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The first integral method and traveling wave solutions
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Abstract. In this paper, the first integral method will be applied to integrate the Davey–Stewartson’s
equation. Using this method, a few exact solutions will be obtained using ideas from the theory
of commutative algebra. Finally, soliton solution will also be obtained using the traveling wave
hypothesis.
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1 Introduction

The first integral method was first proposed for solving Burger-KdV equation [1] which
is based on the ring theory of commutative algebra. This method was further developed
by the same author [2, 3] and some other mathematicians [2, 4, 5]. The present paper
investigates, for the first time, the applicability and effectiveness of the first integral
method on the Davey–Stewartson equations. We consider the Davey–Stewartson (DS)
equations [6, 7]:

iqt +
1

2
σ2
(
qxx + σ2qyy

)
+ λ|q|2q − φxq = 0,

φxx − σ2φyy − 2λ
(
|q|2
)
x
= 0.

(1)

The case σ = 1 is called the DS-I equation, while σ = i is the DS-II equation. The para-
meter λ characterizes the focusing or defocusing case. The Davey–Stewartson I and II are
two well-known examples of integrable equations in two space dimensions, which arise
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as higher dimensional generalizations of the nonlinear Schrodinger (NLS) equation [8].
They appear in many applications, for example in the description of gravity-capillarity
surface wave packets in the limit of the shallow water. Davey and Stewartson first derived
their model in the context of water waves, from purely physical considerations. In the
context, q(x, y, t) is the amplitude of a surface wave packet, while φ(x, y) reperesents the
velocity potential of the mean flow interacting with the surface wave [8].

The remaining portion of this article is organized as follows: Section 2 is a brief
introduction to the first integral method. In Section 3, the first integral method will be im-
plemented and some new exact solutions for Davey–Stewartson equation will be reported.
Additionally, in this section, the traveling wave solution will also be obtained to retrieve
soliton solution. A conclusion and future directions for research will be summarized in
the last section.

2 The first integral method

Consider a general nonlinear PDE in the form

P (u, ut, ux, uy, uxx, utt, uyy, uxt, uxy, uyt, uxxx, . . .) = 0.

Initially, we consider case σ = 1 (DS-I). So using the wave variable η = x − 2αy + αt
leads into the following ordinary differential equation (ODE):

Q
(
U,U ′, U ′′, U ′′′, . . .

)
= 0, (2)

where prime denotes the derivative with respect to the same variable η.
For case σ = i (DS-II), we use the wave variable η = x+ 2αy − αt into Eq. (2).
Next, we introduce new independent variables x = u, y = uη which change to

a dynamical system of the following type:

x′ = y,

y′ = f(x, y).
(3)

According to the qualitative theory of differential equations [1,9], if one can find two first
integrals to Eqs. (3) under the same conditions, then analytic solutions to Eqs. (3) can
be solved directly. However, in general, it is difficult to realize this even for a single first
integral, because for a given autonomous system in two spatial dimensions, there does
not exist any general theory that allows us to extract its first integrals in a systematic way.
A key idea of our approach here, to find first integral, is to utilize the Division theorem.
For convenience, first let us recall the Division theorem for two variables in the complex
domain C [10].

Division theorem. (See [11].) Suppose P (x, y) and Q(x, y) are polynomials of two
variables x and y in C[x, y] and P (x, y) is irreducible in C[x, y]. If Q(x, y) vanishes
at all zero points of P (x, y), then there exists a polynomial G(x, y) in C[x, y] such that
Q(x, y) = P (x, y)G(x, y).

Nonlinear Anal. Model. Control, 2012, Vol. 17, No. 2, 182–193



184 H. Jafari et al.

3 Exact solutions of Davey–Stewartson equation

In order to seek exact solutions of Eqs. (1), we first consider case σ = 1. So Eqs. (1)
reduces to

iqt +
1

2
(qxx + qyy) + λ|q|2q − φxq = 0,

φxx − φyy − 2λ
(
|q|2
)
x
= 0.

(4)

Now, in order to seek exact solutions of Eqs. (4), we assume

q(x, y, t) = u(x, y, t) exp
[
i(αx+ βy + kt+ l)

]
, (5)

where α, β and k are constants to be determined later, l is an arbitrary constant. We
assume β = 1. Substitute Eq. (5) into Eqs. (4) to yield

i(ut + αux + uy) +
1

2
(uxx + uyy)−

1

2

(
α2 + 2k + 1

)
u+ λu3 − φxu = 0,

φxx − φyy − 2λ
(
u2
)
x
= 0.

(6)

Using the transformation

u = u(η), φ = φ(η), η = x− 2αy + αt,

where α is a constant, Eqs. (6) further reduces to

1

2

(
1 + 4α2

)
u′′ − 1

2

(
α2 + 2k + 1

)
u+ λu3 − φ′u = 0,

φ′′ − 4α2φ′′ − 2λ
(
u2
)′

= 0,

(7)

where prime denotes the differential with respect to η. Integrating the second part of
Eq. (7) with respect to η and taking the integration constant as zero yields

φ′ =
2λ

1− 4α2
u2. (8)

Substituting Eq. (8) into the first part of (7) yields

1

2

(
1 + 4α2

)
u′′ − 1

2

(
α2 + 2k + 1

)
u+

(
λ− 2λ

1− 4α2

)
u3 = 0. (9)

3.1 Application of Division theorem

In order to apply the Division theorem, we introduce new independent variables x = u,
y = uη which change Eq. (9) to the dynamical system given by

x′ = y,

y′ =
α2 + 2k + 1

1 + 4α2
x+

2λ

1− 4α2
x3.

(10)
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Now, we are going to apply the Division theorem to seek the first integral to (10). Suppose
that x = x(η) and y = y(η) are the nontrivial solutions to (10), and

P (x, y) =

m∑
i=0

ai(x)y
i

is an irreducible polynomial in C[x, y] such that

P
(
x(η), y(η)

)
=

m∑
i=0

ai
(
x(η)

)
y(η)i = 0, (11)

where ai(x) (i = 0, 1, . . . ,m) are polynomials in x and all relatively prime in C[x, y],
am(x) 6= 0. Equation (11) is also called the first integral to (10). We start our study by
assumingm = 1 in (11). Note that dP

dη is a polynomial in x and y, and P [x(η), y(η)] = 0

implies dP
dη = 0. By the Division theorem, there exists a polynomial H(x, y) = h(x) +

g(x)y in C[x, y] such

dP

dη
=

[
∂P

∂x

∂x

∂η
+
∂P

∂y

∂y

∂η

]
(12)

=

1∑
i=0

a′i(x)y
i+1 +

1∑
i=0

iai(x)y
i−1
[
α2 + 2k + 1

1 + 4α2
x+

2λ

1− 4α2
x3
]

=
(
h(x) + g(x)y

)( 1∑
i=0

ai(x)y
i

)
, (12)

where prime denotes differentiating with respect to the variable x. On equating the coef-
ficients of yi (i = 2, 1, 0) on both sides of (12), we have

a′1(x) = g(x)a1(x), (13)
a′0(x) = h(x)a1(x) + g(x)a0(x), (14)

a1(x)

[
α2 + 2k + 1

1 + 4α2
x+

2λ

1− 4α2
x3
]
= h(x)a0(x). (15)

Since, a1(x) is a polynomial in x, from (13) we conclude that a1(x) is a constant and
g(x) = 0. For simplicity, we take a1(x) = 1, and balancing the degrees of h(x) and
a0(x) we conclude that deg h(x) = 1. Now suppose that h(x) = Ax+B, then from (14),
we find

a0(x) =
1

2
Ax2 +Bx+D,

where D is an arbitrary integration constant. Substituting a0(x), a1(x) and h(x) in (15)
and setting all the coefficients of powers x to be zero, we obtain a system of nonlinear
algebraic equations and by solving it, we obtain

A = 2

√
λ

1− 4α2
, B = 0, D =

α2 + 2k + 1

1 + 4α2

√
1− 4α2

2
√
λ

, (16)
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and

A = −2
√

λ

1− 4α2
, B = 0, D = −α

2 + 2k + 1

1 + 4α2

√
1− 4α2

2
√
λ

. (17)

Using (16) and (17) in (11), we obtain

y +

√
λ

1− 4α2
x2 +

α2 + 2k + 1

1 + 4α2

√
1− 4α2

2
√
λ

= 0

and

y −
√

λ

1− 4α2
x2 − α2 + 2k + 1

1 + 4α2

√
1− 4α2

2
√
λ

= 0,

respectively, where λ 6= 0. Combining this equations with (10), where we obtain the
exact solutions of Eq. (10) as follows:

u1(η) = A1 tan
(
−B1η −

√
2A1c1

)
and

u2(η) = A1 tan
(
B1η −

√
2A1c1

)
,

where

A1 =

√
(α2 + 2k + 1)(1− 4α2)

2λ(1 + 4α2)
, B1 =

1

2

√
2(α2 + 2k + 1)

1 + 4α2
,

where λ 6= 0 and c1 is an arbitrary constant. Therefore, the exact solutions to (10) can be
written as

u1(x, y, t) = A1 tan
[
−B1(x− 2αy + αt)−

√
2A1c1

]
and

u2(x, y, t) = A1 tan
[
B1(x− 2αy + αt)−

√
2A1c1

]
,

where λ 6= 0.
Then exact solutions for Eqs. (4) are

q1 = ei(αx+y+kt+l)A1 tan
[
−B1(x− 2αy + αt)−

√
2A1c1

]
,

φ1 =
2λ

3(1− 4α2)
A

3/2
1 tan3

[
−B1(x− 2αy + αt)−

√
2A1c1

]
and

q2 = ei(αx+y+kt+l)A1 tan
[
B1(x− 2αy + αt)−

√
2A1c1

]
,

φ1 =
2λ

3(1− 4α2)
A

3/2
1 tan3

[
B1(x− 2αy + αt)−

√
2A1c1

]
,

where λ 6= 0.
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Notice that integrating of Eq. (8) with respect to η and taking the integration constant as
zero yields

φ =
2λ

3(1− 4α2)
u3.

Now we assume that m = 2 in (11). By the Division theorem, there exists a polynomial
H(x, y) = h(x) + g(x)y in C[x, y] such that

dP

dη
=

[
∂P

∂x

∂x

∂η
+
∂P

∂y

∂y

∂η

]
(12)

=

2∑
i=0

a′i(x)y
i+1 +

2∑
i=0

iai(x)y
i−1
[
α2 + 2k + 1

1 + 4α2
x+

2λ

1− 4α2
x3
]

=
(
h(x) + g(x)y

)( 2∑
i=0

ai(x)y
i

)
, (18)

On equating the coefficients of yi (i = 3, 2, 1, 0) from both sides of (18), we have

a′2(x) = g(x)a2(x), (19)
a′1(x) = h(x)a2(x) + g(x)a1(x), (20)

a′0(x) = −2a2(x)
(
α2 + 2k + 1

1 + 4α2
x+

2λ

1− 4α2
x3
)
+ h(x)a1(x) + g(x)a0(x), (21)

a1(x)

[
α2 + 2k + 1

1 + 4α2
x+

2λ

1− 4α2
x3
]
= h(x)a0(x). (22)

Since, a2(x) is a polynomial of x, from (19) we conclude that a2(x) is a constant and
g(x) = 0. For simplicity, we take a2(x) = 1, and balancing the degrees of h(x), a0(x)
and a1(x) we conclude that deg h(x) = 1 or 0, therefore we have two cases:

Case 1. Suppose that deg h(x) = 1 and h(x) = Ax+B, then from (20) we find

a1(x) =
1

2
Ax2 +Bx+D,

where D is an arbitrary integration constant. From (21) we find

a0(x) =

[
A2

8
− λ

1− 4α2

]
x4+

AB

2
x3+

[
1

2

(
B2+AD

)
− α

2 + 2k + 1

1 + 4α2

]
x2+BDx+E,

where E is an arbitrary integration constant. Substituting a0(x), a1(x) and h(x) in (22)
and setting all the coefficients of powers x to be zero, we obtain a system of nonlinear
algebraic equations and by solving it, we obtain:

A =
4
√
λ√

1− 4α2
, B = 0, D =

√
1− 4α2

λ

α2 + 2k + 1

1 + 4α2
,

E =
1− 4α2

4λ

(
α2 + 2k + 1

1 + 4α2

)2
(23)
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and

A = − 4
√
λ√

1− 4α2
, B = 0, D = −

√
1− 4α2

λ

α2 + 2k + 1

1 + 4α2
,

E =
1− 4α2

4λ

(
α2 + 2k + 1

1 + 4α2

)2

.
(24)

Using (23) and (24) in (11), we obtain

y +

√
λ

1− 4α2
x2 +

α2 + 2k + 1

1 + 4α2

√
1− 4α2

2
√
λ

= 0

and

y −
√

λ

1− 4α2
x2 − α2 + 2k + 1

1 + 4α2

√
1− 4α2

2
√
λ

= 0,

respectively, where λ 6= 0. Combining this equations with (10), we obtain two exact
solutions to Eq. (10) which was obtained in case m = 1.

Case 2. In this case suppose that deg h(x) = 0 and h(x) = A, then from (20) we find
a1(x) = Ax+B, where B is an arbitrary integration constant. From (21) we find

a0(x) = −
λ

1− 4α2
x4 +

[
A2

2
− α2 + 2k + 1

1 + 4α2

]
x2 +ABx+D,

where D is an arbitrary integration constant. Substituting a0(x), a1(x) and h(x) in (22)
and setting all the coefficients of powers x to be zero, we obtain a system of nonlinear
algebraic equations and by solving it, we obtain:

A = 0, B = 0, D = 0. (25)

Using (25) in (11), we obtain

y2 − α2 + 2k + 1

1 + 4α2
x2 − λ

1− 4α2
x4 = 0.

Combining this equations with (10), we obtain the exact solutions to Eq. (10) as follows:

u3(η) =
A2e

B2(η+A2/4c1)

e2B2 + 4λ(1 + 4α2)eA2/2

and

u4(η) =
A2e

B2(η+A2/4c1)

1 + 4λ(1 + 4α2)e2B2(η+A2/2c1)
,

where

A2 = 4
√(

4α2 − 1
)(
α2 + 2k + 1

)
, B2 =

√
(4α2 − 1)(α2 + 2k + 1)

(4α2 + 1)(16α2 − 1)
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and λ 6= 0 while c1 is an arbitrary constant. Then the exact solutions to (10) can be written
as:

u3(x, y, t) =
A2e

B2(x−2αy−αt)+A2/4c1

eA2/2(x−2αy+αt) + 4λ(1 + α2)eA2/2c1

and

u4(x, y, t) =
A2e

B2(x−2αy+αt)+A2/4c1

1 + e2B2(x−2αy+αt)+A2/4c1
.

Then solutions of Eqs. (4) are

q3 = u3(x, y, t)e
i(αx+y+kt+l),

φ3 =
2λ

(1− 4α2)

A3
2e

3B2(x−2αy+αt)+3/4A2c1

e6B2(x−2αy+αt) + 64λ3(1 + 4α2)3e3/2A2c1
,

q4 = u4(x, y, t)e
i(αx+y+kt+l),

φ4 =
2λ

(1− 4α2)

A3
2e

3B2(x−2αy+αt)+3/4A2c1

1 +A3
2e

6B2(x−2αy+αt)+3/2A2c1
,

where λ 6= 0.
Now, we consider the case when σ = i, where Eqs. (1) transforms the following:

iqt −
1

2
(qxx − qyy) + λ|q|2q − φxq = 0,

φxx + φyy − 2λ
(
|q|2
)
x
= 0.

(26)

We will solve equation (26) similarly as in the case where σ = 1, with the only difference
being η = x+ 2αy − αt, φ′ = 2λ

1+4α2u
2 and

x′ = y,

y′ =
α2 − 2k − 1

1− 4α2
x+

2λ

−1− 4α2
x3.

By applying the Division theorem as in the case where σ = 1, and by assuming m = 1,
the exact solutions of Eqs. (10) as follows:

u1(η) = A3 tan
(
−B3η −

√
2A3c1

)
and

u2(η) = A3 tan
(
B3η −

√
2A3c1

)
,

where

A3 =

√
(α2 − 2α− 1)(−1− 4α2)

2λ(1− 4α2)
, B3 =

1

2

√
2(α2 − 2k + 1)

1− 4α2
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and λ 6= 0.
Then the exact solutions of (26) are

q1 = ei(αx+y+kt+l)A1 tan
[
−B1(x− 2αy + αt)−

√
2A1c1

]
,

φ1 =
2λ

3(1− 4α2)
A

3/2
1 tan3

[
−B1(x− 2αy + αt)−

√
2A1c1

]
and

q1 = ei(αx+y+kt+l)A3 tan
[
B3(x− 2αy + αt)−

√
2A3c1

]
,

φ1 =
2λ

3(1− 4α2)
A

3/2
3 tan3

[
B3(x− 2αy + αt)−

√
2A3c1

]
,

where λ 6= 0 and for case m = 2 in Case 1, we obtain two exact solutions to Eqs. (10)
which was obtained in case m = 1.

As for case m = 2 in Case 2, we obtain exact solutions for Eqs. (10) as follows:

u3(η) =
A4e

B4(η+A4/4c1)

e2B4 + 4λ(1 + 4α2)eA4/2

and

u4(η) =
A4e

B4(η+A4/4c1)

1 + 4λ(1 + 4α2)e2B4(η+A4/2c1)
,

where

A4 = 4
√(

1− 4α2
)(
α2 − 2k − 1

)
, B4 =

√
(1− 4α2)(α2 − 2k − 1)

(−4α2 − 1)(1− 16α2)
,

where λ 6= 0 and c1 is an arbitrary constant. Hence the exact solutions to (26) are

q3 =
A4e

B2(x−2αy−αt)+A4/4c1

eA4/2(x−2αy+αt) + 4λ(1 + α2)eA4/2c1
ei(αx+y+kt+l),

φ3 =
2λ

(1− 4α2)

A3
4e

3B4(x−2αy+αt)+3/4A4c1

e6B2(x−2αy+αt) + 64λ3(1 + 4α2)3e3/2A4c1
,

q4 =
A4e

B4(x−2αy+αt)+A4/4c1

1 + e2B4(x−2αy+αt)+A4/4c1
ei(αx+y+kt+l),

φ4 =
2λ

(1− 4α2)

A3
4e

3B4(x−2αy+αt)+3/4A4c1

1 +A3
4e

6B4(x−2αy+αt)+3/2A4c1
.

3.2 Traveling wave solutions

The traveling wave hypothesis will be used to obtain the 1-soliton solution to the Davey–
Stewartson equation (1). It needs to be noted that this equation was already studied by
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traveling wave hypothesis in 2011 [12] where the power law nonlinearity was considered.
Additionally, the ansatz method was used to extract the exact 1-soliton solution to the
Davey–Stewartson equation in 2011 and that too was studied with power law nonlinear-
ity [13].

In this subsection, the starting point is going to be Eq. (9) which can now be re-written
as

u′′ =
α2 + 2k + 1

4α2 + 1
u+

2λ

1− 4α2
u3. (27)

Now, multiplying both sides of (27) by u′ and integrating while choosing the integration
constant to be zero, since the search is for soliton solutions, yields(

u′
)2

= bu2 − au4, (28)

where

a =
λ

4α2 − 1
and b =

α2 + 2k + 1

4α2 + 1
.

Separating variables in (28) and integrating gives

x− 2αy + αt = − 1√
b
sech−1

∣∣∣∣u√a

b

∣∣∣∣
that yields the 1-soliton solution as

u(x− 2αy + αt) = A sech
[
B(x− 2αy + αt)

]
,

where the amplitude A of the soliton is given by

A =

√
b

a
=

[
(4α2 − 1)(α2 + 2k + 1)

λ(4α2 + 1)

]1/2
and B =

√
b =

√
α2 + 2k + 1

4α2 + 1

and this leads to the constraints

α2 + 2k + 1 > 0

and

λ
(
4α2 − 1

)(
α2 + 2k + 1

)
> 0.

Hence by virtue of (5),

q(x, y, t) = A sech
[
B(x− 2αy + αt)

]
ei(αx+βy+kt+l). (29)

Finally from (8), the topological 1-soliton solution is given by

φ(x, y, t) = −2B tanh
[
B(x− 2αy + αt)

]
. (30)

Thus, (29) and (30) together constitute the 1-soliton solution of the Davey–Stewartson
equation given by (1).
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4 Conclusions

We described the first integral method for finding some new exact solutions for the Davey–
Stewartson equation. We have obtained four exact solutions to the Davey–Stewartson
equation. The solutions obtained are expressed in terms of trigonometric and exponen-
tial functions. In addition, the traveling wave hypothesis is used to obtain the 1-soliton
solution of the equation where a topological and non-topological soliton pair is retrieved.
These new solutions may be important for the explanation of some practical problems.

One context where this equation is studied from a practical standpoint is in the study
of water waves with finite depth which moves in one direction [14]. However, in a two-
dimensional scenario, this equation models both short waves and long waves. Many
explicit solutions are given in this reference which are all applicable to the study of finite
depth water waves. This paper also gives a substantial set of solution set that is also
meaningful. Addditionally, this equation can also be generalized to a fractional derivative
case that has been recently touched (15).
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