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Abstract. In this paper we consider a semilinear elliptic system with nonlinearities, indefinite
weight functions and critical growth terms in bounded domains. The existence result of nontrivial
nonnegative solutions is obtained by variational methods.
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1 Introduction

In this paper we consider the existence results of the following two coupled semilinear
equation
—Au = Aau — (pav’ululP~* + 2auv|P), x € 2,

—Av = Xav — (pau®o[v|P? + 2av|ulP), z € 12, (1)
ou ov
(170[)%‘1”0[’11,—(170[)%4’0/0—0, x € 042,

where o and \ are real parameters, p < 2* — 2, for 2* = %, {2 is an open bounded
domain in RY, N > 3 with a smooth boundary 92, and a : {2 — R is a sign changing
weight function.

This work is motivated by the results in the literature for the single equation case,

namely the equation of the form

—Au=Ag(x)(1+ [ulP)u, =€, (2)
ou
(1fa)%+au70, x € 042, 3)

with the sign changing weight function g. See [1-4] and references therein for the case
where o # 0, and [5] for the case where & = 1. Recently in [6] some existence results
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Existence of non-negative solutions for semilinear elliptic systems via variational methods 195

were established for the case when a single equation is replace by a system of equations.
Also we refer to [7] where A is replaced by A,. In this work we extend this studies
to classes of Robin boundary conditions. We prove our existence results via variational
methods.

The system (1) is posed in the framework of the Sobolev space H = H!(£2) x H*(12)
with the norm

1
3
ol = ([ Qvul 40+ [ (vop+02)
Q 2
Moreover a pair of functions (u,v) € H is said to be a weak solution of the system (1) if

VuVer + [ VoVs — A [ a(udy +vés) + —— [ (uds +vés)
A A =

Q
+p/ (av®|uP~?ugy + au®|v|Pvgs) + 2/ (au|v|P¢r + av|u|Pgs) =0
Q 2

for all (¢1,¢2) € H. Thus the corresponding energy functional to the system (1) is
defined by

1
In(u,v) = = (IVul|® = Aau?) + — u?
) /")
+ ;(/ (IVo]* = Aav?) + T—a /v2> +/a(v2\u|p+u2|v|p)
i0) o1 i)
= %(L(U) + L(U)) + G1(u,v) + Ga(u,v),

where
L(t) :/(|Vt|2 — Xat?) + %/#
Q o0
fort = w or v, and
G1(u,v) = /avZ\uV’
Q
and
Ga(u,v) = /au2|v|p.
2

It is well known that the weak solutions of the system (1) are the critical points of the
Euler functional J.

Let I be the Euler functional associated with an elliptic problem on a Banach space X.
If I is bounded below and has a minimizer on X, thus this minimizer is a critical point
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of I, and so is a solution of the corresponding elliptic problem. However, the Euler func-
tional J) is not bounded below on the whole space H, but is bounded on an appropriate
subset, and a minimizer on this set (if it exists) gives a solution to the system (1).

Then we introduce the following notation:

For any functional f : H — R we denote by f/(u,v)(h1, h2) the Giteaux derivative
of f at (u,v) in the direction of (hy, hs) € H, and

f(l)(u7 U)hl = fl(u + Ehla U)|5:0,
FB(u,v)he = f'(u,v + Sha)|s—0.

In fact we have
F'(u,0)(ha, ho) = F (w,0)hy + 3 (w,0)hs.

2 Notations and preliminaries

First we consider the eigenvalue problem

wla, \) = inf{/(|Vu|2 — Aau?) + % /uQ; u€ Hl(Q),/u2 = 1}.
o0

2 2

Note that p(c,0) > 0 on « € [y, 1] for some small negative cy, and A — p(a, A) has
exactly two zeroes A, and A\ and those are principal eigenvalues of the following linear
problem
—Au = Aau, T € (2,
(1—a)@+au:0, x €082 @
on

(for more details, see [1]). Define

H(u, ’U)H)\ = (L(u) + L(v))%.

We prove that for A € (A5, A1), ||| defines a norm in H which is equivalent to the

usual norm for H. Our proof is motivated by that of [3].
Since ||.||x corresponds to the bilinear form
a
<(u1,111), (uz,vg)> = /(Vu1Vu2 — daujug) + T—a /u1u2
7} a9

+ /(Vvag — davyvg) + % /vlvg,
—«
Q a0

in order to prove that ||| is a norm, it is sufficient to prove that ((u, v), (u,v)) > 0 for
all (u,v) € H— {(0,0)}. It follows from the variational characterization of y(«, ) that

((u,v), (u,v)) = L(u) + L(v) > p(a, /\)</ (u? + U2)>. (5)
2
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Existence of non-negative solutions for semilinear elliptic systems via variational methods 197

Hence if A € (A, A1), then p(a, A) > 0 and so ||(u,v)||x > 0 whenever u,v # 0, thus
[I.]|x is a norm.
Moreover for (u,v) € H, there exists a constant k& > 0 such that

(ICA] N [CRO] %8

In fact by using the embedding of H;({2) into L?(942), we have
2
(Il N

2 2 o 2 2 2 o 2
2 a8 2 o2

< /|Vu\2+\)\|(a+)/u2+ 1ivacl/|Vu|2

2 2 0

+/\Vv|2+|>\|(a+)/112+ 1?@01/\Vv|2

2 2 2

< e (u, ) |7,

where c; is the best Sobolev constant of the embedding of H; ({2) into L?(912),

Cy = max {1 + 1a_cla,)\2a+}

and at = sup,, [a(z)| > 0. Now suppose that there exists a sequence {(u,, v,)} C H
such that || (un, vn)||x — 0 and ||(un,v,)|lg = 1. Since {(un,,vy,)} is bounded in H,
there exists (u,v) € H such that (u,,, v,) — (u,v) in H. Applying compactly embedding
of H in L*(£2) x L*(2) and L?(0£2) x L?*(92), we have (uy, v,) — (u,v) in L?(£2) x
L2(£2) and L%(92) x L?(042), respectively. Taking ||(w,, v,)||x — 0 into account, from
(5), we have (u,,v,) — (0,0) in L2(£2) x L*(§2), and so u = v = 0. This implies
(tn,vn) — (0,0) in L2(082) x L?(d42), which concludes that

lim (/ (\Vu|2 + |V1;|2) dm) =0.
—00
2

n

This contradicts with the fact ||(u,,vy,)||g = 1 for all n. Hence, ||.||) and ||.||g are
equivalent norms.
Now we consider the Nehari minimizing problem

N(A) = inf {Jx(u,v); (u,v) € My},
where

My, = {(u,v) e H— {(0,0)}; <J§\(u,v)7 (u,v)> = J;\l)(u,v)u+ J/(\Q)(u,v)v = O}.

Nonlinear Anal. Model. Control, 2012, Vol. 17, No. 2, 194-209
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It is clear that all critical points of Jy must lie on M) which is well-known as the Nehari
manifold (see [2,8]). We will see below that local minimizers of JJ on M contains every
non-zero solution of the system (1). First we claim that for A € (A, A1) — {0} we have
My # (). In fact, since the function a changes sign, we can choose non-zero function
(UO,U()) € H such that Gl('LL(],’U()) = fCLUS|’U,()|p > 0 and GQ(U()/U()) = fau%|v0|p > 0.
Let
—L(uo) — L(vo)
(2 4 p)(G1(uo,vo) + Ga(ug,vg))’

Y —

then

<J$\(tU0, t’l)o), (tuo, tU0)>
=t [L(UO) + L(vo) +t(p + 2)(Gl(uo,vo) + G2 (up, Uo))} =0,

and so (u, v) = t(ug,vo) € M.
Define Fy(u,v) = (J4§(u, v), (u, v)). Then for (u,v) € My,

(Fy(u,v), (u,v)) (L(u) + L(v)) + (p+ 2)%(G1 + G2)(u,v)

=2
=p(p+2)(G1 + G2)(u,v) = —p(L(u) + L(v)).
Set

Ki =inf {L(u) + L(v); (u,v) € H, (G1 + G2)(u,v) = 1}
and
Ky =inf {L(u) + L(v); (u,v) € H, (G1 + G2)(u,v) = —1}.

By a similar way we can define K and K .

For o € [0, 1], we have that A — K is a concave continuous curve on the interval
Ay, AL]. By using a similar arguments we have these facts for K .

To state our main result, we now present some important properties of ICj\' and K .

Lemma 1. K > 0and K5 > 0for a € (0,1].

Proof. Suppose otherwise, that is there exists sequence (uy,, v,) € H such that

lim (L(up) + L(vy)) =0, (G1 + G2)(tn,vy) = 1.

n—oo

By the Sobolev embedding theorem and Holder inequality, there exists g < Ni such

—2
that

1= ‘/(avi|un|p+auivn|p) §a+/(vi|un|p+ui|vn|p)
0 0
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2% —2(eg+1)

% *_2eq o
§a+<|:/(vi)2;—80:| 2% —2¢q |:/(u |p>42*2 2(520+1):| 2¥ —2¢

2 2
2% —2(eg+1)

2 . 2 sets)
]t f ]
2 2

< a* (@2 (v [7) < 0w, wn) [T = 0
as n — 0o, which is a contradiction.
By the same argument we have C; > 0. O

+ =
Lemma 2. IC)\:: = IC)\; =0.

Proof. Suppose that oV is a positive eigenfunction of the linear problem (4) correspond-
ing to the principal eigenvalue A\}. Then L(o™) = 0. On the other hand, if A # 0 be the
principal eigenvalue of (4) with corresponding positive principal eigenfunction ¢, then
A [ apPTt > 0 (see [3]). So in this case, since A > 0, we have [, a(¢™)P™' > 0. We
now let

ot
Qf (pt)p+2) o4z
Then
(Gr+ Ga)(u,u) = 2 / alul?*? = 1,
Q
and —
L) + L) = 2O
292 ([ a(pt)pt2) iz
ie., IC/\Jr = 0. By using a similar way we can prove that IC = 0. Since A — IC;\'
is a concave continuous curve, we also have 0 < K < ICS' for A € (0,\}), and
0 <Ky <Ky forall A € (A7,0). O
Lemma 3. For A € (A, \Y), put
1
Y = H; =——".
{wo et G+ o =15

2 2
Then ||(u,v)||} (u,v) € My if (u,v) €Y, and ||(u, )|, "** (u,v) € Y if (u,v) € M.
Proof. First suppose that (u,v) € Y, then

Fa(]](w0) 3 ()
<<Huvux o). (. o)||3 w. . 0)][3 )

= (6w, o) [I) (L () + L(v >+Huvu;? (0 +2)(Cr + Ga)(u, )
4 2 (2+P)
=l )3 ] )} = [l o), " =0,
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2
ie., [[(uw, )]} (u,v) € M.
Now if (u,v) € My, we get

L(u) + L(v) 4+ (p+ 2)(G1 + G2) (u,v) = (J3(u,v)(u,v)) =0,

thus
(@1 + Go) ([, ) [ 7, () [ 7570)
- -2 . —2—L(u) — L(v)
= @)l G+ G v) = || o)y — 5
__||(uav)||i2|\(u7v)||§ _ 1
p+2 p+2’
e [[(s0) |17 (u,0) € Y O

For A € (A\;,A]), we define Q) : Y — R by Qx(u,v) = ||(u,v)||3. Then for

a? [e3

(u,v) € Y we have

Qx(u,v) = (WJA(|\(U,U)H§(W)>)J2.

Indeed,
Il (s 0I5 (w, 0))
1 4 2(p+2)
= iH(u,v)Hj\J (L(u) + L(v)) + H(u,v)H/\ * (G1 + Go)(u,v).
Since (G1 + G2)(u,v) = _T}a for (u,v) € Y, we conclude
2 1 1 2(pt2)
(o) ) = (5= 555 ) w15

which means that the claim is true.
Using a similar argument, if (u,v) € M), then

Ix(u,v) = ﬁ@x(”(u,@“;ﬁ(uw))%
Indeed,
sy @ ()7 ) 7
= 5553 N0l w0l = e (w0 I7%)
p

= 2 +2) ||(u, U)H)\ = Jx(u,v).

www.mii.Jt/NA
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The latest equality follows from that
L(u) + L(v) + (p+2)(G1 + G2)(u,v) = 0
for (u,v) € My, ie.,

1

(61 -+ Ga)(u1) = == (L) + L) = ~—5 | (w.0)] [},
and so
Ia(u,v) = %(L(u) + L(v)) + (G1 + G2)(u,v)

1 2 1 2 P 2
= @l el = gl ol

In fact we proved the following result:

Lemma 4. Define qn = inf(, ey Qr(u,v) and jx = inf(, ,yenr, Ja(u,v). Then,

D= (72(?2)]})#-

3 Main results

Lemma 5. (u,v) = (0,0) is not a limit point of M if X € (A, \}), a # 0.

Proof. Let {(un, vy,)} in My, so that || (un, v,)||x — 0 asn — oo.
Now let (u/,,v)) = —82) then ||(u),,v),)|[x = 1, ie., {(u,,v")} is a bounded

nen [[(wn,vn) I nI - n nen

sequence in L2 (£2) x L?"(£2) equipped with the norm

1

* * 2%

100 ooy = ([ Gl +10))
2

therefore

0— (J3(Un; vn), (tUns vn))
||(unavn)”?\
L(uy) 4+ L(vy,)) + (p + 2)(G1 + G2)(tn, vy)
([ (un, vn) I3
(Gl +G2)(un,vn)
”(Umvnwg\
=14 (p+2)||(un, va)[[5 (G1 + G2)(ul,, v},).

=1+ (p+2)

Moreover by the boundedness of {(u!,,v!,)} in H, and applying the inequality mentioned

n»vn
/

in Lemma 1, we derive that the sequence {(G1+G2)(u,,, v},)} is bounded in H, and so the

n»-n
right hand side of the last equality tends to 1. This contradiction proves the lemma. [
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Theorem 1. Ler o € (0,1] or fn a # 0 if a = 0. Then there exist two positive constants
91, 02 such that if {(wn,vy,)} is a minimizing sequence of Jy on M, then

[t +42)

(9}

lim inf
n— oo

>0,

where A, < A< A\, +010r AT —dy < X< AL

Proof. Let ¢~ and ¢ be the corresponding eigenfunctions to the principal eigenvalues
AL and AT, respectively.
We can assume that

/%*Ip+2 =1, /alw’l”” =-1,

I7; I7;
/a(gpﬂ2 >0 and /a(gpf)2 < 0.
Q Q
Now let
PV Y\ e P g < R
¢ Joale™)? Joale?)?

Then for A € (A} — d2, A1), if the sequence {(u,,, v, )} be a minimizing sequence of .J
on M, we derive that

Ia (U, vn) = ﬁ[Qx(H(un,vn)“;#(un’vn))]p?#
) 2(P#ir?)HH(”n’”n)H;‘D%(un,yn)H;("T“)
) ﬁ”(“m”w\!;%!|(umvn)”§<p+2>
= sl

This implies {(u,, v, )} is bounded in H and so there exist a subsequence, which for con-
venience we again denote by {(u,, v,,)}, and {(u,v)} € H such that (un,v,) — (u,v)
in H. Since H may be compactly embedded in L?(£2) x L?({2), we have (un,v,) —
(u,v) in L*(£2) x L*(£2). For A > 0, by using Lemma 4, if {(uy, v,)} be a minimizing
sequence of Jy on My, then ||(wn, v,)|[y "> {(tn,v,)} is a minimizing sequence of Q
on Y, and so we get

1§}f Q)\ = nhﬁnolo Q)x(”(un; vn)H;m(unvvn))

= lim ||(un,vn)’|;$(L(un)+L(vn))

n— oo
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2 2

= Jim (LI o), 7 00) + L (0, #700))

n—o0

<qg<K{§

for some ¢ > 0. Also we have

__2_ 1
(Gl + G2)(H(Un>vn)H>\ pE2 Un,

(. 0) [ 7500) = .

Now by Lemma 5, we obtain || (un, vy )||x 7 0,i.e., L(un)+L(v,) # 0, and if [, a(ul+
v2) — 0, then we get

[ ;7| [ (90 190, + [ a2+ 2)| 0

[0} a9

So by taking A = 0, we have

i || (1, 0n)||; 7 (L) + L(v)) = K < g < K,

n—00

which is a contradiction. Therefore,

lim ’/a(ui—i—vi) > 0.
n— oo
Q
Now let
5, = Jo Vo™ |” + a fan(@_)Q - Ko = Ko .
Joale™)? C o Jpalen)?
By a similar argument we get a same result for A € (A, A\ + 01). O

Lemma 6. The production of two Hilbert spaces, is a Hilbert space.

Proof. For Hilbert spaces H1 and H», define
((u1,us), (11171)2)>Hle2 = (u1,v1)m, + (U2, v2)m,-
It is easy to see that, the mentioned bilinear form defines an inner producton H; x Hy. [

To state our significant proposition form [9], first let B, be a ball in the Hilbert space
H, centered at 0 and of radial e.

Proposition 1. Let ® be a C'-functional on a Hilbert space X = X1 x Xy, where X,
and X5 are Hilbert spaces, and let I be a closed subset in X such that for any (u,v) € T'
with ®'(u,v) # 0 and € > 0 small arbitrary, there exists Frechet differentiable function

Nonlinear Anal. Model. Control, 2012, Vol. 17, No. 2, 194-209
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S(u,w) : Be = R such that by setting t(, y(8) = S(u,v) (5M)for0 < § < e we

have t(, ., (0) = 1, and

O (u,v) O3 (u,v) >
twoy () w — . U —0 . el
() )< IR R T CTOR

If ® is bounded below on I', then for any minimizing sequence {(un,vp)} for ®in T,

there exists another minimizing sequence {(u, v} for ® in I such that
d(ur,v) < B(un,vy,), nlLH;OH (uly, v5) = (un,vn)|| =0
and
" (s 07
< g(\@ﬂL [ ) [tz on) (O]) + [t o) O [(® (i v7), (i v7)) -

Proof. Let n = inf,cp ®(y). Using Ekland variational principle, we get a minimizing
sequence {(u},v})} in I, which

@ @(up, vp) < B(un,vn) <m+ 3

() lmyeo || (ul, vk) — (un,vn)H =0,

(i) ®(z,y) > ®(us,v;) — L{[(z,y) — (up,v})|| forall (z,y) € T.

Let us assume ||®’(uX,v)||x > 0 for large n. Apply the hypothesis on the set I" with
(u,v) = (u},v}) to find the function

P (uj,, v;)
tn(0) = truz,vz)(0) = S(uz z) <5M>

Then,
O (uf vE) O@) (uf,vi)
(5,Ys5) = tn(9) (ufb Rl vy — 0 ) el
1) (i, 031, 193 (us;, v3)l x5

for all small enough 6 > 0. By the mean value theorem we have

oo v8) — (w )]
> ®(uy,vy) — Pxs,ys) = (P (25, y5), (uy, v)y) — (s,ys)) + 0(0)
= (@' (25,5), (ur,, v3)) — (P (25, Y5), (x5, y5)) + 0(d)

= (" (w5, ys), (un, v3)) — tn(6)( D' (25, Ys), (uy,, v5))

(0
' W (up,0n) B (uy, vp) 0
+6tn(5)<¢( 5:Y5), <|q>( ) (uz, n)||X1 1D (us;, n)||X2>>+ ©)

|
= (1= ta(9)(®' (@5, y5), (uf, 0}))

(@ W (up,vn) 0P (up,vy) 0
+6tn(5)<¢( 5,Y5); <||q>1)( s, n)||X1 123 (uy;, n)||x2>>Jr ©)
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where@%Oasd%O.So

1 M (u¥, vE)
— | ta(8)ur — 6tn (0 — Up,
n&H( ©) O ez, vn) s

O (ur, v¥)
a(8)05, — 6 (5) ) H
@@ (ug, v3)x,
1- tn((s)

> T<‘I)/(335ayé) (un7vn)>

) (D(l)(u* ’U*) @(2)(,”* U*) @
0V en): (e o)) o

Now we pass to the limit as § — 0, and we derive

(4[24}

T 1im |H< Dupvn) 2Py, 00) )H
1
[0 (ug, vp)[x, 00 <m )l

O (uk, v O (u U) %\ ?
_1 t/ 0 n’ n
sl o+ (|| + e )
1
= Lae el
> —t{n(O)<(I) (urmvn) (un7vn)>

- O (uk, v*) D) (ur, vk)
+<‘I’( netn): <||<I> Dz, ot 18O, n>||xz)>
()@ (), ()

M (uk, v¥) O (uf, v¥)
+ <I>(1)(u*,v*), ny n >—|—<<I>(2)(u*,v*), ny) 'n >
< TR g, vl x, v H‘I’(z)( U V)l X2
= —11, (0)(®' (up, vy,), (i, 07)) + (| (g, v3) ||, + (| (g, 0

o)l x, -
no Un Xo

Thus, we have
@ (u
= ||<I>‘1 (up, v7) + @3 (ur,,

ol < 180 @ i)y, + ([ wr v,

IN

1
— (V24 [£.0)[| (s, v 1) + £, (0)(®" (v, w7, (7))
This completes the proof. O

Let « € (0,1] or that [,a # 0 for @ = 0. Then for A € (A, A}) we have the
following results:

Lemma 7. J, is bounded below on M.

Nonlinear Anal. Model. Control, 2012, Vol. 17, No. 2, 194-209
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Proof. Firstly we note that for (u,v) € My,

1
(G1+ Ga)(w,v) = =5 (L(w) + L(v))- (©6)
Now for A € (A, A1), letw = —* T Then
Qut)?
L Vul|? — dau?) + - u?
o) < Lw) = 20 JalVP 22000 & 125 Jpg
Jou Jou
and so L(u) > 0 for A € (A\;,\}). A similar argument shows that L(v) > 0 for
A€ (A, \}), and (6) implies (G1 + G2)(u,v) < 0 for (u,v) € M. Hence, Jy(u,v) =
—2(G1 + G2)(u,v) > 0, and Jy is bounded below on M. O

Theorem 2. There exists a minimizing sequence {(u},v})} of Jx on M)y such that

lim ||J§\(u:‘”v:)“/\ =0.

n—oo

Proof. For (u,v) € My, let ¥ : R x H — R such that
\I/(s, (’(1)1,11)2)) = Fa(su— wy, sv — wa).
Since (u,v) € My, we have ¥ (1, (0,0)) = 0. Also,

g\11(1, (0,0)) = 2(L(u) + L(v)) + (p+ 2)*(G1 + G2)(u,v)

0s
=2(=(p+2)(G1 + G2)(u,v)) + (p + 2)*(G1 + G2)(u,v)
=p(p + 2)(G1 + G2)(u,v).

Now we want to apply the Implicit function theorem at (1, (0,0)) to get for any § > 0
small enough, a differentiable function s, ,) : Bs — R such that

S(u,0)(0,0) =1, Sy (whwg)((u,v) — (wl,wg)) € M,,

/ _ (f;\(u,v), (w17w2)>
(o 000 (o)) = S T

for all (w1, w2) € Bs, where Bj is defined before.
Now for every (u,v) € H, let

Ji(u,v)
175 (w, v)[[x7
t(u,v)(p) = s(u,’u)(p(xvy)(u,’u)) for 0 < P < d.

(.’,E, y) (u,v) —

Then we have the following results:
(i) teuw)(0) =1,
(11) tzu,'u) (O) - <S/(u7'u) (07 O)a (l‘, y) (u,v)>7
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(i) FA(5 () (P(2, Y) (u,0)) (4 0) = (2, Y) (u,0))) = 0,
(iv) t(u U)( )((U,U) - p(‘T?y)(u u)) = S(u, v)(p(xay)(u U))((U,"U) - p(iay)(u ’U)) € M.

From Proposition 1, there exists a minimizing sequence {(w.,v;)} for Jy such that

1
J <J nsy Yn inf J I
A(ur,vr) A v)<}\r/[1A ,\—i—n

nILH;o H (uy,vr) — (un,vn)H =0
and
HJ/\ Ups n) (\/>+ H / n,v;)(o)’) + ‘%u;,v;)( )]:A< Up s n)‘
Since )
p .
In(uy,vr) = (p+2 H Uy, vy ||)‘<§LIH.J/\+5’
so that {(u},v})} is a bounded sequence in H, i.e., there exits ¢; > 0 such that

[[(wk, v¥)||x < ¢1 for all n. Then,

1
HJA U V) ‘)\ < g(\@"" ‘téu;‘l,v;’;)(o)lcl)'
Moreover,
[(FA(ug, v3)s (20 Y) (u o))
t/u* v (O) = Slu* v (O7O)a (UU,ZJ) uk v = o
o) O = s ) = R (a0, g )
_ [(FA(ur,, vp), (2 ,y)(u",v;)>| |<}—/ (up, vp), (@ ’y)(ufm“;ﬁ)”
©p(p 4 2)(Gr + Ga)(uf, v)| pll(uy, v3)I13
and
hmlan uy, n)| >0,
n—oo

since (0, 0) is not a limit point of M.

So, if we show that |¢{,.. ,.,(0)]is uniformly bounded on n, we are done.

By using the Holder iﬁeqnuality, Sobolev embedding theorem, boundedness of the
sequence {(uy,,v;)} and [|(,y) (ux vx)ll = 1, we have

|<]:,\( Uy, ), (T, y)(un, e >| gCQH Uy Up H>\+C3’

This proves the theorem. O

We can now prove the main result of the paper:

Theorem 3. Let a € (0,1] or that [, a # 0 for a = 0. Forany A € (A;,\; + 1) U
(AL — 02, M), X #£ 0, The system (1) has a nontrivial nonnegative solution.

Nonlinear Anal. Model. Control, 2012, Vol. 17, No. 2, 194-209
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Proof. Let ¢ = inf Jy(M,) and {(un, v,)} be a sequence in M), such that

lim Jy(tn,vn) = c.
n— oo

By using Theorem 2, we have lim,,_, » ||J} (¢, vs)||x = 0. Then {(uy, vy,)} is bounded
and we can find a weak limit point of the sequence in H, i.e., u,, — u and v,, — v both
in H'(£2), for some u,v € H'(§2), and so u,, — u and v,, — v both in L4({2) for

q< % In particular for any (hy, hs) € H,

(JA(tn, vn), (h1, b))

= /Vuthl —|-/anth — )\/a(unhl + vpho) + % /(unhl + vpho)
Q Q Q an

+p/a(”i|“n|p72unh1 + up on|P 2o he) + 2/a(“n|”n|ph1 + Un|un|Phy),
(9] (93

which converges to
<J;\(u7 U)7 (hh h2)>

= /Vthl —|—/V1}Vh2 - /\/a(uhl +vhs) + % /(uh1 + vha)
I7; 2 I7; o0
+p/a(02|u|p_2uh1 + u?[v[P~?vhy) + 2/a(u|v|ph1 + v|u|Phg)
Q I7;

asn — 00. So, we derive

|(J5(u,v), (h1, ha))]
= Jim (TA(un, vn), (1, h2)) < Jimn |15 (s on || (B, )| = O,

that means (J} (u,v), (h1,h2)) = O for all (hy,he) € Y. Therefore, (u,v) is a weak
solution for the system (1).

In particular, (J4(u,v), (u,v)) = 0. Since liminf| [,,(au? + av2)| > 0, we have
(u,v) # (0,0). Hence, (u,v) € M.

On the other hand, J) is weakly lower semicontinuous, and so we have

¢ < Ia(u,v) < lim Jy(un,v,) = ¢,
n—oo
which follows that Jy(u,v) = ¢ and that ||(un,v,)||x — ||(w,v)||x which implies that
Uy, — wand v, — v both in H'(§2).
Since J§ is continuous at (u,v), we get J4 (u, v) = 0. One can check that Jy (u,v) =
Jx(|u, |v]), so (u,v) is a nontrivial nonnegative solution for the system (1). O
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