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Optimal control of malaria chemotherapy
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Abstract. We present an intra-host mathematical model of malaria that describes the interaction
of the immune system with the blood stage malaria merozoites. The model is modified
by incorporating the effects of malaria drugs that target blood stage parasites. The optimal
control represents a percentage effect of the chemotherapy of chloroquine in combination with
chlorpheniramine on the reproduction of merozoites in erythrocytes. First we maximise the
benefit based on the immune cells, and minimise the systemic cost based on the percentage
of chemotherapies given and the population of merozoites. An objective functional to minimise
merozite reproduction and treatment systemic costs is then built. The existence and uniqueness
results for the optimal control are established. The optimality system is derived and the Runge–Kutta
fourth order scheme is used to numerically simulate different therapy efforts. Our results indicate
that highly toxic drugs with the compensation of high infection suppression have the potential of
yeilding better treatment results than less toxic drugs with less infection suppression potential or
high toxic drugs with less infection suppression potential. In addition, we also observed that a
treatment protocol with drugs with high adverse effects and with a high potential of merozoite
suppression can be beneficial to patients. However, an optimal control strategy that seeks to
maximise immune cells has no potential to improve the treatment of blood stage malaria.

Keywords: malaria modelling, chroloquine chemotherapy, optimal control, Plasmodium falcipa-
rum.

1 Introduction

Malaria remains a major public health problem in most tropical countries, particularly
sub-Saharan Africa. It has been estimated that between 300 million and 500 million
individuals are infected annually and between 1.5 million and 2.7 million people die of
malaria every year [1]. Malaria is caused by the protozoan Plasmodium and is transmitted
to humans by female Anophele mosquitoes. Of the four species of plasmodia infecting
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humans, P. falciparum accounts for the most severe and often potentially lethal form of
malaria. Malaria parasites injected into the human host by mosquitoes initially migrate
to the liver where they develop into schizonts which rapture, releasing a large number
of daughter merozoites into the blood stream. There, each merozoite invades a fresh
erythrocyte to renew the cycle. The erythrocyte cycle maintains infection and directly
generates disease symptoms [2, 3].

The infection of humans by malaria solicit immunity development, such that indi-
viduals that are repeatedly exposed to P. falciparum infection acquire partial immunity.
Consequently, non-immune children in areas of high endemicity suffer severe malaria,
while adults suffer fewer clinical malaria episodes [3]. Naturally acquired immunity is
not completely understood. However, several studies [2–6] concluded that both cell-
mediated and antibody-dependent immunity are required for adequate protection. Both
types of responses are critically dependent on CD4+ T cells. The two main facets of
CD4+ T cells that are functionally distinguished by the cytokines they solicit, thats is,
(i) Th1-type which mainly induce γ-interferon (IFN-γ), and (ii) Th2-type which induce
interlukine-4 (IL-4) and IL-5. Both the Th1 and Th2 responses seem to be required to
regulate the infection of humans with P. falciparum malaria. However, they need to be
adequately tuned in intensity and on time [2]. It has been proposed in murine malaria that
innate and adaptive responses are required for parasite elimination [5]. The difference
between lethal and non-lethal is explained by the expression of cytokines stimulated by
the infection, such that production of IFN-γ, IL-12 and TNF-α responses are associated
with non-lethal malaria and even elimination of infection. However, overproduction of
IFN-γ or TNF-α predisposes to severe pathology [4, 5, 7].

Chloroquine (CQ) has remained the drug of choice for the chemosuppression and
radical cure of malaria particularly in the tropics, primarily because it is cheap, rapidly
effective and readily available [8]. However, the wide spread emergence of CQ-resistance
P. falciparum strains has led to studies to counter the threat of CQ resistant strains through
development of combinations of antimalarials [9, 10], which are now recommended by
world health organisation (WHO). Antimalarial combination therapy is the simultaneous
use of two (sulfadoxine-pyrimethamine, sulfalene-pyrimethamine, proguanil-dapsone,
etc.) or more blood schizontocidal drugs with independent modes of action. The concept
is based on the potential of two or more schizontocidal drugs to improve therapeutic effi-
cacy and delay the development of resistance to the individual components [9, 10]. Other
multiple therapies include a non-antimalarial medicine to enhance the antimalarial effect
of a blood schizontocidal drug, such as the combination of CQ and chlorpheniramine
(CP). However, the major disadvantage of combination treatments is the increased risk of
adverse effects and increased cost of treatment.

Optimal controls have vastly been used in determining control strategies of disease
dynamics, especially in the control of human immunodeficiency virus and tuberculo-
sis [1, 11–23]. In these studies, optimal control therapy strategies were explored using
Pontryagin’s maximum principle using dynamical models. However, up-to date, to the
best of our knowledge no work has been done to seek optimal control schemes for malaria
drugs despite frantic efforts to find effective treatment and vaccine schemes. Emergence
of P. falciparum resistance to widely used antimalarial drugs such as CQ has made treat-
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ment and control difficult. Therefore, the main thrust of this study is to determine how
CQ treatment in combination with CP (or an malaria drug that reduce reproduction of
merozoites in parasitised erythocytes) should be initiated, investigate drug percentage
usage, and effective treatment in the face of emerging malaria drug resistant strains with
aid of a model that incorporates the cellular and humoral immune response mechanisms
in an elaborate way.

This paper is organised as follows, in Section 2 we present a basic malaria model [24].
We incorporate malaria drug administration in Section 3 and develop the objective func-
tional to determine an optimal control strategy in the treatment of malaria. Existence and
characterisation of the optimal control are carried out in Section 4 and 5, respectively.
The optimality system and its proof are given in Section 6. In Section 7 we present
the numerical simulations of the optimal system and concluding remarks are provided
in Section 8.

2 Malaria intra-host model

Here we present a malaria model proposed by Chiyaka et al. [24], which models the inter-
action of (i) uninfected red blood cells (X), (ii) infected red blood cells (Y ), (iii) immune
cells (B), (iv) merozoites (M ), and (v) antibodies (A). Red blood cells are recruited
naturally at a constant rate such that their natural turn over is λx

µx
and are further recruited

at a rate σ in response to the population of infected red blood cells, which is induced by
infected red blood cells. Red blood cells are infected by merozoites at a rate β and infected
cells die or burst at rate uy . Bursting of infected cells release r daughter merozoites per
infected cells. Infection of red blood cells is counteracted by parasite specific antibodies,
such that the increase of antibodies result in the reduction of infected cells. This effect is
represented by the term, ( 1

1+c0A
), while ω represents removal of red blood cells bound to

merozoites by immune cells. Immune cells kill infected red blood cells at rate ky . The
life expectancy of the merozoites is 1

µm
and are eliminated by immune cells at rate kmB.

The natural turn over of immune cells is λB

µB
, and more immune cells proliferate at the site

of infection in proportion to the density of infected red blood cells and merozoites at rates
py and pm with proliferation saturation limits of K0 and K1, respectively. Antibodies are
secreted at rate η, this secretion is induced by immune cells and depends on the density of
merozoites in the blood, that is as the population of merozoites increase more antibodies
will be secreted. Merozoite specific antibodies decay at a rate µA. These assumptions
lead to the following system of equations:

dX(t)

dt
= λx + σY (t)− β

(
X(t)M(t)

1 + c0A(t)

)
− µxX(t)− ωX(t)M(t)B(t), (1)

dY (t)

dt
= β

(
X(t)M(t)

1 + c0A(t)

)
− uyY (t)− kyB(t)Y (t), (2)

dM(t)

dt
=

ruyY (t)

1 + c1B(t)
− µmM(t)− kmB(t)M(t)− β

(
X(t)M(t)

1 + c0A(t)

)
, (3)
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dB(t)

dt
= λb +

(
py

Y (t)

K0 + Y (t)
+ pm

M(t)

K1 +M(t)

)
B(t)− µbB(t), (4)

dA(t)

dt
= ηB(t)

(
M(t)

K1 +M(t)

)
− µaA(t). (5)

Interested readers may refer to [24] for the mathematical properties of model.

3 Treatment of malaria with antimalarial drugs

The administration of malaria drug, CQ, interact with parasitized erythrocytes. The drug
diffuses into parasite lysosomal and becomes protonated in the acidic environment. It
raises the pH of lysosome, inhibiting the polymerase that converts toxic free haem to
a harmless by-product. It makes the survival and development of parasite difficult by
preventing its digestion of haemoglobin and by reducing its supply of amino acids. Since
CQ-resistant P. falciparum strains are rampant in sub-Saharan Africa we consider the
administration of CQ in combination with CP to enhance CQ to suppress merozoites
reproduction in erythrocytes. Therefore administration of CQ in combination with CP
reduces the burst size r of infected red blood cells to (1 − γ(t))r, where γ(t) is the
normalised CQ and CP dosage as a function of time.

dX(t)

dt
= λx + σY (t)− β

(
X(t)M(t)

1 + c0A(t)

)
− µxX(t)− ωX(t)M(t)B(t), (6)

dY (t)

dt
= β

(
X(t)M(t)

1 + c0A(t)

)
− uyY (t)− kyB(t)Y (t), (7)

dM(t)

dt
=

(1− γ(t))ruyY (t)

1 + c1B(t)
− µmM(t)− kmB(t)M(t)− β

(
X(t)M(t)

1 + c0A(t)

)
, (8)

dB(t)

dt
= λb +

(
py

Y (t)

K0 + Y (t)
+ pm

M(t)

K1 +M(t)

)
B(t)− µbB(t), (9)

dA(t)

dt
= ηB(t)

(
M(t)

K1 +M(t)

)
− µaA(t). (10)

We define our objective functional as

J
(
γ(t)

)
=

tf∫
0

[
B(t)−G1M(t)−G2γ(t)2

]
dt. (11)

The first term represents the benefit of immune cells. The parametersG1 andG2 represent
the weight constants on the benefit and cost on the merozoite population and the control,
respectively. Our goal is to maximise the benefit based on the number of immune cells
and treatment while minimising the merozoite population and the systemic cost (adverse
effects and cost of treatment) of drug chemotherapy. The value γ(t) = 1 represents
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maximal use of chemotherapy and the maximal cost is represented by γ(t)2. We therefore
seek an optimal control γ∗ such that

J(γ∗) = max
{
J(γ)

∣∣ γ ∈ U},
where, U = {γ(t) | γ(t) is measurabe: 0 ≤ a ≤ γ(t) ≤ b ≤ 1, t ∈ [0, tf ]}. The basis
framework of this problem is to characterise the optimal control and prove the existence
of the optimal control and uniqueness of the optimality system.

4 Existence of an optimal control

The existence of an optimal control is proved by a result from Fleming and Rishel [25].
The boundedness of solutions of system of Eqs. (6)–(10) for a finite time interval is used
to prove the existence of an optimal control.

For biological relevance of the model we impose restrictions that the growth of X(t)
and B(t) is bounded, therefore we use X(t) < Xmax and B(t) < Bmax, where Xmax

and Bmax are the maximum numbers of RBCs and immune cells, respectively. The upper
bounds of the solutions of the system of Eqs. (6)–(10) are determined.

dY ∗

dt
=

βXmaxM
∗

1 + a0Amin
, Y (0)∗ = Y ∗

0 ,

dM∗

dt
=

ruyY
∗

1 + c1Bmin
, M(0)∗ = M∗

0 ,

dA∗

dt
= ηBmax

(
M∗

K1 +M∗

)
, A(0)∗ = A∗

0.

Note: (i) the upper bound of Y ∗ is obtained when A∗ = Amin, where 0 ≤ Amin ≤ A∗,
(ii) the most positive value of M∗ is obtained with Bmin, (0 ≤ Bmin < Bmax) and its
worth noting that 0 ≤ ( M∗

K1+M∗ ) < 1. Therefore, the supersolutions Y ∗, M∗, and A∗ are
bounded on a finite time interval.

To determine existence of an optimal control to our problem, we use a result from [25,
Thm. 4.1, pp. 68–69], where the following properties must be satisfied:

1. The set of controls and corresponding state variables is nonempty.

2. The control set U is convex and closed.

3. The right hand side of the state system is bounded by a linear function in the state
and control.

4. The integrand of the functional is concave on U and is bounded above by c2−c1|γ|κ,
where c1, c2 > 0 and κ > 1.

An existence result in [26, Thm. 9.2.1)] for the system of Eqs. (6)–(10) for bounded
coefficients is used to give Condition 1. The control set is closed and convex by definition.
The right hand side of the state system (Eqs. (6)–(10)) satisfies Condition 3 since the state
solution are a priori bounded. The integrand in the objective functional,B(t)−G1M(t)−
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G2γ(t)2, is Lebesque integrable and concave on U . Furthermore, c1, c2 > 0 and κ > 1,
hence satisfying

B(t)−G1M(t)−G2γ(t)2 ≤ c2 − c1|γ|κ,

therefore the optimal control exist, since the states are bounded.

5 Characterisation

Since there exists an optimal control for maximising the functional (11) subject to
Eqs. (6)–(10), we use Pontryagin’s maximum principle to derive the necessary conditions
for this optimal control. The Lagrangian is defined as,

L = B(t)−
(
G1M(t) +G2γ(t)2

)
+ λ1

[
λx + σY (t)− β

(
X(t)M(t)

1 + c0A(t)

)
− µxX(t)− ωX(t)M(t)B(t)

]
+ λ2

[
β

(
X(t)M(t)

1 + c0A(t)

)
− µyY (t)− kyB(t)Y (t)

]
+ λ3

[
(1− γ(t))ruyY (t)

1 + c1B(t)
− µmM(t)− kmB(t)M(t)− β

(
X(t)M(t)

1 + c0A(t)

)]
+ λ4

[
λb +

(
py

Y (t)

K0 + Y (t)
+ pm

M(t)

K1 +M(t)

)
B(t)− µbB(t)

]
+ λ5

[
ηB(t)

M(t)

K1 +M(t)
− µaA(t)

]
+ w1(t)

(
b− γ(t)

)
+ w2(t)

(
γ(t)− a

)
, (12)

where w1(t) ≥ 0, w2(t) ≥ 0 are penalty multipliers satisfying w1(t)(b − γ(t)) = 0 and
w2(t)(γ(t)− a) = 0 at the optimal γ∗.

Theorem 1. Given an optimal control γ∗ and solutions of the corresponding state sys-
tem (6)–(10), there exist adjoint variables λi, i = 1, . . . , 5, satisfying

dλ1
dt

= − ∂L
∂X

= (λ1+λ3 − λ2)

(
β

M(t)

1+c0A(t)

)
+ λ1

(
µx + ωM(t)B(t)

)
, (13)

dλ2
dt

= − ∂L
∂Y

= −λ1σ + λ2
(
µy + kyB(t)

)
− λ3

(
(1−γ(t))rµy

1+c1B(t)

)
− λ4

(
pyK0B(t)

(K0+Y (t))2

)
, (14)

dλ3
dt

= − ∂L

∂M

= G1 + (λ1 + λ3 − λ2)

(
β

X(t)

1 + c0A(t)

)
+ λ1

(
ωX(t)B(t)

)
+ λ3

(
µm + kmB(t)

)
−B(t)

K1

K1 +M(t)

(
λ4

(
pm

K1 +M(t)

)
+ λ5η

)
, (15)
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dλ4
dt

= − ∂L
∂B

= −1 + λ1
(
ωX(t)M(t)

)
+ λ2kyY (t) + λ3

(
(1− γ(t))rµyc1Y (t)

(1 + c1B(t))2
− kmM(t)

)
− (pmλ4 + ηλ5)

(
M(t)

M(t) +K1

)
− λ4

(
py

Y (t)

K0 + Y (t)
− µb

)
, (16)

dλ5
dt

= −∂L
∂A

= (λ2 − λ1 − λ3)

(
βc0

X(t)M(t)

(1 + c0A(t))2

)
+ λ5µa, (17)

transversality conditions λi(tf ) = 0 for i = 1, . . . , 5.

Proof. The form of the adjoint equation and transversality conditions are standard results
from Pontryagin’s maximum principle [25, 27]; therefore, solutions to the adjoint system
exist and are bounded. To determine the interior maximum of our lagrangian, we take the
partial derivate of L with respect to γ(t) and set it to zero. Thus,

∂L

∂γ(t)
= −2G2γ(t)∗ − λ3

(
rµyY (t)

1 + c1B(t)

)
− w1(t) + w2(t) = 0. (18)

Making γ(t)∗ subject of formulae

γ(t)∗ = −λ3
(

rµyY (t)

(1 + c1B(t))2G2

)
+
w2(t)− w1(t)

2G2
. (19)

To determine an explicit expression for the control without w1(t) and w2(t), a standard
optimality technique is utilized. The following three cases are considered to determine
a specific characterisation of the optimal control.

(i) On the set {t|a < γ(t)∗ < b}, w1(t) = w2(t) = 0. Hence the optimal control is

γ(t)∗ = −λ3
(

rµyY (t)

(1 + c1B(t))2G2

)
. (20)

(ii) On the set {t | a = γ(t)∗}, w1(t) = 0, hence

a = γ(t)∗ = −λ3
(

rµyY (t)

(1 + c1B(t))2G2

)
+
w2(t)

2G2
,

this implies that

−λ3
(

rµyY (t)

(1 + c1B(t))2G2

)
≤ a, since w2(t) ≥ 0. (21)
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(iii) On the set {t | b = γ(t)∗}, w2(t) = 0, hence

b = γ(t)∗ = −λ3
(

rµyY (t)

(1 + c1B(t))2G2

)
− w1(t)

2G2
,

this implies that

−λ3
(

rµyY (t)

(1 + c1B(t))2G2

)
≥ b, since w1(t) ≥ 0. (22)

Combining these three cases, the optimal control is characterised as,

γ(t)∗ = min

{
max

{
a,

1

2G2
(−λ3)

(
rµyY (t)

1 + c1B(t)

)}
, b

}
. (23)

We consider the optimal system next.

6 The optimal system

The optimality system consists of the state system coupled with the adjoint system with
the initial conditions, the transversality conditions and the characterisation of the optimal
control.

dX(t)

dt
= λx + σY (t)− β

(
X(t)M(t)

1 + c0A(t)

)
− µxX(t)− ωX(t)M(t)B(t), (24)

dY (t)

dt
= β

(
X(t)M(t)

1 + c0A(t)

)
− uyY (t)− kyB(t)Y (t), (25)

dM(t)

dt
=

[
1−min

{
max

{
a,

1

2G2
(−λ3)

(
rµyY (t)

1 + c1B(t)

)}
, b

}](
ruY Y (t)

1 + c1B(t)

)
− µmM(t)− kmB(t)M(t)− β

(
X(t)M(t)

1 + c0A(t)

)
, (26)

dB(t)

dt
= λb +

(
py

Y (t)

K0 + Y (t)
+ pm

M(t)

K1 +M(t)

)
B(t)− µbB(t), (27)

dA(t)

dt
= ηB(t)

(
M(t)

K1 +M(t)

)
− µaA(t). (28)

dλ1
dt

= (λ1 + λ3 − λ2)

(
β

M(t)

1 + c0A(t)

)
+ λ1

(
µx + ωM(t)B(t)

)
, (29)

dλ2
dt

= −λ1σ + λ2
(
µy + kyB(t)

)
− λ4

(
pyK0B(t)

(K0 + Y (t))2

)
−λ3

[
1−min

{
max

{
a,

1

2G2
(−λ3)

(
rµyY (t)

1 + c1B(t)

)}
, b

}](
rµy

1 + c1B(t)

)
, (30)
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dλ3
dt

= G1 + (λ1 + λ3 − λ2)

(
β

X(t)

1 + c0A(t)

)
+ λ1

(
ωX(t)B(t)

)
+λ3

(
µm + kmB(t)

)
−B(t)

K1

K1 +M(t)

(
λ4

(
pm

K1 +M(t)

)
+ λ5η

)
, (31)

dλ4
dt

= −1 + λ1

(
ωX(t)M(t)

)
+ λ2kyY (t)

+λ3

[(
1−min

{
max

{
a,

1

2G2
(−λ3)

(
rµyY (t)

1 + c1B(t)

)}
, b

})
×
(

rµyc1Y (t)

(1 + c1B(t))2

)
− kmM(t)

]
− (pmλ4 + ηλ5)

(
M(t)

M(t) +K1

)
− λ4

(
py

Y (t)

K0 + Y (t)
− µb

)
, (32)

dλ5
dt

= (λ2 − λ1 − λ3)

(
βc0

X(t)M(t)

(1 + c0A(t))2

)
+ λ5µa. (33)

WithX(0) = X0, Y ∗(0) = Y ∗
0 ,M∗(0) = M∗

0 ,B(0) = B0,A∗(0) = A∗
0 and λi(tf ) = 0

for i = 1, . . . , 5.

6.1 Uniqueness of the optimality system

The state system and adjoint system have finite upper bounds. These bounds are needed
in the uniqueness proof of the optimality system.

Lemma 1. The function u∗(s) = min(max(s, a), b) is Lipschitz continuous in s, where
a < b are some fixed positive constants

Theorem 2. For tf sufficiently small, bounded solutions to the optimality system are
unique.

Proof. Suppose (X,Y,M,B,A, λ1, λ2, λ3, λ4, λ5) and (X̄, Ȳ , M̄ , B̄, Ā, λ̄1, λ̄2, λ̄3, λ̄4,
λ̄5) are two different solutions of our optimality system. Let X = eλtp1, Y = eλtp2,
M = eλtp3, B = eλtp4, A = eλtp5, λ1 = e−λtq1, λ2 = e−λtq2, λ3 = e−λtq3,
λ4 = e−λtq4, λ5 = e−λtq5. Similarly, let X̄ = eλtp̄1, λ̄1 = e−λtq̄1, and so forth. Further
we let

γ(t)∗ = min

{
max

{
a,
−1

2G2
q3

(
rµyp2

1 + c1p4eλt

)}
, b

}
, (34)

and

γ̄(t)∗ = min
{

max

{
a,
−1

2G2
q̄3

(
rµyp̄2

1 + c1p̄4eλt

)}
, b

}
, (35)

∣∣γ(t)∗ − γ̄(t)∗
∣∣ ≤ rµy

2G2

∣∣∣∣( (1 + c1p̄4e
λt)q3p2 − (1 + c1p4e

λt)q̄3p̄2
(1 + c1p4eλt)(1 + c1p̄4eλt)

)∣∣∣∣. (36)
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Substituting X = eλtp1 into the first ODE, the state equation becomes

eλt(ṗ1 + λp1) = λx + σp2e
λt − β

(
p1p3e

2λt

1 + c0p5eλt

)
− µxp1eλt − ωp1p3p4e3λt. (37)

Also, substituting λ1 = e−λtq1 in the equation of dλ1

dt , the adjoint equation becomes

e−λt(q̇1 − λq1) = (q1 + q3 − q2)

(
βp3

1 + c0p5eλt

)
+
(
µx + ωp3p4e

2λt
)
q1e

−λt. (38)

Now we subtract the equations for M and M̄ , λ1 and λ̄1. Then multiply each equation
by appropriate difference of functions (p1 − p̄1 and q1 − q̄1, respectively) and integrate
from 0 to tf we get

1

2
(p1 − p̄1)2 + λ

tf∫
0

(p1 − p̄1)2 dt

= σ

tf∫
0

(p2 − p̄2)(p1 − p̄1) dt− µx

tf∫
0

(p1 − p̄1)2 dt

− β
tf∫
0

eλt
(

p1p3
1 + c0p5eλt

− p̄1p̄3
1 + c0p̄5eλt

)
(p1 − p̄1) dt

− ω
tf∫
0

e2λt(p1p3p4 − p̄1p̄3p̄4)(p1 − p̄1) dt. (39)

Following the same procedure for the remaining state variables and adjoint variables, for
Y and Ȳ , M and M̄ , B and B̄, A and Ā the following equations are obtained.

1

2
(p2 − p̄2)2 + λ

tf∫
0

(p2 − p̄2)2 dt

= −µy

tf∫
0

(p2 − p̄2)2 dt− ky

tf∫
0

eλt(p2p4 − p̄2p̄4)(p2 − p̄2)2 dt

− β
tf∫
0

eλt
(

p1p3
1 + c0p5eλt

− p̄1p̄3
1 + c0p̄5eλt

)
(p2 − p̄2) dt, (40)

1

2
(p3 − p̄3)2 + λ

tf∫
0

(p3 − p̄3)2 dt

= rµy

tf∫
0

(
(1− γ∗)p2
1 + c1p4eλt

− (1− γ̄∗)p̄2
1 + c1p̄4eλt

)
(p3 − p̄3) dt
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− µm

tf∫
0

(p3 − p̄3)2 dt− km

tf∫
0

eλt(p3p4 − p̄3p̄4)(p3 − p̄3) dt

− β
tf∫
0

eλt
(

p3p4
1 + c0p5eλt

− p̄3p̄4
1 + c0p̄5eλt

)
(p3 − p̄3) dt, (41)

1

2
(p4 − p̄4)2 + λ

tf∫
0

(p4 − p̄4)2 dt

= py

tf∫
0

eλt
(

p2p4
K0 + p2eλt

− p̄2p̄4
K0 + p̄2eλt

)
(p4 − p̄4) dt

+ pm

tf∫
0

eλt
(

p3p4
K1 + p3eλt

− p̄3p̄4
K1 + p̄3eλt

)
(p4 − p̄4) dt

− µb

tf∫
0

(p4 − p̄4)2 dt, (42)

1

2
(p5 − p̄5)2 + λ

tf∫
0

(p5 − p̄5)2 dt

= η

tf∫
0

eλt
(

p3p4
K1 + p3eλt

− p̄3p̄4
K1 + p̄3eλt

)
(p5 − p̄5) dt

− µa

tf∫
0

(p5 − p̄5)2 dt. (43)

These estimates utilize upper bounds on the solutions. They involve separating terms that
involve squares, several multiplied terms, and quotients.

Note:

β

tf∫
0

eλt
(

p1p2
1 + c0p5eλt

− p̄1p̄3
1 + c0p̄3eλt

)
(p1 − p̄1) dt

= β

tf∫
0

eλt
(

p1p2 − p̄1p̄2
(1 + c0p5eλt)(1 + c0p5eλt)

)
(p1 − p̄1) dt

+ βc0

tf∫
0

e2λt
(

p1p3p̄5 − p̄1p̄3p5
(1 + c0p5eλt)(1 + c0p5eλt)

)
(p1 − p̄1) dt

≤ (c1e
λtf + c2e

2λtf )

tf∫
0

[
(p1 − p̄1)2 + (p3 − p̄3)2 + (p5 − p̄5)2

]
dt, (44)
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ω

tf∫
0

e2λt(p1p3p4 − p̄1p̄3p̄4)(p1 − p̄1) dt,

≤ c3e2λtf
tf∫
0

[
(p1 − p̄1)2 + (p3 − p̄3)2 + (p4 − p̄4)2

]
dt, (45)

rµy

tf∫
0

(
(1− γ∗)p2
1 + c1p4eλt

− (1− γ̄∗)p̄2
1 + c1p̄4eλt

)
(p3 − p̄3) dt

≤ c4e2λtf
tf∫
0

[
(p1 − p̄1)2 + (p3 − p̄3)2 + (p4 − p̄4)2 + (q3 − q̄3)2

]
dt. (46)

This shows uniqueness and the combination of the integrals produces

1

2
(p1 − p̄1)2(tf ) +

1

2
(p2 − p̄2)2(tf ) +

1

2
(p3 − p̄3)2(tf ) +

1

2
(p4 − p̄4)2(tf )

+
1

2
(p5 − p̄5)2(tf ) +

1

2
(q1 − q̄1)2(0) +

1

2
(q2 − q̄2)2(0)

+
1

2
(q3 − q̄3)2(0) +

1

2
(q4 − q̄4)2(0) +

1

2
(q5 − q̄5)2(0)

+ λ

tf∫
0

[
(p1 − p̄1)2 + 2(p2 − p̄2)2 + (p3 − p̄3)2 + (p4 − p̄4)2 + (p5 − p̄5)2

+ (q1 − q̄1)2 + (q2 − q̄2)2 + (q3 − q̄3)2 + (q4 − q̄4)2 + (q5 − q̄5)2
]

dt

≤
(
λ− Ĉ1 − Ĉ2e

3λtf
)

×
tf∫
0

[
(p1 − p̄1)2 + (p2 − p̄2)2 + (p3 − p̄3)2 + (p4 − p̄4)2 + (p5 − p̄5)2

]
dt

+

tf∫
0

[
(q1 − q̄1)2 + (q2 − q̄2)2 + (q3 − q̄3)2 + (q4 − q̄4)2 + (q5 − q̄5)2

]
dt. (47)

Thus, from the expression (47), using the non-negativity of the variable expressions
evaluated at the initial and the final time and simplifying, the inequality is reduced to

(
λ− Ĉ1 − Ĉ2e

3λtf
) tf∫

0

[
(p1 − p̄1)2 + (p2 − p̄2)2 + (p3 − p̄3)2 + (p4 − p̄4)2

+ (p5 − p̄5)2 + (q1 − q̄1)2 + (q2 − q̄2)2 + (q3 − q̄3)2

+ (q4 − q̄4)2 + (q5 − q̄5)2
]
dt ≤ 0, (48)
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where Ĉ1, and Ĉ2 depend on the coefficients and the bounds of p1, p2, p3, p4, p5, q1, q2,
q3, q4, q5. If λ is chosen such that λ > Ĉ1 + Ĉ2 and tf < 1

3λ ln(λ−Ĉ1

Ĉ2
), then p1 = p̄1,

p2 = p̄2, p3 = p̄3, p4 = p̄4, p5 = p̄5, q1 = q̄1, q2 = q̄2, q3 = q̄3, q4 = q̄4, q5 = q̄5. Hence
the solution is unique for small time.

The uniqueness for a small time interval is usual in “two-point” boundary value prob-
lems due to opposite time orientations; the state equations have initial conditions and the
adjoint equations have final time conditions. The optimal control γ(t)∗ are characterized
in terms of the unique solution of the optimality system. The above optimal controls give
an optimal treatment strategy for the malaria infected patient under treatment with CQ
and CP.

7 Numerical simulations

The optimality system is solved using an iterative method with Runge–Kutta fourth order
scheme coded in Matlab. Starting with a guess for the adjoint variables, the state equations
are solved forward in time. Then those state values are used to solve the adjoint equations
backward in time, and the iterations continue until convergence.

Table 1. Table of parameters used in the model. Est means estimated.

Name Definition Value Units Reference
λx Supply of RBC 41664.0 mm−3day−1 [24, 28]
σ Rate of recruitment of RBC 0.009 day−1 [24]
β Rate of infection 0.08 mm−3day−1 [24]
c0 Efficiency of antibodies 0.6 Scalar factor [24]
µx Death rate of RBCs 0.8 day−1 [24]
uy Death rate of IRBCs 1.0 day−1 [24]
ky Immunosensitivity of IRBC 0.9 day−1 [24]
km Rate at which RBCs are eliminated 1.2× 10−5 mm−3day−1 [24]
r Merozoites released per each bursting 16.0 Scalar factor [24, 29, 30]
c1 Parasite production suppression 0.85 day−1 [24]
µm Death rate of merozoites 3.0 day−1 [24]
λb Supply rate of immune cells 30.0 mm−3day−1 [24]
py Immunogenecity of IRBCs 0.05 mm−3day−1 [24].
pm Immunogenecity of merozoites 0.05 day−1 [24]
K0 Immune cells stimulation constant 2000.0 Scalar factor [24]
K1 Immune cells stimulation 1500.0 Scalar factor [24]
µb Death rate of immune cells 1.53 mm−3day−1Scalar [24]
µa Decay of antibodies 0.4 day−1 [24]
η Rate of increase of antibodies 0.6 mm−3Scalar [24]

We carry simulations to determine the impact of systemic costs and drug percentage
usage on the treatment strategy. Simulations in Fig. 1 were aimed to find out the impact
of a treatment scheme that has varying levels of merozoite population suppression with
fixed systemic cost weights. The investigation (Fig. 2) also, aimed to explore a scheme
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Fig. 1. Graphs of the numerical solutions to the optimality system, showing propagation
of the (a) % drug usage, (b) red blood cells, (c) infected red blood cells, (d) merozoites,
(e) immune cells, and (f) antibodies when treatment is administered for 10 days. Initial
conditions when treatment is initiated are: X(0) = 600.0, Y (0) = 10.0, M(0) =
400.0, B(0) = 150.0, A(0) = 50. The value of the weights used are (i) G1 = 1.25,
G2 = 75.0 for Control-1, X-1, Y-1, M-1, B-1 and A-1, (ii) G1 = 12.5, G2 = 75.0 for

Control-2, X-2, Y-2, M-2, B-2 and A-2.
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Fig. 2. Graphs of the numerical solutions to the optimality system, showing propagation
of (a) % drug usage, (b) red blood cells, (c) infected red blood cells, (d) merozoites,
(e) immune cells, and (f) antibodies when treatment is administered for 10 days. Initial
conditions when treatment is initiated are: X(0) = 600.0, Y (0) = 10.0, M(0) =
400.0, B(0) = 150.0, A(0) = 50. The value of the weights used are (i) G1 = 2.5,
G2 = 75.0 for Control-1, X-1, Y-1, M-1, B-1 and A-1, (ii) G1 = 2.5, G2 = 250.0 for
Control-2, X-2, Y-2, M-2, B-2 and A-2, and (iii) G1 = 2.5, G2 = 750.0 for Control-3,

X-3, Y-3, M-3, B-3 and A-3.
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Fig. 3. Graphs of the numerical solutions to the optimality system, showing propagation
of (a) % drug usage, (b) red blood cells, (c) infected red blood cells, (d) merozoites,
(e) immune cells, and (f) antibodies when treatment is administered for 10 days. Initial
conditions when treatment is initiated are: X(0) = 600.0, Y (0) = 10.0, M(0) =
400.0, A(0) = 50, G1 = 1.25, G2 = 75.0. With (i)B(0) = 150.0 for Control-1, X-1,
Y-1, M-1, B-1 and A-1, (ii) B(0) = 300.0 for Control-2, X-2, Y-2, M-2, B-2 and A-2,

and (iii) B(0) = 450.0 for Control-3, X-3, Y-3, M-3, B-3 and A-3.
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with a fixed merozoite population suppression, which probe the effect of different sys-
temic cost weights. And then to ascertain if initial disease conditions has a contributing
factor in determing a treatment scheme. In Fig. 1 we fix the value of G2 at 75.0 (the
weight of the optimal control) and vary the weight of merozoites (G1) from 1.25 to 12.5
in the objective functional. In Fig. 2 three values (75.0, 250.0, and 750.0) of G2 are used
while the value of G1 is fixed at 2.5 and in Fig. 3 three initial values (150.0, 300.0, and
450.0) of immune cells (B) are used with G1 and G2 fixed at 1.25 and 75.0, respectively.

In Fig. 1, increasingG1 from 1.25 to 12.5 achieves maximal drug administration close
to 10 days with out early withdrawal of therapy, while when the value G1 is equivalent
to 1.25, therapy is continuous within the first 8 days after which therapy is tapped off.
Increasing the value of G1 implies increasing the minimisation of merozoites in the
objective functional. This effect is accompanied by reduction in infected red blood cells
and merozoites while red blood cells are boosted. Contrary, fixing G1 and increasing G2

(in Fig. 2), that is increasing treatment systemic costs of malarial drugs or if the adverse
effects are increased forces treatment to be withdrawn early. The effects of increasing
the weight G2 are counteracted by increasing G1, hence suggesting that a therapy with
high systemic costs combined with the high potential to suppress merozoites could be
administered for a longer time. This has more benefits than a strategy with high systemic
costs but with low suppression of merozoites. Fig. 3 suggests that starting with different
amounts of immune cells does not significantly affect treatment schedule, drug percentage
usage and treatment interval but affect levels of red blood cells (infected and uninfected)
and merozoites. It is expected that as immune cells are increased then merozoites will be
reduced, but here, results suggest that as the immune cells are increased only the levels of
antibodies are increased, this propels the reduction of infected red blood cells. However,
the rate of recovery of uninfected red blood cells is slow as well as the clearance of
merozoites.

This study suggests that a malarial therapy that seeks to minimise merozoites popu-
lation with less side effects is more beneficial to patients. Also a treatment scheme with
high systemic costs but with high suppression of merozoite reproduction has the potential
to give positive treatment results since high merozoite suppression seems to compensate
for high systemic costs. However, a treatment scheme that seeks to maximise the immune
cells does not significantly improve the treatment of malaria.

8 Conclusion

Recently, optimal control studies [31, 32] addressed optimal control strategies of malaria
in a population. Okosun et al. [32] derived conditions under which it is optimal to eradi-
cate the disease and examine the impact of a possible combined vaccination and treatment
strategies on the disease transmission. The study [31], predicated factors that are critical
in the transmission of malaria in a population (the contact rate and the bitting rate). Their
optimal scheme expored the effectiveness of spraying of insecticides in a population and
the contribution of immigrants to the spread of malaria. They showed that immigrants
have no significant contribution to the spread of the disease.
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In this study, we used techniques and ideas of optimal control to design malaria
treatment therapy protocols in the human body, unlike in the rest of the studies that looked
at malaria transmission and treatment in a human population. We presented a malaria
immune model and then constructed an optimal problem with an objective to maximise
immune cell benefits and minimise the merozoite population and treatment systemic costs.
We derived optimal treatment schemes by solving the optimality system. Results in this
study suggest that administration of malarial drugs with less adverse effects and high
suppression of merozoites or administration of malaria therapy with high systemic costs
and high suppression of merozoites might be beneficial to malaria patients.
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