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Abstract. This paper deals with a class of uncertain nonlinear impulsive switched systems with
time-varying delays. A novel type of piecewise Lyapunov functionals is constructed to derive
the exponential stability. This type of functionals can efficiently overcome the impulsive and
switching jump of adjacent Lyapunov functionals at impulsive switching times. Based on this,
a delay-independent sufficient condition of exponential stability is presented by minimum dwell
time. Finally, an illustrative numerical example is given to show the effectiveness of the obtained
theoretical results.
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1 Introduction

Switched systems are an important class of hybrid dynamical systems, which are com-
posed of a family of continuous-time or discrete-time subsystems and a rule orchestrating
the switch among them. These systems arise when modeling dynamical systems which
exhibit switching among several subsystems due to jumping parameters or changing en-
vironmental factors. This class of systems has numerous applications in the control of
mechanical systems, the automotive industry, aircraft and air traffic control, switching
power converters and many other fields. The main concern in the study of switched
systems is the issue of stability (see [1–3]) and references therein). Another category
of hybrid systems is the system with impulse effects, namely, impulsive systems, which
arose in scientific practice in 1950s in order to describe certain evolutionary processes and
dynamical control systems that are subjected to sudden and sharp changes of states [4].
Due to the existence of the states jump, this new class of hybrid systems cannot be well
described by using pure continuous or pure discrete models [5, 6].
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In some other cases, impulsive effects may arise as a result of switching that leads
us to impulsive switched systems. Examples of these systems include biological systems,
mechanical systems, automotive industry, aircraft, air traffic control and chaotic based
secure communication. Recently, the stability analysis and stabilization design of impul-
sive switched systems have been received much attention, and many theoretical results
and control applications have been reported (see, e.g. [7–15]).

As we know, the stability analysis/stabilization of the dynamic systems, in the control
field, is a hot topic and has been attract more and more attention (see e.g., [16–22], and the
references therein). When the stability and the stabilization of impulsive switched systems
are considered, the piecewise Lyapunov functions or functionals are naturally employed.
A key point is, in this case, to deal with the decay properties of the impulsive switching
times and each continuous interval. Previous works on such problems have followed two
distinct lines of enquiry. First, by piecewise Lyapunov–Razumikhin functions or func-
tionals, a number of authors attempted to derive stability of impulsive switched systems.
Results obtained in this direction include the works of [23, 24] and others. An alternative
approach is piecewise Lyapunov–Krasovskii functions or functionals. Such an approach
is usually more difficult than the Lyapunov–Razumikhin technique. The reason is that,
in general, we cannot expect an impulse that occurs at a discrete time to bring the value
of a functional down instantaneously, whereas, in the Lyapunov–Razumikhin method,
the value of a function can subside simultaneously as the impulse occurs. Therefore, the
stability results by Lyapunov–Krasovskii functions or functionals are not abundant (see,
for example [8–14]).

Noticing that the related works of stability and stabilization for impulsive switched
systems mainly established on the dwell time (minimum or maximum dwell time). Fur-
thermore, for the delayed systems, the dwell time conditions are always related to the
upper or lower bounds of delays. Namely, the dwell time is delay dependent (see, e.g.
[8,9,13,23]). However, two problems arise immediately. The first refers to the maximum
dwell time. More precisely, if we restrict the upper bounds of maximum dwell time, then
the stability of the impulsive switched system, in some cases, may be destroyed. Such
as the case when the dwell time on a stable subsystem is sufficiently large. In contrast,
if the lower bounds of maximum dwell time is fixed, that is, the running time on some
subsystems must be sufficiently large. The design for switching law, in this case, will be
greatly restricted. Therefore, the maximum dwell time approach is rather conservative.
Secondly, when the bounds of delays are unknown or tend to infinity, the dwell time
derived in previous works will not be applicable.

To solve the two problems mentioned above, this paper shall consider on a class
of uncertain impulsive switched delayed system with nonlinear states and nonlinear im-
pulsive increments. As we shall see, different from the traditional piecewise Lyapunov–
Krasovskii functionals, a new class of Lyapunov functionals is constructed to overcome
the impulsive increments and switching jump. Some delay independent minimum dwell
time criteria in terms of linear matrix inequalities (LMIs) are proposed. The organization
is as follows. The preliminaries are stated in Section 2. Section 3 focuses on robust ex-
ponential stability. A numerical example based on LMI is presented in Section 4. Finally,
Section 5 concludes this paper.
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2 Preliminaries

Throughout, R denotes the space of all real numbers. Rn stands for the n-dimensional
real vector space and Rn×m is the space of n×mmatrices with real entries. C denotes the
space of all real-valued continuous functions. For matrix A in Rn×n, A > 0 (< 0) means
that A is a symmetric positive (negative) definite matrix and A ≥ 0 (≤ 0) means that
A is a symmetric positive (negative) semi-definite matrix. We use λmin(A) and λmax(A)
to denote the smallest and largest eigenvalue of A, respectively. N presents the set of all
nonnegative integers and ‖ · ‖ denotes the Euclidean norm of vectors.

Consider the uncertain impulsive switched delayed system with nonlinear perturba-
tions and impulsive increments given by

ẋ(t) = Aσ(t)(t)x(t) + Āσ(t)(t)x
(
t− h(t)

)
+ fσ(t)

(
t, x(t), x

(
t− h(t)

))
, t 6= tk,

∆x(t) = Dσ(tk)x(t) + gσ(tk)

(
t, x(t)

)
, t = tk,

x(t) = ϕ(t), t ∈ [−h, 0],

(1)

where x(t) ∈ Rn is the state vector, σ(t) : [0,∞) → M is the switching signal, σ(t) =
ik ∈ M for t ∈ [tk, tk+1), M = {1, 2, . . . ,m}, m, k ∈ N. Under the control of
a switching signal σ, coupling with the impulsive effects, system (1) enters from the
ik−1 subsystem to the ik subsystem at the point t = tk, tk is impulsive switching time
point and satisfies t0 < t1 < · · · < tk < · · · with t0 = 0 and limk→+∞ tk = +∞.
∆x(tk) = x(t+k ) − x(t−k ), x(t+k ) = lim∆t→0+ x(tk + ∆t) and x(tk) = x(t−k ) =
lim∆t→0+ x(tk − ∆t) mean that the solution of the system (1) is left continuous. The
time-varying delay h(t) satisfies 0 ≤ h(t) ≤ h and 0 ≤ ḣ(t) ≤ d < 1.

For each k, Dik ∈ Rn×n is known matrix. Aik(t) and Āik(t) are assumed to be
uncertain and satisfy[

Aik(t) Āik(t)
]

=
[
AikĀik

]
+ EikFik(t)

[
HikH̄ik

]
(2)

with Aik , Āik , Eik , Hik , H̄ik are known constant matrices and Fik(t) is unknown time-
varying matrix satisfying ‖Fik(t)‖ ≤ 1. Nonlinear perturbation fik(t) , fik(t, x(t),
x(t− h(t))) : [t0,+∞)× Rn × Rn → Rn is globally Lipschitz continuous and satisfies

fT
ik

(t)fik(t) ≤ α1ikx
T(t)ΓT

ik
Γikx(t) + α2ikx

T
(
t− τik(t)

)
ΛT
ik
Λikx

(
t− hik(t)

)
(3)

with given matrices Γik , Λik and nonnegative scalars α1ik , α2ik . Similarly, nonlinear im-
pulsive increment gik(t) , gik(t, x(t)) : [t0,+∞)× Rn → Rn satisfies

gT
ik

(t)gik(t) ≤ xT(t)(I +Dik)T(I +Dik)x(t). (4)

with the identity matrix I ∈ Rn×n. Also, fik(t, 0, 0) ≡ gik(t, 0) ≡ 0 for all t ∈ [t0,+∞).
Besides, ϕ ∈ C([−h, 0],Rn) is the initial function with ‖ϕ‖h = sup−h≤t≤0 ‖ϕ(t)‖.
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This paper shall focus on robust exponential stability for system (1) and the definition
is as follows.

Definition 1. For given a switching signal σ(t), the system (1) is robustly exponentially
stable if there exist positive scalars β and δ such that∥∥x(t)

∥∥ ≤ β‖ϕ‖he−δ(t−t0), t ≥ t0, (5)

where β and δ depend on the choice of the switching signal σ(t). If Fik(t) = 0, the
system (1) with (5) is called exponentially stable.

For robust exponential stability, we introduce the following assumption.

Assumption 1. In system (1), there exists a positive real number τD such that, for any
given switching signal σ(t),

inf
k∈N
{tk+1 − tk} ≥ τD.

In fact, τD satisfying the above condition is called minimum dwell time. This assump-
tion in the literature can rule out Zeno behavior for all types of switching. Hereafter,
Assumption 1 always holds for system (1).

Next, two lemmas that are useful in deriving the principal contribution of this paper
are presented.

Lemma 1. (See [25].) Let E,F and H be real matrices of appropriate dimensions with
‖F‖ ≤ 1. Then for any scalar ε > 0,

EFH +HTFTET ≤ ε−1EET + εHTH.

The following result being checked easily establishes a connection between a sym-
metric matrix and a symmetric positive definite matrix.

Lemma 2. Let P,U ∈ Rn×n be symmetric positive definite and symmetric matrices,
respectively. Then there is a positive real number γ ≥ 1 such that for x(t) ∈ Rn,

xT(t)Ux(t) ≤ γxT(t)Px(t).

3 Main results

In this section, to derive robustly exponential stability of the impulsive switched sys-
tem (1), for each mode, a new type of piecewise Lyapunov functional is chosen as the
form

W (t) = eδ0tψ(t)xT(t)Pikx(t) + eδ0t
t∫

t−h(t)

xT(s)Rx(s) ds, (6)

where δ0 > 0 is a given sufficiently small constant, Pik , R ∈ Rn×n are positive definite
matrices, and the function ψ(t) is defined as following steps.
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Step 1. Consider matrices Pik−1
and (I +Dik)TPik(I +Dik). By Lemma 2 there exist

a positive real number γ∗ik such that

xT(t)(I +Dik)TPik(I +Dik)x(t) ≤ γ∗ikx
T(t)Pik−1x(t), (7)

where γ∗ik is no less than one.

Step 2. With this γ∗ik , we define the following function:

ψk(t) =
c

(tk+1 − tk)2

(
1− 1

γik

)
(t− tk)2 +

c

γik
, t ∈ [tk, tk+1], (8)

where c > 0 and

γik = 2γ∗ik

(
1 +

λmax(Pik)

λmin(Pik)

)
.

Step 3. Based on the preparation above, the piecewise continuously function ψ(t) :
[0,+∞)→ [0,+∞) is given as the form

ψ(t) =

{
ψk(t), t ∈ (tk, tk+1),

ψ(t+k ) = ψk(tk), t = tk.
(9)

Comment 1. Notice that, different from condition (7), the previous works (see, e.g.,
[7, 8]) always require xT(t)(I + Dik)TPik(I + Dik)x(t) ≤ xT(t)Pik−1x(t). Clearly,
if γ∗ik = 1, (7) reduces the above condition. Indeed, under condition (7), the inequality
xT(t)(I +Dik)TPik(I +Dik)x(t) ≥ xT(t)Pik−1x(t) maybe hold.

Next, we shall see that the piecewise Lyapunov function (6) can effectively eliminate
impulsive increments and switching jump phenomena of Lyapunov function at impulsive
switching times t = tk and further derive our principal result. For brevity, set

Ai = [AiĀi], Hi = [HiH̄i], I1 = [I 0], I2 = [0 I], i ∈M.

Theorem 1. For any i ∈ M, given positive real numbers τD, εi, c, and γi ≥ 4, if there
exist positive definite matrices Pi, R ∈ Rn×n, positive semi-definite Qi ∈ Rn×n, positive
semi-definite Li,Wi ∈ R2n×2n, and any matrices Ti ∈ Rn×2n, such that (9) and the
following linear matrix inequalities are satisfied:

Ωi =

[
Ω11i Ω12i

∗ Ω22i

]
≤ 0, (10)

Θi =


Θ1i IT

1 PiEi HT
i IT

1 Pi IT
1 Γ

T
i

∗ −εiI 0 0 0
∗ ∗ −ε−1

i I 0 0
∗ ∗ ∗ −I 0
∗ ∗ ∗ ∗ −α1i

−1I

 < 0, (11)
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where

Ω11i = −Qi, Ω12i = −Ti, Ω22i = cLi −
c

γi
Wi + IT

1 Φ1iI1 + IT
2 Φ2iI2,

Φ1i =
2c

τD

(
1− 1

γi

)
Pi +R− c2

γi
Qi, Φ2i = α2iΛ

T
i Λi − (1− d)R,

Θ1i = IT
1 PiAi +AT

i PiI1 − Li +Wi + IT
1

c(1 + γi)

γi
QiI1 + IT

1 Ti + TT
i I1.

Then system (1) is robustly exponentially stable.

Proof. Consider the function ψ(t) defined as (8), for each interval t ∈ [tk, tk+1), the
following facts are easily verified.

(i) ψ(tk) = c/γik and ψ(t−k+1) = c.
(ii) ψ(t) and ψ̇(t) is monotone and bounded, respectively, i.e., ψ(tk) ≤ ψ(t) ≤ ψ(t−k+1)

and 0 ≤ ψ̇(t) ≤ (2c/τD)(1− 1/γik).
The rest of proof is broken into three stages.

Stage 1. Firstly, at the impulsive switching time point t = tk, we claim that the Lyapunov
functional (6) is non-increasing, i.e.,

W
(
t+k
)
≤W

(
t−k
)
. (12)

To this end, note that the Lyapunov functional (6), by shortly calculating one can
obtain

W
(
t+k
)

= eδ0t
+
k ψ
(
t+k
)
xT
(
t+k
)
Pikx

(
t+k
)

+ eδ0t
+
k

t+k∫
t+k−h(t+k )

xT(s)Rx(s) ds

= eδ0t
+
k ψ
(
t+k
)(

∆x(tk) + x(t−k )
)T
Pik
(
∆x(tk) + x(t−k )

)
+ eδ0t

+
k

tk∫
tk−h(tk)

xT(s)Rx(s) ds

= eδ0tkψ(tk)
[
(I +Dik)x(tk) + gik(tk)

]T
Pik
[
(I +Dik)x(tk) + gik(tk)

]
+ eδ0tk

tk∫
tk−h(tk)

xT(s)Rx(s) ds

By Lemma 1, we further derive from (4)

W (t+k ) ≤ eδ0tkψ(tk)
[
2xT(tk)(I +Dik)TPik(I +Dik)x(tk) + 2gT

ik
(tk)Pikgik(tk)

]
+ eδ0tk

tk∫
tk−h(tk)

xT(s)Rx(s) ds
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≤ eδ0tkψ(tk)

(
2 + 2

λmax(Pik)

λmin(Pik)

)
xT(tk)(I +Dik)TPik(I +Dik)x(tk)

+ eδ0tk

tk∫
tk−h(tk)

xT(s)Rx(s) ds,

Due to ψ(tk) = c/γik and ψ(t−k+1) = c, then taking (7) into account yields

W (t+k ) ≤ eδ0tkγikψ(tk)xT(tk)Pik−1
x(tk) + eδ0tk

tk∫
tk−h(tk)

xT(s)Rx(s) ds

= eδ0tkcxT
(
t−k
)
Pik−1

x
(
t−k
)

+ eδ0tk

t−k∫
t−k −h(t−k )

xT(s)Rx(s) ds

= eδ0t
−
k ψ
(
t−k
)
xT
(
t−k
)
Pik−1

x
(
t−k
)

+ eδ0t
−
k

t−k∫
t−k −h(t−k )

xT(s)Rx(s) ds

= W
(
t−k
)
.

That is, (12) holds for all impulsive switching time points t = tk.

Stage 2. We shall prove that the Lyapunov functional W (t) defined by (6) satisfies the
following fact.

D+W (t)− δ0W (t) < 0, t ∈ (tk, tk+1]. (13)

First of all, consider the case t ∈ (tk, tk+1), note that the fact (ii), it follows that

D+W (t)− δ0W (t)

≤ eδ0t
[
xT(t)Rx(t)− (1− d)xT

(
t− h(t)

)
Rx
(
t− h(t)

)]
+ 2eδ0tψ(t)xT(t)Pik

[
Aik(t)x(t) + Āik(t)x

(
t− h(t)

)
+ fik(t)

]
+ 2eδ0t

c

τD

(
1− 1

γik

)
xT(t)Pikx(t).

By Lemma 1, combining (2) and (3), we get

D+W (t)− δ0W (t)

≤ eδ0tψ(t)xT(t)
(
PikAik +AT

ik
Pik + 2PikEikFik(t)Hik

)
x(t)

+ eδ0txT(t)

(
2c

τD

(
1− 1

γik

)
Pik +R

)
x(t)

+ eδ0tψ(t)xT(t)
(
P 2
ik

+ α1ikΓ
T
ik
Γik
)
x(t)

+ eδ0txT
(
t− h(t)

)(
α2ikΛ

T
ik
Λik − (1− d)R

)
x
(
t− h(t)

)
+ eδ0tψ(t)xT(t)

(
2PikĀik + 2eδ0tPikEikFik(t)H̄ik

)
x
(
t− h(t)

)
.
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Now, define ξT(t) = [xT(t)xT(t− h(t))], ζT(t) = [(ψ(t)x(t))TξT(t)]. Then, the above
expression can be rewritten as

D+W (t)− δ0W (t)

≤ eδ0txT(t)

(
2c

τD

(
1− 1

γik

)
Pik +R

)
x(t) + eδ0tψ(t)xT(t)

(
P 2
ik

+ α1ikΓ
T
ik
Γik
)
x(t)

+ eδ0txT
(
t− h(t)

)(
α2ikΛ

T
ik
Λik − (1− d)R

)
x
(
t− h(t)

)
+ eδ0tψ(t)ξT(t)

×
(
IT

1 PikAik +AT
ik
PikI1 + IT

1 PikEikFik(t)Hik +HT
ik
FT
ik

(t)ET
ik
PikI1

)
ξ(t).

Now according to Lemma 1, for any scalar εik > 0,

IT
1 PikEikFik(t)Hik +HT

ik
FT
ik

(t)ET
ik
PikI1

≤ ε−1
ik
IT

1 PikEikE
T
ik
PikI1 + εikHT

ik
Hik . (14)

Note that, for any positive definite Qik ∈ Rn×n and positive semi-definite Lik ,Wik ∈
R2n×2n, (

c− ψ(t)
)
ξT(t)Likξ(t) +

(
ψ(t)− c

γik

)
ξT(t)Wikξ(t) ≥ 0, (15)

(
c− ψ(t)

)(
ψ(t)− c

γik

)
xT(t)Qikx(t) ≥ 0 (16)

result from the facts (i) and (ii).
Furthermore, combining (14), (15) and (16) yields that

D+W (t)− δ0W (t)

≤ eδ0tψ(t)xT(t)(−Qik)ψ(t)x(t) + eδ0tξT(t)

(
cLik −

c

γik
Wik

)
ξ(t)

+ eδ0tψ(t)ξT(t)
(
IT

1 PikAik +AT
ik
PikI1 + ε−1

ik
IT

1 PikEikE
T
ik
PikI1

+ εikHT
ik
Hik − Lik +Wik

)
ξ(t)

+ eδ0tψ(t)xT(t)

(
P 2
ik

+ α1ikΓ
T
ik
Γik +

c(1 + γik)

γik
Qik

)
x(t)

+ eδ0txT(t)

(
2c

τD

(
1− 1

γik

)
Pik +R− c2

γik
Qik

)
x(t)

+ eδ0txT
(
t− h(t)

)(
α2ikΛ

T
ik
Λik − (1− d)R

)
x
(
t− h(t)

)
= eδ0tζT(t)Ωikζ(t) + eδ0tψ(t)ξT(t)Θ̄ikξ(t),

where

Θ̄ik = IT
1 PikAik +AT

ik
PikI1 + ε−1

ik
IT

1 PikEikE
T
ik
PikI1 + εikHT

ik
Hik − Lik +Wik

+ IT
1

[
P 2
ik

+ α1ikΓ
T
ik
Γik +

c(1 + γik)

γik
Qik

]
I1 + IT

1 Tik + TT
ik
I1.
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Applying Schur complement, for all t ∈ (tk, tk+1), we thus conclude from (10) and (11)
that

D+W (t)− δ0W (t) ≤ eδ0tζT(t)Ωikζ(t) + eδ0tψ(t)ξT(t)Θ̄ikξ(t) < 0. (17)

Moreover, since x(tk+1) = x(t−k+1), then the fact (13) follows immediately.

Stage 3. Now it remains to show that the impulsive switched system (1) is robustly
exponentially stable.

To begin with, set λ1 = mini∈M{λmin(−Ωi)} ≥ 0, λ2 = mini∈M{λmin(−Θ̄i)} > 0,
γ = maxi∈M{γi}. Note that the fact (i), then it follows from (17) that

D+W (t)− δ0W (t)

≤ −λ1eδ0t
∥∥ζ(t)

∥∥2 − cλ2

γ
eδ0t
∥∥ξ(t)∥∥2

≤ −
(
λ1 +

c2λ1

γ2
+
cλ2

γ

)
eδ0t
∥∥x(t)

∥∥2 −
(
λ1 +

cλ2

γ

)
eδ0t
∥∥x(t− h(t)

)∥∥2

≤ −
(
λ1 +

c2λ1

γ2
+
cλ2

γ

)
eδ0t
∥∥x(t)

∥∥2
, t ∈ (tk, tk+1]. (18)

Also by the fact (i), then according to the expression of W (t) in (6), there exist positive
scalars κj (j = 0, 1, 2) such that, for t ∈ [0,+∞),

κ0eδ0t
∥∥x(t)

∥∥2 ≤W (t) ≤ κ1eδ0t
∥∥x(t)

∥∥2
+ κ2eδ0t

t∫
t−h

∥∥x(s)
∥∥2

ds. (19)

For simplicity, write λ̄ = λ1 + c2λ1/γ
2 + cλ2/γ. We further choose sufficiently small δ0

such that

λ̄ ≥ δ0
(
κ1 + κ2heδ0h

)
. (20)

Then, combining (18), (19), and (20), it follows for t ∈ (tk, tk+1] that

D+W (t) ≤ eδ0t

[
(δ0κ1 − λ̄)

∥∥x(t)
∥∥2

+ δ0κ2

t∫
t−h

∥∥x(s)
∥∥2

ds

]
. (21)

Now integrating both sides of (21) from t+k to t gives

W (t) ≤W
(
t+k
)

+

t∫
t+k

eδ0s

[
(δ0κ1 − λ̄)

∥∥x(s)
∥∥2

+ δ0κ2

s∫
s−h

‖x(θ)‖2 dθ

]
ds.
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Applying (12) and (19), by directly deducing we further get, for t ∈ [0,∞),

κ0eδ0t
∥∥x(t)

∥∥2

≤W (t) ≤W (0) +

t∫
0

eδ0s

[
(δ0κ1 − λ̄)

∥∥x(s)
∥∥2

+ δ0κ2

s∫
s−h

∥∥x(θ)
∥∥2

dθ

]
ds. (22)

Observe that

t∫
0

eδ0s ds

s∫
s−h

∥∥x(θ)
∥∥2

dθ ≤ heδ0h
t∫

0

eδ0s
∥∥x(s)

∥∥2
ds+ heδ0h

0∫
−h

eδ0s
∥∥x(s)

∥∥2
ds.

Therefore, it follows from (20) and (22) that

κ0eδ0t
∥∥x(t)

∥∥2 ≤W (0) + δ0κ2heδ0h
0∫
−h

eδ0s
∥∥x(s)

∥∥2
ds.

It turns out that, for t ∈ [0,∞),

‖x(t)‖ ≤ β‖ϕ‖he−δt with δ =
δ0
2
, β =

(
κ1 + κ2h+ δ0κ2h

2eδ0h

κ0

)1/2

.

Hence the impulsive switched system (1) is robustly exponentially stable. This completes
the proof.

Comment 2. It is easy to see from the above result that the impulsive switched sys-
tems (1) is delay-independently exponentially stable. Namely, if the upper bound h of
time-varying delays unknown or sufficiently large, Theorem 1 also holds. Note that, for
time-invariant delays case, [7] presented the delay-independent criteria of asymptotical
stability. However, this result required that the delayed system state x(t − h) can be
located a known subsystem. Therefore, if the upper bound h time-varying delays tend to
infinity, the result in [7] is not applicable. In [8], the authors also considered the impulsive
switched systems with time-invariant delays and constructed a class of piecewise Lya-
punov functionals subjected to the size of time-delays. It is worth emphasizing that, when
the upper bound h of time-varying delays is unknown, such type of Lyapunov functional
becomes invalid.

Comment 3. Paper [7] considers the uncertain impulsive switched systems with time-
invariant delays and presented the maximum dwell time criteria. Namely, the upper bounds
of maximum dwell time are given. In this case, the set of switching signal stabilizing the
impulsive switched systems shall be shrunk. Indeed, when the dwell time on some stable
subsystems is sufficiently large, the stability of the whole impulsive switched systems
is always achieved. However, our result only established on the minimum dwell time.
Obviously, this will improve the design of switching signal greatly.

A reduced case is straightforward from Theorem 1.
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Corollary 1. For any i ∈ M, given τD > 0, given positive real numbers c > 0, γi ≥ 4,
if there exist positive definite matrices Pi, R ∈ Rn×n, positive semi-definite matrices
Qi ∈ Rn×n, positive semi-definite Li,Wi ∈ R2n×2n, and any matrices Ti ∈ Rn×2n,
such that (8) and the following linear matrix inequalities are satisfied:

Ωi ≤ 0, Θi =

[
Θ1i IT

1 Pi
∗ −I

]
< 0,

where Ωi is defined as (10) and

Θ1i = IT
1 (PiAi + Ti) +

(
AT
i Pi + TT

i

)
I1 − Li +Wi + IT

1

[
c(1 + γi)

γi
Ui + ΓT

i Γi

]
I1.

Then system (1) with [Ai(t)Āi(t)] = [AiĀi] is exponentially stable.

4 A numerical example

As an illustrative example, consider the impulsive switched system (1) with h(t) = 5 +
2 sin t and

A1 =

[
−9 1
3 −12

]
, A2 =

[
−9 4
0 −11

]
, Ā1 =

[
−1.5 1

2 0

]
,

Ā2 =

[
−1 2
2 −2

]
, E1 =

[
−0.2 0.1
0.2 0.1

]
, E2 =

[
−0.3 0.1
−0.2 −0.1

]
,

H1 =

[
−0.1 −0.3

0 −0.2

]
, H2 =

[
0.1 0.2
0.1 −0.3

]
, H̄1 =

[
0.2 0.1
0.1 −0.3

]
,

H̄2 =

[
−0.3 0.1
0.1 0

]
, f1 =

[
sinx1

sinx2

]
, f2 =

[
0

sinx2

]
,

D1 = D2 =

[
20 0
0 12

]
, g1 = g2 =

[
0.2 sinx1(tk)
0.5 sinx2(tk)

]
.

Furthermore, choose F1 = F2 = cos 10t, Λ1 = Λ2 = Γ1 = Γ2 = I , c = 8, γ1 = 4,
γ2 = 4, τD = 0.5, and α11 = α21 = α12 = α22 = ε1 = ε2 = 1. Solving the LMIs (10)
and (11) in P1, P2 and R, we can obtain the following feasible solutions

P1 =

(
1.6278 −0.0487
−0.0487 1.1973

)
, P2 =

(
1.3211 0.2623
0.2623 2.1331

)
,

R =

(
7.5836 −5.4892
−5.4892 13.5217

)
.

With this, then according to Theorem 1, the impulsive switched system is robustly expo-
nentially stable. See Figs. 1 and 2. Figure 1 depicts the state variables x1 and x2, [x1x2]T

starts from [0.04 − 0.01]T, and then rapidly approaches the equilibrium point [0 0]T.
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Figure 2 shows that the trajectory of the whole impulsive system, where the dash line
indicates the impulsive jump phenomenon.
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Fig. 1. The state variables of the impulsive
switched system in example.
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Fig. 2. The trajectory of the impulsive swit-
ched system in example.

5 Conclusions

The robust exponential stability problem for nonlinear impulsive switched delayed sys-
tems is studied in this paper. By constructing a new piecewise Lyapunov functional, it is
successful to eliminate the jump phenomenon at impulsive switching points and shown
that the each subsystem is exponential decay. Then the robust exponential stability of the
whole systems is guaranteed and formulated in terms of LMI conditions. Such conditions
only depend on the minimum dwell time, irrespective the size of time-varying delays.
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