv(N)‘ dx’—i——/‘f(N)fdx’.
2e

Taking ¢ = 1/2, integrating with respect to ¢ and applying inequalities (18) and (33) we
obtain

¢
V/|VU(N)(x/7t)|2dxl+//(|87—’U(N)|2+CY|V8-,—’U(N)|2) da’ dr
s 0 o

o[ [ U 1950 aaae
0 o

c/ (’v(()N) ’2 + a!VU(()N)|2 + |V(v(()N) - aAv(()N)) |2) dz’. (34)

Estimate (17) follows from (33) and (34) and the definitions of the norms. O

5 Existence and uniqueness of the solution

Theorem 2. Suppose that do € C*, f € W}(oT), vo € W(o) N W (0) and U’ €
V( T satisfies condition (12) with &y subject to mequalmes 27), (29), (32). Then prob-
lem (1) admits a unique week solution v € W( 1Y and the following estimate holds:

sup ||U||)°<(U) + HUHV\’;(UT) < C(Hf”wg(aT) + ||U0||)°<(g))- (35)
t€[0,T)

2 1,0 . .
Proof. Multiplying equations (15) by arbitrary function n € W, (¢7) and integrating
by parts in o and by ¢ we get the following integral identity:

t t
// (GTU(N)n + avo vV - Vn) da' dr + u//Vv(N) -Vnda' dr

t t
://f(N)Ud$'dT+//U’-Vn(v(N) —aAv™)da' dr V€ [0,T). (36)
0 o 0 o
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From estimates (33), (34) it follows that there exists a subsequence {U(N l)} such that
v () — w(t) in X(o) Ve [0,T], o™ — v in W(oT).

Passing in (36) to a limit as IN; — oo we obtain for v the integral identity (13). Ob-
viously, v satisfies the initial condition. Moreover, from the inequality (17) follows the
estimate (35).

Let us prove the uniqueness. Let v!!l and v[?! be two weak solutions of problem (1).
The difference V' = v[! — v satisfies the integral identity

t t
//(&Vn +ad,VV - Vn)da' dr + V//VV -Vndz' dr
0 o ' 0 o
= //U’ -Vn(V —aAV)da' dr Vn € W;’O (o7).
0 o
Taking n = V yields

t t

1

5/(\V|2+a|VV\2)dx'+1///|VV|2dx’dT: —a//U'-VVAde’dT.
0 o 0 o

Integrating by parts in the right-hand side term we get

¢
—a//U/-VVAde'dT

0oy
/]
0 o
t t
< a/sup |VU'| [ [VV|*da’ dr gc/HU'ng(U)/|VV|2d:r:’dT.
0 o

z'€o

da’ dr

2 2 2
_% SOV U@,V + Y 0050, VO,V
i=1

i=1 j=1

o

Therefore,
t
/|VV\2dx’ §c/||U’HW23.(J)/|VV|2dx’dT.
o 0 o
By Gronwall’s inequality fa |[VV|?da’ < 0 and, since V]s, = 0, we conclude
V(2',t) = 0. Thus, v!! = o[, O
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