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Abstract. Influence of thermal radiation on natural-convection flow in a square cavity filled with
a porous medium of uniform porosity having isothermal vertical walls and adiabatic horizontal
walls, has been studied numerically by using finite-difference method with staggered grid distribu-
tion. The simulation is performed by considering both Darcian and non-Darcian models. Governing
momentum and energy equations are solved numerically to obtain velocity and temperature fields
for various values of different physical parameters. It is seen that increasing the thermal radiation
parameter enhances the local Nusselt number on the left vertical wall whereas the reverse effects
are observed due to increase in the heat generating parameter when Ra = 10°. The temperature at
the mid-horizontal plane decreases with increase in the value of Rayleigh number up to a certain
distance from the left vertical wall and beyond that distance the opposite trend is observed. The
temperature at the mid-horizontal plane increases with increase in the value of heat generating
parameter.

Keywords: natural convection, square cavity, Darcy—Forchheimer model, thermal radiation, heat
generation.

1 Introduction

Studies on combined natural and forced convection have received a great attention due
to its importance in practical applications in various modern systems such as electronic
cooling, nuclear reactors, building management and solar energy systems. Natural con-
vection flows are however particularly complex as they depend on several parameters
among which the geometry and thermophysical characteristics of the fluid are the most
important. A porous medium consists of a solid matrix with an interconnected void which
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is either rigid or deformable. Energy is transported through the porous materials in the
underground such as sand and crushed rock saturated with water under the influence of
local pressure gradients. The non-Darcy effects on natural convection in porous media
have received a great deal of attention in the recent times due to numerous of tech-
nical applications associated with it, such as fluid flow in geothermal reservoirs, sep-
aration processes in chemical industries, solidification of casting, thermal insulation,
petroleum reservoir, and so on. Walker and Homsy [1] and Bejan [2] used the assump-
tion of a constant porosity porous medium based on Darcy’s model. In order to account
for the transition from Darcy flow to highly viscous flow at high permeability values,
Brinkman [3] introduced Brinkman-extended Darcy model. However, this model does
not provide adequate description for the transition from the porous medium flow to pure
fluid flow. A model that bridges the gap between the Darcy and Navier—Stokes equations
is the Darcy—Forchheimer model developed by Vafai and Tien [4]. In addition, Darcy—
Brinkman—Forchheimer model describes the effects of inertia and viscous forces in the
porous media as used by Poulikakos and Bejan [5] and Lauriat and Prasad [6]. Prasad
and Tuntome [7] examined inertia effects on buoyancy driven flow and heat transfer in
a vertical porous cavity using the Forchheimer-extended Darcy equation of motion for
flow through porous media. Basak et al. [8] have investigated a natural convection flow
in a square cavity filled with a porous medium for both uniform and non-uniform heating
from below by using Darcy—Forchheimer model. Heat transfer due to natural convection
in a cavity saturated with porous media is a new branch of thermo-fluid mechanics.
The heat transfer phenomenon can be described by means of the hydrodynamics, the
convective heat transfer mechanism and the electromagnetic field as they have a symbi-
otic relationship [9-11]. Effects of permeability and different thermal boundary condi-
tions on the natural convection in a square cavity filled with porous media using Darcy—
Forchheimer model were investigated by Saied and Pop [12], whereas Marcondes et
al. [13] and Nithiarasu et al. [14] have considered Darcy—Brinkman—Forchheimer model
in their study. The buoyancy effect on free convection in a vertical cavity was analyzed
by Tong and Subramanian [15] and Lauriat and Prasad [16]. Li Tang et al. [17] studied
combined heat and moisture convective transport in a partial enclosure with multiple free
ports. Later Fu-Yun Zhao et al. [18] investigated free heat and mass transfer in a porous
enclosure with side vents.

Two new dimensions are added in this study of natural convection flow in a cavity
filled with porous medium by considering thermal radiation and internal heat source/sink
effects. It is well known that the effect of thermal radiation is important in space technol-
ogy and high temperature processes. Thermal radiation also plays an important role in
controlling heat transfer process in polymer processing industry. The effect of radiation
on heat transfer problems have been studied by Hossain and Takhar [19]. Later, Pal and
Mondal [20] have investigated radiation effects on combined convection over a vertical
flat plate embedded in a porous medium of variable porosity. In critical technological
applications like in nuclear reactor cooling, the reactor bed can be modelled as a heat
generating porous medium, quenched by a convective flow. Reddy and Narasimhan [21]
studied the heat generation effects on natural convection inside a porous annulus. Al-
though there are very few works in the field of natural convection cavity flow in presence
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of thermal radiation parameter, still the works of Zahmatkesh [22] and Devika et al. [23]
have helped a lot in this work. Zahmatkesh [22] has found that the presence of thermal
radiation makes temperature distribution nearly uniform in the vertical sections inside the
enclosure and causes the streamlines to be nearly parallel with the vertical walls. Devika
et al. [23] has investigated the effect of radiation on non-Darcy convection heat transfer
flow of a viscous electrically conducting fluid through a porous medium in a vertical
channel.

The aim of the present work is to study the influence of thermal radiation and heat on
natural convection flow in a square cavity filled with a fluid-saturated porous medium with
isothermal vertical walls and adiabatic horizontal walls by considering Darcy—Brinkman—
Forchheimer model. The governing equations are discretized, using finite-difference
method with staggered grid formulation following MAC method proposed by Harlow
and Welch [24]. The Poisson equation for pressure is derived using momentum and con-
tinuity equations and solved by BiCGStab method. The numerical results for streamline,
isotherms, velocity, temperature profiles and the heat transfer rate at the heated walls in
terms of local Nusselt number and average Nusselt number are presented.

2 Governing equations and boundary conditions

We consider natural convection heat transfer in an incompressible fluid in a square cavity
of side length L filled with sparsely packed porous medium in the presence of thermal
radiation and heat source/sink effects. The Rosseland approximation is used to describe
the radiative heat flux in the energy equation. The radiative heat flux in the x-direction is
considered negligible in comparison to the y-direction. Here the cavity filled with porous
medium of uniform porosity has isothermal vertical walls and adiabatic horizontal walls.
The geometry of this cavity together with the boundary conditions are illustrated in Fig. 1.

Y
A

u=v=0T/0y=0

u=v=0T/0y=0

L

Fig. 1. Geometry and boundary conditions of the problem.

In the Cartesian coordinate system, the fundamental governing equations are as follows:
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The associated boundary conditions are
UX,00=U(X,L)=U(0,Y)=U(L,Y) =0,
V(X,0)=V(X,L)=V(0,Y) =V(L,Y) =0,
oT oT
—(X,0)= —=(X,L) = T0,Y)="1T, T(L,Y)="T..
8Y( ’0) 8Y( ) ) 0, (07 ) n and ( ) ) c
We now introduce dimensionless parameters given as follows:
_x .y v Vi, _T-T
x_L7 y_La U = 0[7 v = Ck7 _Th_Tc)
K t_ozt’ _ PL? v D—K s
_pcpa _L2a p pOé27 T_av a'_LQa ()
_ * 2
Ra — g/B(Th Tc) L?,7 NR _ kk ’ He — QL
voa 40T3 K

Here g, v, Cp, and () denote acceleration due to gravity, thermal conductivity, specific
heat at constant pressure and heat generation constant respectively. ¢/, T, Tj, and T,
indicate time, fluid temperature, temperature of the hot wall and temperature of the cold
wall (the reference temperature), respectively. Here o, p, v, u and Da denote thermal
diffusivity, density, kinematic viscosity, dynamic viscosity of the fluid and the Darcy
number respectively. L is an appropriate macroscopic length scale that can be used to
relate flow in a porous medium with flow in a clear fluid. €, Ra, Nr and He are the
porosity of the porous medium, Rayleigh number, thermal radiation parameter and heat
generation/absorption parameter, respectively. Here K denotes permeability of the porous
medium and the radiation heat flux ¢, is considered according to Rosseland approximation
such that ¢, = —(40)/(3k*)(0T*)/(dY), where o and k* are the Stefan-Boltzmann
constant and the mean absorption coefficient, respectively. Following Raptis [25], the
fluid-phase temperature differences within the flow are assumed to be sufficiently small so
that 7* may be expressed as a linear function of temperature. This is done by expanding
T* in a Taylor series about the temperature 7. and neglecting higher order terms to yield,
T* = AT3T — 3T [22].
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Using dimensionless quantities given by Eqgs. (5), we obtain the following dimension-
less governing equations:
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The dimensionless boundary condition are

00
v=—=0 aty=0, y=1,
dy

u=v=0 atx=0, x=1,
=1 atz=0 and #=0 at z=1.

The heat transfer coefficient in terms of the local Nusselt number (Nu) is Nu =
—(00)/(0n), where n denotes the normal direction to a plane. The local Nusselt number
at the left vertical wall (Nu;) is Nu; = —(960)/(0x)|z—0. The average Nusselt number
at the hot wall is Nuy = fol Nu dy. The relationships between stream function, ¢ and
velocity components for two-dimensional flows are v = 9¢/Jy, v = —(9¢)/(0x).
From this definition of stream function, the positive sign of 1 denotes anti-clockwise
circulation and the clockwise circulation is represented by the negative sign of ). The
governing equations from (6)—(9) in absence of radiation and heat generation parameters
of the generalized model in the non-Darcian regime are same with Medeiros et al. [32].

3 Method of solution

Some computer codes related to heat transfer using staggered grid were developed by
Patankar and Spalding [26], Patankar [27], Amsden and Harlow [28], Hirt et al. [29], Van
Doormal and Raithby [30] which are well known in the literature. In the present work,
control-volume based finite-difference discretization of the non-dimensional governing
equations are carried out in a staggered grid, popularity known as MAC cell [24]. The
derivatives involved in convective terms are discretized using a hybrid scheme which is
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a convex combination of second-order central-difference and second-order upwind dif-
ference scheme. But the derivatives involved in other terms are discretized using second-
order central-difference scheme. The pressure Poisson equation is derived from the dis-
cretized momentum and continuity equations. We now describe the iteration process to
obtain the solutions of the basic equations with appropriate boundary conditions. In the
derivation of pressure Poisson equation, the divergence term at nth time level (D}',) is
retained and evaluated in the pressure Poisson iteration. It is done because the discretized
form of divergence of velocity field, i.e., D}, is not guaranteed to be zero. The solution
procedure starts with the initializing the velocity field. This is done either from the result
of previous cycle or from the prescribed initial and boundary conditions. Using this
velocity field, pressure Poisson equation is solved using BiCGStab method. Knowing
pressure field, the u-momentum, v-momentum and temperature equations are solved and
the values of u, v, 0 are updated to get the values at (n + 1)th time level. Using the values
of u and v at (n + 1)th time level, the value of the divergence of velocity field is checked
for its limit. If its absolute value is less than 0.5 x 10~° and steady state reaches then
iteration process stops, otherwise pressure Poisson equation is solved again for pressure.

4 Numerical stability criteria

Linear stability of fluid flow is §t; < mm[‘ T %] which is related to convection of fluid,

i.e., fluid should not move more than one cell width per time step (Courant, Friedrichs

and Lewy condition). Also, from the Hirt’s stability analysis, dt; < min]| 211>r ( 5‘2;2 ffs’y cf
th

This condition roughly stated that momentum cannot diffuse more than one cell wi

per time step. The time step actually used in the computations is determined from ¢ =
FCT x [min(dty, dta)], where the factor FCT varies from 0.2 to 0.4. The upwinding
parameter /3 is governed by the inequality condition 1 > § > max]]| %—‘jﬂ |%—‘;t ]. Asarule
of thumb, S is taken approximately 1.2 times larger than what is found from the above

inequality condition.

5 Results and discussions

In this study, numerical results are obtained for natural convection flow in unit square
cavity for grid size (80 x 80) with uniform porosity (¢ = 0.4) and different Rayleigh
number Ra, (10® < Ra < 5 x 10%), Darcy number Da, (1076 < Da < 1072), thermal
radiation parameter Ng, (0.0 < Ngr < 10.0), heat generating parameter He, (0.0 <
He < 10.0), Prandtl number Pr, (0.7 < Pr < 7.0) which are illustrated through several
tables and figures. Grid independence test is provided in Table 1 for various grid size. It
is important to note that as the number of grid points are increased there is drastically
increase in the number of iterations to get the converged results for |ty |. But when the
number of grid points is increases from 80 x 80 to 160 x 160, there is no significant
change found in the value of |¢);min|. Hence, all the results are computed with 80 x 80
grid points.
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Table 1. Grid independence test in absence of radiation and heat generation parameters
when Pr = 1.0, Ra = 10°%, Da = 10~* and € = 0.4.

No. of grid points  Iteration  [¢min|

20 x 20 32369  26.5700
40 x 40 81095  28.3138
80 x 80 169090  28.4806
160 x 160 346823  27.7136

In Table 2 values of Nug|,—o are computed for Darcy, non-Darcy and non-porous
models for different values of Ra and Ng. It is observed from this table that the values
of Nuyy|,—o for non-porous model is higher than those of Darcy and non-Darcy models.
Thus it is useful to include thermal radiation effects in the study of natural convection in
a square cavity with uniform porosity. Further, it is observed that the non-porous model
is effective for all the values of thermal radiations parameter and Rayleigh number. It
is observed that mH|w:0 values are also higher for non-porous model than non-Darcy
model and Darcy model for both of Ra = 10® and 10°.

Table 2. Computed values of Nur|,—o when He = 0.2 for various values of Ra and Ng.

Ra Ngr Nug le=0 —
Darcy model non-Darcy model non-porous
Da=105%¢e¢=04 Da=10"%e=04
108 0.5 2.2946 2.3129 34.0726
1.0 2.5604 2.5817 34.6553
5.0 2.9046 2.9298 35.1909
10.0 2.9623 2.9881 35.2642
10° 0.5 10.5798 11.4722 60.4263
1.0 11.2802 12.2260 60.9234
5.0 11.9901 12.9798 61.3493
10.0 12.0909 13.0857 61.4045

Comparison of the average Nusselt number at the hot wall (x = 0) for a non-Darcian
regime with uniform porosity is made with Nithiarasu et al. [31] and Medeiros et al. [32]
for various values of Rayleigh number Ra in Table 3. It is noted from this table that an
average Nusselt number increases with increase in the value of Rayleigh number Ra.

Table 4 presents the computed values of the average Nusselt number (Nu 7 |,—o) at the
hot wall (x = 0) with uniform porosity (¢ = 0.4) for various values of radiation parameter
Npg, heat generating parameter He, and Rayleigh number Ra. From this table it is seen
that when radiation parameter [V increases from 0.5 to 10.0, the average Nusselt number
increases. It is also observed from this table that the average Nusselt number decreases
with increasing heat generating parameter He and the average Nusselt number increases
when Rayleigh number Ra increases.

Table 5 shows the computed values of the average Nusselt number (MH\xzo) at
the hot wall (x = 0) with uniform porosity for various values of Rayleigh number and
Prandtl number. It is observed from this table that the average Nusselt number increases
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with increasing Pr keeping other parameter fixed. It is also seen that as Ra increases the
difference of average Nusselt number increases between the Prandtl numbers.

Table 3. Comparison of average Nusselt number Nug |s=0 in absence of radiation and
heat generation parameters of the generalized model in the non-Darcian regime, when
Pr=1,Da=10"%¢e=0.4.

Ra mlﬂzzo

Nithiarasu et al. [31] Medeiros et al. [32]  Present work
108 2.97 3.05 3.07
10° 11.46 12.10 12.23
5 x 10° 23.09 24.74 24.43

Table 4. Computed values of Nug |z=0 When Table 5. Computed values of Nug |o=0 when
Pr=1,Da=10"C%and e = 0.4 for various =~ Da = 1075 Ng = 1.0, He = 1.0 and ¢ =

values of Ra, Nr and He. 0.4 for various values of Ra and Pr.

Ra He NR mle:() Ra Pr mle:()

10 0.2 05 2.29 107 0.7 0.4212

1.0 2.56 1.0 0.4214

5.0 2.90 7.0 0.4215

10.0 2.96 108 0.7 2.3369

108 0.5 1.0 2.58 1.0 2.3458

1.0 2.34 7.0 2.3641

5.0 1.10 10° 0.7  10.8246

10.0 —1.00 1.0 11.1171

10 02 1.0 0.93 7.0  11.8845
107 0.99
108 2.56
10° 11.28

Figures 2(a), 2(b) show the velocity and temperature profiles, respectively, at the
mid-horizontal plane for Pr = 1, Da = 10=%, He = 0.2 and for two values of Ra
ie., Ra=108, 10°. It is observed from these two figures that when the value of thermal
radiation N is increased then the vertical velocity profiles and temperature profiles do
not show any appreciable change for both Ra = 108, 10°. Further, it is observed that the
vertical velocity profile increases with increase in the value of the Rayleigh number, Ra,
with increase in the formation of the peak near the left vertical wall, whereas reverse effect
is observed at the right vertical wall as seen from Fig. 2(a). It is to be pointed out that in the
case of temperature profiles, the Rayleigh number plays an important role in enhancing
the temperature with decrease in the value of Ra at the left vertical wall whereas opposite
effect of Ra is seen at the right vertical wall as seen from Fig. 2(b).

The variation of vertical velocity profiles at the mid-horizontal plane of the cavity
considering uniform porosity is depicted in Fig. 3(a) for various values of Ra and He
for Pr = 1, Da = 1079, N = 1 and ¢ = 0.4. It is thus observed that the effect of
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increasing the value of He is to decrease the center line vertical velocity near the left
vertical hot wall whereas reverse effect is observed near the right vertical wall for fixed
value of Ra. Figure 3(b) depicts the effects of heat generation coefficient on temperature
at the mid-horizontal plane of the cavity for Pr = 1, Da = 1076, Np =lande = 0.4
when Ra = 108,10%. It is seen that temperature at the mid horizontal plane increases
with increase in He for both Ra = 10® and Ra = 10°. It is well known that the heat
generation causes the fluid temperature to increase which has a tendency to increase the
thermal buoyancy effects. These effects are clearly seen from this figure.
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Fig. 2. (a) Vertical velocity profiles; (b) Temperature profiles at mid-horizontal plane

for various values of Ra and Nz when Pr = 1, Da = 10~% and He = 0.2.
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Fig. 3. (a) Vertical velocity profiles; (b) Temperature profiles at mid-horizontal plane
for various values of Ra and He.

Figures 4(a) and 4(b) show the effects of Da on vertical velocity and temperature
profiles at mid-horizontal plane when Pr = 1, Ra = 108, Np = 1 and He = 0.2.
From Fig. 4(a) we observe that the center line vertical v-velocity increases rapidly near
the hot wall (z = 0) forming a peak and then decreases rapidly to arrive at the zero value
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and remains so before reaching closer to the cold wall. In the neighbourhood region of
the cold wall, the velocity rapidly falls to attain a negative peak value and then increases
rapidly to match the boundary condition at the cold wall. It is also seen that the vertical
velocity at mid-horizontal plane in the cavity filled with porous medium increases as Da
increases near the hot wall and reverse effect is seen near the cold wall of the cavity.
Peak value attained by center-line vertical velocity in the case of cavity without porous
medium is much higher than that in case of cavity filled with porous medium. Figure 4(b)
shows the temperature at the mid-horizontal plane in the presence and absence of the
porous media. It is seen that the center-line temperature decreases as Da increases near
the hot wall up to a certain value of z (x = 0.5) but beyond that distance opposite trend
is observed near the cold wall of the cavity. It is also observed that for the cavity having
no porous medium, the center-line temperature decreases sharply in the vicinity of hot
wall and remains constant for long and thereafter it decreases sharply and reaches to zero
at the right boundary wall. Further, it is observed from this figure that the center-line
temperature profiles are concurrent for all the values of the Da.

1 1 1 1

2000 -

nonporous - Da=10"°
-- Da=10"
—10
1000 Da=102 pa=to ) L
- Da=10
- Da=102
Da=1 0'5 [—— nonporous|

nonporous

-1000 W
0.2 Y
" \

-2000 +
T T T

T 0.0 T T T T
0.0 0.2 04 06 08

00 02 04y 06 08 1.0
X
(@) (b)

Fig. 4. (a) Vertical velocity profiles; (b) Temperature profiles at mid-horizontal plane
for various values of Da.

The effect of Darcy number Da on the streamlines and isotherms are illustrated in
Figs. 5, 6 for different values of Da = 107%,1072 and Ra = 108,10° for uniform
heating of the left vertical wall. Due to heating of the left vertical wall, the fluid rise up
along the sides of the hot vertical wall which flows towards the cold vertical wall, forming
a clockwise eddy inside the cavity. Figure 5(a) depicts the streamlines and isotherms for
Da = 107% and Ra = 10®. From this figure it is seen that the flow is very weak and hence
the isotherms change very smoothly from the hot vertical wall to the cold vertical wall
which shows that the heat transfer is dominated by the conduction. Now, when Fig. 5(a)
is compared with Figs. 5(b), 6(a), it is observed that the streamlines and isotherms con-
centrated near the edges of left and right vertical walls due to stronger circulation, which
results in higher heat transfer rate due to convection. The fluid circulation is strongly
dependent on Da as can be seen from Figs. 5(a), (b) and 6(a). It is seen from Figs. 5(b)
and 6(a) that the boundary layers are relatively thick and a very small core region occurs
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such that the isotherms which become almost parallel to the horizontal walls indicating
that the conduction regime is approached. Thus as the Da is increased, the intensity within
the cavity increases due to reduced resistance offered from the porous medium. Thus
higher permeability of the porous medium is significantly more important for the heat
transfer rate. Figure 6(b) is the plot of the streamlines and isotherms for Da = 1076
and Ra = 10°. A comparison of Fig. 5(a) and Fig. 6(b) reveals that as the value of Ra
increases from 108 to 10° with Da = 1075, the buoyancy-driven circulation inside the
cavity is also increased, as seen from the greater magnitudes of the stream functions.
Further, it is observed that circulations are greater near the center and least at the wall.
Thus, the temperature gradient near both the left and right vertical walls is significant in
developing the thermal boundary layer.
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Fig. 5. Streamlines and isotherms for (a) Da = 107, Ra = 108, Pr = 1, Np = 1,
He = 0.2 and (b) Da = 10, Ra = 10°%, Pr = 1, Ng = 1 and He = 0.2.
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Fig. 6. Streamlines and isotherms for (a) Da = 1072, Ra = 108, Pr = 1, Np = 1,
He = 0.2 and (b) Da = 107%, Ra = 10°, Pr = 1, Ng = 1 and He = 0.2.
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The effects of the Rayleigh number Ra (10% < Ra < 5 x 10”) on the local Nusselt
number at the left vertical wall in the absence of thermal radiation and heat generating
parameters are displayed in Fig. 7(a). It is observed from this figure that the heat transfer
rate increases when Rayleigh number increases. In the case of uniform heating, the heat
transfer rate at the left vertical wall or Nu; is very high at the left edge of the left
vertical wall, due to the presence of discontinuity in the temperature boundary conditions
at this edge. Further, the local heat transfer rate at the cold right vertical wall has its
minimum value. The effects of thermal radiation on the heat transfer rates are displayed
in Figs. 7(b), 8(a). From Figs. 7(b) and 8(a) it is seen that Nu; increases when Ny increase
up to a certain value of y (y = 0.55) but beyond which the opposite trend is observed.
Figure 8(b) presents the variation of Nu; with y for various values of Ra and He. It is
observed from this figure that Nu; decreases as He increases for both values of Ra = 108
and 10° but Nu; increases as Ra increases from Ra = 108 to Ra = 10°.
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Fig. 7. Local Nusselt number at the left vertical wall for different values of (a) Ra
when Pr = 1, Da = 1075, Ng = He = 0 and (b) Nz when Pr = 1, Ra = 10°,
Da =10"%and He = 0.2.

Ny,

1 1

50 o

I
|
}
! !
B 1
LR —Ng=05 s {

404 %

304

Ny,

204

Ra=10%, He=0)
fffff Ra=108,He=2
- Ra=10% He=5
fffff -Ra=10° He=0
E— Ra:109, He=2|
S Ra=109,He=5

Fig. 8. Local Nusselt number at the left vertical wall for different values of (a) Nr
when Pr = 1, Ra = 10%, Da = 107%, He = 0.2 and (b) Ra and He when Pr = 1,

Da =10"% Np = 1.

www.mii.Jt/NA



Influence of thermal radiation on non-Darcian natural convection 235

6 Conclusions

Influence of thermal radiation on non-Darcian natural convection in a square cavity filled
with fluid saturated porous medium of uniform porosity is studied in the present paper.
Results for the vertical velocity and temperature at the mid-horizontal plane of the cavity,
local Nusselt number and average Nusselt number are obtained for representative govern-
ing physical parameters. Streamlines and isotherms for various values of Darcy number
and Rayleigh number are shown graphically. As a summary, we conclude the following:

1. The effect of increasing the Rayleigh number is to enhance the vertical velocity
at the mid-horizontal plane up to a certain distance from the left vertical wall and
beyond that distance the opposite trend is observed.

2. The temperature at the mid-horizontal plane decreases with increase in the value of
Rayleigh number up to a certain distance from the left vertical wall and beyond that
distance the opposite trend is observed.

3. The effects of thermal radiation on velocity and temperature profiles are not very
significant.

4. The vertical velocity at the mid-horizontal plane decreases with increasing the value
of heat generating parameter near the left vertical wall whereas reverse effect is
observed near the right vertical wall.

5. The temperature at the mid-horizontal plane increases with increase in the value of
heat generating parameter.

6. The streamlines and isotherms concentrated near the walls and edges of left and
right vertical walls due to stronger circulation, respectively.

7. Heat transfer rate at the left vertical wall is very high at the bottom side of the
left vertical wall, due to the presence of discontinuity in the temperature boundary
conditions and it has its minimum value at the upper side of the left vertical wall.

8. Average Nusselt number increases with increase in the thermal radiation parameter
but reverse effect is observed when heat generating parameter increases.
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