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Abstract. We investigate the asymptotic behavior of the Gerber–Shiu discounted penalty function

φ(u) = E
(
e−δT1{T<∞}

∣∣ U(0) = u
)
,

where T denotes the time to ruin in the Erlang(2) risk process. We obtain an asymptotic expression
for the discounted penalty function when claim sizes are subexponentially distributed.

Keywords: Gerber–Shiu discounted penalty function, subexponential claim sizes, defective
renewal equation.

1 Introduction

In this paper we consider the insurer’s surplus process {U(t), t > 0} which is defined by
the equality

U(t) = u+ ct−
N(t)∑
i=1

Yi, (1)

where u ≥ 0 is the insurer’s initial surplus, c > 0 is the rate of premium income per
unit time, and {N(t)}t≥0 is the renewal counting process for the number of claims up to
time t. As usual,

N(t) =

∞∑
i=1

1{θ1+θ2+···+θi6 t}, (2)

where θ1, θ2, . . . is a sequence of independent and identically distributed random variab-
les, which represent the inter-arrival times, with θ1 being the time until the first claim. In
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addition, in this paper we suppose that θ1 has the Erlang(2) density function with scale
parameter λ > 0:

k(y) = λ2ye−λy, y > 0.

Individual claims Y1, Y2, . . . are non-negative, independent and identically distributed
random variables with distribution functionH(y) = P(Y1 6 y) and finite mean EY1 = a.
In addition, we suppose that the claim sequence is independent of the renewal process
N(t). Also we assume that the safety loading condition holds, i.e.

% :=
cEθ1
EY1

− 1 =
2c

λa
− 1 > 0. (3)

Suppose that
T = inf

{
t > 0: U(t) < 0

∣∣ U(0) = u
}

is the time to ruin. Hence |U(T )| is the deficit at ruin and U(T−) is the surplus before
ruin. In [1], Gerber and Shiu considered a function associated with a given penalty
function ω and the joint distribution of (T,U(T−), |U(T )|). The authors named this
function by an expected discounted penalty function and defined it by the following
equality

φω(u) = E
(
e−δTω

(
U(T−), |U(T )|

)
1{T<∞}

∣∣ U(0) = u
)
, (4)

where 1 is an indicator function; ω(x, y), 0 6 x, y < ∞ is some non-negative func-
tion, which can be interpreted as the penalty at the time to ruin; and δ ≥ 0 is a force
of interest. It is important to mention that, since the concept of expected discounted
penalty function has been introduced, many authors started to investigate the Gerber–
Shiu discounted penalty function. A number of significant results about this function
was obtained, but many problems haven’t been studied yet and the investigation of the
Gerber–Shiu discounted penalty function is still actual and important.

Cheng and Tang [2] investigated the discounted penalty function in Erlang(2) risk
process. They demonstrated that if δ = 0 and

∞∫
0

∞∫
0

ω(x, y)h(x+ y) dx dy <∞, (5)

then the function φω(u) satisfies some defective renewal equation. Here h(y) is the
continuous density function of individual claim sizes. In the case where δ > 0, using
a similar approach as in Cheng and Tang, Sun showed (see [3]) that under condition (5)
the function φω(u) satisfies the following defective renewal equation

φω(u) =
1

1 + β

u∫
0

φω(u− y) dG(y) +
1

1 + β
B(u), (6)

where

B(u) =
λ2

c2
(1 + β)

∞∫
u

e−ρ2(s−u)
∞∫
s

e−ρ1(x1−s)
∞∫
x1

ω(x1, x2 − x1) dH(x2) dx1 ds, (7)
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β =


2λδ + δ2

c2ρ1ρ2 − 2λδ − δ2
if δ > 0,

λ(2c− λa)
aλ2 − 2λc+ c2ρ2

if δ = 0,

and ρ1 = ρ1(δ), ρ2 = ρ2(δ) are two non-negative roots of Lundberg’s fundamental
equation (see, for example, [4])

λ2
∞∫
0

e−sx dH(x) = (cs− λ− δ)2 (8)

provided 0 6 ρ1 < (λ+ δ)/c < ρ2, ρ1(0) = 0.
Furthermore, in (6),

G(y) =
1

D

y∫
0

g(x) dx,

where

g(x) =
λ2

c2

∞∫
x

e−ρ2(v−x)
∫

[v,∞)

e−ρ1(z−v) dH(z) dv,

and

D =

∞∫
0

g(x) dx =
c2ρ1ρ2 − 2λδ − δ2

c2ρ1ρ2
=

1

1 + β
. (9)

In this paper we investigate the case where ω(x, y) = 1 for all x, y, namely the penalty
at the moment T is accepted to be unit. In this case, for δ > 0 let

φ(u) = E
(
e−δT1{T<∞}

∣∣ U(0) = u
)
.

We obtain that the partial discounted penalty function φ(u) satisfies a defective re-
newal equation without the technical condition (5) which was required by Sun [3] and
Cheng and Tang [2]. Below, we formulate this assertion.

Theorem 1. Consider the Erlang(2) risk model with the safety loading condition (3). If
δ > 0, then the penalty function φ(u) satisfies the renewal equation

φ(u) =
1

1 + β

∫
[0,u]

φ(u− y) dG(y) + 1

1 + β
G(u) (10)

with distribution function G(u) = 1−G(u) for which G(0) = 0, and

G(u) =
λ2

c2
(1 + β)

∞∫
u

e−ρ2(y−u)
∞∫
y

e−ρ1(x−y)H(x) dxdy, u > 0. (11)

Here ρ1, ρ2 (ρ1 < (λ+ δ)/c < ρ2) are two positive roots of equation (8), and the positive
constant β is defined in (9).
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The defective renewal equation for the function φω(u) defined in (4) has been investi-
gated in many works. The papers of Gerber and Shiu [5], Willmot [6] and Landriault and
Willmot [7] should be mentioned where the general case of inter-arrival times θ1, θ2, . . .
was considered. Unfortunately, to obtain the renewal equation for φω(u), the authors
suppose that the joint distribution of (T,U(T−), |U(T )|) has a density. This questionable
assumption greatly facilitates the derivation of the renewal equation. In Section 2, we
present the proof of equation (10) which does not require the existence of such a joint
density. For this reason, our proof turns out to be much more complicated.

Before formulating the second main result, we need to define the class of subexpo-
nential distribution functions.

A distribution function F with support [0,∞) is called subexponential if

lim
x→∞

F ∗ F (x)
F (x)

= 2,

where F ∗ F denotes the convolution of F with itself. As usual, the class of all subexpo-
nential distribution functions is denoted by S .

As it was already mentioned, the Gerber–Shiu discounted penalty function was widely
investigated. Much less attention has been paid to the asymptotic behavior of this func-
tion. We mention only few works. Šiaulys and Asanavičiūtė [8] obtained an asymptotic
formula for the Gerber–Shiu discounted penalty function in the classical Poisson risk
model with subexponential claim sizes. They showed that the asymptotic formula

φ(u) ∼ µ

δ
H(u), u→∞,

holds. Here H ∈ S, δ > 0, and µ is the intensity of the Poisson process.
Cheng and Tang [2] derived some asymptotic formulas for the moments of the surplus

prior to ruin and deficit at ruin in the renewal risk model with convolution-equivalent
claim sizes and Erlang(2) inter-arrival times. Tang and Wei [9] studied the renewal risk
model with absolutely continuous claim sizes whose density function belongs to some
class of heavy-tailed distributions and satisfies some additional conditions. They obtained
asymptotic formulas for the Gerber–Shiu discounted penalty function which involve the
ladder heights and related quantities in the main terms.

Our purpose is to find the simple asymptotic formula of the Gerber–Shiu discounted
penalty function like in [8] for the Erlang(2) risk process with claims distributed according
to the classical subexponential law. The second main result of this article is the following
theorem.

Theorem 2. Consider the Erlang(2) model with the safety loading condition (3) with the
claim distribution function H ∈ S. Then, for δ > 0,

φ(u)

H(u)
∼ λ2

2λδ + δ2
, u→∞.
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Asymptotic behavior of the Gerber–Shiu discounted penalty function 319

If, in addition,

1

a

u∫
0

H(y) dy ∈ S,

then, for δ = 0,

φ(u) ∼ 1

%a

∞∫
u

H(y) dy.

The second part of Theorem (δ = 0) is well known (see, for example, [10]). The
proof in the case δ > 0 is presented in Section 3. We can check that the main formula of
Theorem 2 coincides with the asymptotic formula (3.15) of Tang and Wei [9], which was
proved for absolutely continuous claim distributions.

2 Proof of Theorem 1

In this section we show that the Gerber–Shiu discounted penalty function φ(u) satisfies
the defective renewal equation (10) as stated in Theorem 1.

Proof of Theorem 1. Let δ be any fixed positive real number. Let the surplus process U(t)
be defined by equality (1) with renewal counting process N(t) defined by equality (2).
Denote T0 = 0 and Tm = θ1 + θ2 + · · ·+ θm for m ≥ 1. It is evident that ruin can occur
only at moments Tm, m ≥ 1. For these moments, N(Tm) = m and

U(Tm) = u+ cTm −
N(Tm)∑
n=1

Yn = u− Sm,

where

S0 = 0, Sm =

m∑
n=1

(Yn − cθn), m = 1, 2, . . . .

We have that for all nonnegative u

P(T = T1) = P(S1 > u),

and for all m = 2, 3, . . .

P(T = Tm) = P(Sm > u, Sm−1 6 u, Sm−2 6 u, . . . , S1 6 u).

Therefore, a discounted penalty function

φ(u) = E
(
e−δT1{T<∞}

)
= E

(
e−δT

∞∑
m=1

1{T=Tm}

)

=

∞∑
m=1

E
(
e−δTm1{S16u, S26u, ..., Sm−16u, Sm>u}

)
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for nonnegative u. Decomposing the last sum we obtain

φ(u) = Ee−δT11{S1>u} +

∞∑
m=2

Ee−δθ1e−δ(Tm−θ1)

× 1{S16u, S2−S16u−S1, ..., Sm−1−S16u−S1, Sm−S1>u−S1}.

Therefore,

φ(u) = Ee−δT11{S1>u} +

∞∑
m=2

∫
R

∫
R

Ee−δte−δ(Tm−θ1)

× 1{y−ct6u, S2−S16u−y+ct, ..., Sm−1−S16u−y+ct, Sm−S1>u−y+ct} dH(y)λ2te−λt dt

= E e−δT11{S1>u} +

∞∫
0

e−δt
∫

[0,u+ct]

∞∑
m=2

Ee−δ(Tm−θ1)

× 1{S2−S16u−y+ct, ..., Sm−1−S16u−y+ct, Sm−S1>u−y+ct} dH(y)λ2te−λt dt

= E e−δT11{S1>u} +

∞∫
0

e−δt
∫

[0,u+ct]

∞∑
l=1

Ee−δTl

× 1{S16u−y+ct, S26u−y+ct, ..., Sl−16u−y+ct, Sl>u−y+ct} dH(y)λ2te−λt dt

=

∞∫
0

e−δt
∫

y−ct>u

dH(y)λ2t e−λt dt+

∞∫
0

e−δt
∫

[0,u+ct]

φ(u+ ct− y) dH(y)λ2te−λt dt

= λ2
∞∫
0

t e−(δ+λ)t
( ∫
[0, u+ct]

φ(u+ ct− y) dH(y) +

∫
(u+ct,∞)

dH(y)

)
dt.

Substituting the new variable z = u+ ct into obtained equality we get

φ(u) =
λ2

c

∞∫
u

z − u
c

e−
(δ+λ)(z−u)

c

( ∫
[0,z]

φ(z − y) dH(y) +

∫
(z,∞)

dH(y)

)
dz. (12)

Since the function∫
[0,z]

φ(z − y) dH(y) +

∫
(z,∞)

dH(y) = 1−
∫

[0,z]

(
1− φ(z − y)

)
dH(y)

is decreasing and bounded by unity, the product

z − u
c

e−
(δ+λ)(z−u)

c

( ∫
[0,z]

φ(z − y) dH(y) +

∫
(z,∞)

dH(y)

)
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is continuous in z for all positive z with the possible exception some finite or countable
subset of R. In addition, this product of functions is integrable over the interval [0,∞).
Hence, it follows from (12) that φ(u) is absolutely continuous decreasing function, and
for almost all nonnegative u

φ′ =
λ2

c

∞∫
u

[
z − u
c

e−
(δ+λ)(z−u)

c

( ∫
[0,z]

φ(z − y) dH(y) +

∫
(z,∞)

dH(y)

)]′
u

dz.

Simplifying the last equation and using (12), we get that for almost all nonnegative u

φ′(u) =
δ + λ

c
φ(u)− λ2

c2

∞∫
u

e−
(δ+λ)(z−u)

c

( ∫
[0,z]

φ(z − y) dH(y) +

∫
(z,∞)

dH(y)

)
dz.

Similarly to the above considerations from the last expression we obtain that φ′(u) is
absolutely continuous and for almost all nonnegative u the second derivative of φ(u)
satisfies

φ′′(u) =
2(λ+ δ)

c
φ′(u)− (λ+ δ)2

c2
φ(u)

+
λ2

c2

∫
[0,u]

φ(u− y) dH(y) +
λ2

c2
H(u). (13)

Now we use the Laplace transform for reconstruction of equation (13). It is well known
that the Laplace transform of some function exists in the case if this function has expo-
nential order. Since 0 6 φ(u) 6 1 for all u > 0, we have that

∣∣φ′(u)∣∣ 6 δ + λ

c
φ(u) +

λ2

c2

∞∫
u

e−
(δ+λ)(z−u)

c dz 6
δ + λ

c
+

λ2

c(δ + λ)
:= c1,

and∣∣φ′′(u)∣∣ 6 2(λ+ δ)

c

∣∣φ′(u)∣∣+ (λ+ δ)2

c2
φ(u) +

λ2

c2

∫
[0,u]

φ(u− y) dH(y) +
λ2

c2
H(u)

6
2(λ+ δ)

c
c1 +

(λ+ δ)2

c2
+
λ2

c2

for almost all u > 0. Thus the functions in equation (13) are bounded, and the Laplace
transforms of these functions exist. Taking the Laplace transform on the both sides of
equation (13) we obtain that for all complex s with <e(s) > 0

s2φ̂(s)− sφ(0)− φ′(0)

=
2(λ+ δ)

c

(
sφ̂(s)− φ(0)

)
− (λ+ δ)2

c2
φ̂(s) +

λ2

c2
φ̂(s)H̃(s) +

λ2

c2
Ĥ(s), (14)
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where

φ̂(s) =

∞∫
0

e−suφ(u) du, H̃(s) =

∫
[0,∞)

e−su dH(u), Ĥ(s) =

∞∫
0

e−suH(u) du

because
φ̂′′(s) = s2φ̂(s)− sφ(0)− φ′(0), φ̂′(s) = sφ̂(s)− φ(0),

and by Fubini’s theorem
∞∫
0

e−su
( ∫
[0,u]

φ(u− y) dH(y)

)
du =

∫
[0,∞)

( ∞∫
y

e−suφ(u− y) du
)
dH(y)

=

∫
[0,∞)

( ∞∫
0

e−s(x+y)φ(x) dx

)
dH(y) = φ̂(s)H̃(s).

After some simplifications of (14) we get the following expression for the Laplace
transform φ̂(s)

φ̂(s) =
c2sφ(0)− 2c(λ+ δ)φ(0) + c2φ′(0) + λ2Ĥ(s)

(sc− λ− δ)2 − λ2H̃(s)
. (15)

For a latter expression we use the same transformations as in Sun’s paper (see [3,
Thm. 2.2]). Let Tρ be an operator defined in Dickson and Hipp [4]. For a given integrable
function f and any real ρ

Tρf(x) =

∞∫
x

e−ρ(z−x)f(z) dz, x > 0.

Simple calculations show that

T̂ρf(s) =
f̂(s)− f̂(ρ)

ρ− s
(16)

for all ρ > 0, <e(s) > 0, ρ 6= s. Non negative real roots of equation (8) ρ1 and ρ2
are zeroes for the denominator of expression (15). Hence, they are also zeroes for the
numerator of this expression. In particular,

c2ρ1φ(0)− 2c(λ+ δ)φ(0) + c2φ′(0) + λ2Ĥ(ρ1) = 0.

Hence, from property (16) and expression (15) we get

φ̂(s) =
c2sφ(0) + λ2

̂̃
H(s)− c2ρ1φ(0)− λ2Ĥ(ρ1)

(sc− λ− δ)2 − λ2H̃(s)

=
(s− ρ1)(c2φ(0)− λ2 Ĥ(s)−Ĥ(ρ1)

ρ1−s )

(sc− λ− δ)2 − λ2H̃(s)
=

(s− ρ1)(c2φ(0)− λ2 T̂ρ1H(s))

(sc− λ− δ)2 − λ2H̃(s)
(17)
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for all complex s with positive real part. It was mentioned that ρ2 is another zero for de-
nominator of the last expression. Hence ρ2 (ρ2 > ρ1) is a zero for numerator. Therefore,

c2φ(0) = λ2T̂ρ1H(ρ2),

and, using the property (16) again, we obtain from (17) that for above s

φ̂(s) =
λ2(s− ρ1)(s− ρ2)

T̂ρ1H(ρ2)−T̂ρ1H(s)

s−ρ2
L(s)

=
λ2(s− ρ1)(s− ρ2) ̂Tρ2Tρ1H(s)

L(s)
, (18)

where L(s) denotes the denominator of the fraction in (17). Now we consider this
denominator in more details. Evidently,

L(s) = (sc− λ− δ)2 − λ2H̃(s)− (ρ1c− λ− δ)2 + λ2H̃(ρ1)

= (s− ρ1)
(
c2(s+ ρ1)− 2(λ+ δ)c+ λ2

H̃(ρ1)− H̃(s)

s− ρ1

)
. (19)

Let τρ be a new operator defined by equality

τρF (x) =

∫
[x,∞)

e−ρ(z−x) dF (z), x > 0,

where F is a distribution function of a nonnegative random variable and ρ is real positive
number. Similarly to relation (16), we obtain that the Laplace transform of function τρF
has the following property

τ̂ρF (s) =
F̃ (s)− F̃ (ρ)

ρ− s
, (20)

where F̃ (s) =
∫
[0,∞)

e−su dF (u) denotes the Laplace–Stieltjes transform of the distribu-
tion function F . According to this relation, it follows from (19) that

L(s) = (s− ρ1)
(
c2(s+ ρ1)− 2(λ+ δ)c+ λ2 τ̂ρ1H(s)

)
Since ρ2 is also a root of L(s) = 0, we have

c2(ρ2 + ρ1)− 2(λ+ δ)c+ λ2τ̂ρ1H(ρ2) = 0.

Hence, using the property (16) we obtain:

L(s) = (s− ρ1)
(
c2(s− ρ2) + λ2τ̂ρ1H(s)− λ2τ̂ρ1H(ρ2)

)
= (s− ρ1)(s− ρ2)

(
c2 − λ2 ̂Tρ2τρ1H(s)

)
.
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Substituting this expression into (18) we get that

φ̂(s) =
λ2 ̂Tρ2Tρ1H(s)

c2 − λ2 ̂Tρ2τρ1H(s)
(21)

for complex s, <e(s) > 0. For non negative u, let

η(u) := Tρ2Tρ1H(u) =

∞∫
u

e−ρ2(x−u)

( ∞∫
x

e−ρ1(y−x)H(y) dy

)
dx,

γ(u) := Tρ2τρ1H(u) =

∞∫
u

e−ρ2(x−u)

( ∫
[x,∞)

e−ρ1(y−x) dH(y)

)
dx.

It follows from (21) that

φ̂(s) =
λ2

c2
(
φ̂(s)γ̂(s) + η̂(s)

)
for any complex s as above. Inverting the Laplace transform, we get the following form
of the renewal equation for φ(u)

φ(u) =
λ2

c2

u∫
0

φ(u− y)γ(y) dy + λ2

c2
η(u).

The desired renewal equation (10) follows immediately from the last equality taking

G(u) =
λ2

c2
(1 + β)η(u),

because (for details, see [11] or [12])

(1 + β)

∞∫
u

λ2

c2
γ(x) dx =

λ2(1 + β)

c2

∞∫
u

∞∫
x

e−ρ2(y−x)
∫

[y,∞)

e−ρ1(z−y) dH(z) dy dx

=
λ2(1 + β)

c2

∞∫
u

∫
(x,∞)

eρ2x−ρ1z
z∫
x

e−(ρ2−ρ1)y dy dH(z) dx

=
λ2(1 + β)

c2(ρ2 − ρ1)

∞∫
u

∫
(x,∞)

(
e−ρ1(z−x) − e−ρ2(z−x)

)
dH(z) dx

=
λ2(1 + β)

c2(ρ2 − ρ1)

∞∫
u

(
e−ρ1(x−u) − e−ρ2(x−u)

)
H(x) dx
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and

G(u) =
λ2(1 + β)

c2

∞∫
u

e−ρ2(y−u)
∞∫
y

e−ρ1(x−y)H(x) dx dy

=
λ2(1 + β)

c2

∞∫
u

H(x)e−ρ1x+ρ2u
x∫
u

e−(ρ2−ρ1)y dy dx

=
λ2(1 + β)

c2(ρ2 − ρ1)

∞∫
u

(
e−ρ1(x−u) − e−ρ2(x−u)

)
H(x) dx.

Finally, observe that the properties (16) and (20) imply identity (9). Namely,

λ2

c2

∞∫
0

γ(x) dx =
λ2

c2
̂Tρ2τρ1H(0) =

λ2

c2
τ̂ρ1H(0)− τ̂ρ1H(ρ2)

ρ2

=

λ2−λ2H̃(ρ1)
ρ1

+ λ2H̃(ρ2)−λ2H̃(ρ1)
ρ2−ρ1

c2 ρ2

=

λ2−(cρ1−λ−δ)2
ρ1

+ (cρ2−λ−δ)2−(cρ1−λ−δ)2
ρ2−ρ1

c2ρ2

=
c2ρ1ρ2 − 2λδ − δ2

c2ρ1ρ2
.

Theorem 1 is proved.

3 Proof of Theorem 2

In this section, we present the proof of Theorem 2. For this we need the following two
auxiliary lemmas. The first lemma describes the standard form of a solution of equation
(6). The simple proof of lemma can be found, for example, in [12] (see Theorem 2.1).

Lemma 1. Assume that a function ψ satisfies the defective renewal equation

ψ(v) =
1

1 + b

∫
[0,v]

ψ(v − x) dV (x) +
1

1 + b
W (v), v > 0,

where b > 0, V (x) = 1 − V (x) is a distribution function with V (0) = 0, and W (v) is
continuous for all v > 0.

The solution of this equation can be expressed in the form

ψ(v) =
1

b

∫
[0,v]

W (v − x) dK(x) =
1

b

∫
(0,v]

W (v − x) dK(x) +
1

1 + b
W (v).
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Here K(x) = 1−K(x) is the associated compound geometric distribution function, i.e.

K(x) =

∞∑
n=1

b

1 + b

(
1

1 + b

)n
V ∗n(x), x > 0,

and V ∗n denotes the tail of the n-fold convolution of V with itself.

The following lemma is needed in order to compare the tail of a convolution of
distribution functions with a tail of some basic subexponential distribution. The proof
of the lemma below can be found in [13] (see Corollary 3.19).

Lemma 2. Let F be some distribution function from S, and let G1, G2, . . . , Gn be
distribution functions such that

lim
x→∞

Gi(x)

F (x)
= ci, i = 1, 2, . . . n,

with some nonnegative constants c1, c2, . . . , cn. Then

G1 ∗G2 ∗ · · · ∗Gn(x)
F (x)

→ c1 + · · ·+ cn as x→∞.

If, in addition c1 + c2 + · · ·+ cn > 0, then G1 ∗G2 ∗ · · · ∗Gn ∈ S.

Proof of Theorem 2. In the case δ > 0, according to Theorem 1, we have that function
φ(u) satisfies the defective renewal equation (10) with the distribution tail G(u) defined
by (11). Hence, it follows from Lemma 1 that, for any nonnegative u,

φ(u) =
1

β

∫
[0,u]

G(u− x) dL(x) (22)

with

L(x) = 1− L(x) =
∞∑
n=1

β

(1 + β)n+1
G∗n(x).

In order to obtain the asymptotic formula for φ(u) consider first the function G(u).
Let for nonnegative y

r(y) :=

∞∫
y

e−ρ1(x−y)H(x) dx.

Then, according to (11),

G(u) =
λ2

c2
(1 + β)

∞∫
u

e−ρ2(y−u)r(y) dy.
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We have that

r(y) =
1

ρ1

(
H(y) +

∫
[0,∞)

e−ρ1zH (dz + y)

)
, (23)

and for every positive M

1

H(y)

∣∣∣∣ ∫
[0,∞)

e−ρ1zH (dz + y)

∣∣∣∣
=

1

H(y)

∫
[0,M ]

e−ρ1z
(
−H (dz + y)

)
+

1

H(y)

∫
(M,∞)

e−ρ1z
(
−H (dz + y)

)
6 1− H(y +M)

H(y)
+ e−ρ1M .

The basic properties of subexponential distribution functions (see, for example, Lem-
ma 1.3.5 in [14]) imply that for every fixed M

lim
y→∞

(
1− H(y +M)

H(y)

)
= 0.

Therefore, according to the obtained estimates,

lim
y→∞

1

H(y)

∫
[0,∞)

e−ρ1zH (dz + y) = 0. (24)

This and (23) imply

r(y) =
1

ρ1
H(y)

(
1 + o(1)

)
, y →∞.

Hence for u→∞ we get

G(u) =
λ2

c2ρ1
(1 + β)

(
1 + o(1)

) ∞∫
u

e−ρ2(y−u)H(y) dy

=
λ2

c2ρ1ρ2
(1 + β)

(
1 + o(1)

)(
H(u) +

∫
[0,∞)

e−ρ2vH (dv + u)

)

=
λ2

c2ρ1ρ2
(1 + β)H(u)

(
1 + o(1)

)
(25)

because, similarly to (24),

lim
u→∞

1

H(u)

∫
[0,∞)

e−ρ2vH (dv + u) = 0.
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Distribution function H belongs to the class S, so, according to Lemma 2, we have that
for every fixed n

lim
u→∞

G∗n(u)

H(u)
=

λ2

c2ρ1ρ2
(1 + β)n,

and distribution function G also belongs to the class S. According to the basic properties
of subexponential distribution functions (see, for example, Lemma 1.3.5 in [14]), there
exists a finite constant Kβ such that for all n > 2

sup
u>0

G∗n(u)

G(u)
6 Kβ

(
1 +

β

2

)n
.

Therefore, for every nonnegative u

G∗n(u)

(1 + β)nH(u)
=

G∗n(u)

(1 + β)nG(u)

G(u)

H(u)
6

Kβλ
2

c2ρ1ρ2
(1 + β)

(1 + β
2 )
n

(1 + β)n
.

By the dominated convergence theorem we obtain

lim
u→∞

L(u)

H(u)
=

β

(1 + β)
lim
u→∞

∞∑
n=1

1

(1 + β)n
G
∗n
(u)

H(u)

=
β

(1 + β)

∞∑
n=1

1

(1 + β)n
lim
u→∞

G
∗n
(u)

H(u)

=
βλ2

c2ρ1ρ2

∞∑
n=1

n

(1 + β)n
=

λ2

c2ρ1ρ2

(1 + β)

β

and we get that

L(u) ∼ λ2

c2ρ1ρ2

(1 + β)

β
H(u), u→∞.

If u is nonnegative, then

G ∗ L(u) =
∫

[0,u]

G(u− y) dL(y) + L(u).

According to Lemma 2 and (25)∫
[0,u]

G(u− y) dL(y) ∼ λ2

c2ρ1ρ2
(1 + β)H(u),

Hence, from (22) we get that for u→∞

φ(u) ∼ λ2

c2ρ1ρ2

(
1

β
+ 1

)
H(u).

Theorem 2 is proved.
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4 Examples

In this section we present three simple examples which illustrate the use of Theorem 2 for
the evaluation of the Gerber–Shiu discounted penalty function. All obtained formulas are
applicable only for a large values of initial capital u.

Example 1. Consider the Pareto claim distribution function

H(x) =

(
1− 1

(1 + x)3

)
1{x>0},

the Erlang(2) scale parameter λ = 2 and the security loading coefficient % > 0. It is
well known that distribution function H is subexponential (see, for instance, [14]). In
addition, a = EY1 = 1/2, and

∫ u
0
H(y) dy/a is also subexponential. Hence, according

to Theorem 2 we have that in the described model

φ(u) ∼


4

δ2 + 4δ

1

(1 + u)3
if δ > 0,

1

%(1 + u)2
if δ = 0.

Example 2. Consider the Weibull distribution function

H(x) =
(
1− e−

√
x
)
1{x>0},

for claims, the inter arrival times scale parameter λ, the force of interest δ and the se-
curity loading coefficient % > 0. Distribution function H is subexponential (see, for
instance, [14]), a = EY1 = 2, and

1

a

x∫
0

H(y) dy =
(
1− (

√
x+ 1)e−

√
x
)
1{x>0} ∈ S.

In the considered case Theorem 2 implies that

φ(u) ∼


λ2

δ2 + 2λδ
e−
√
u if δ > 0,

√
u+ 1

2%
e−
√
u if δ = 0.

Example 3. Suppose now that claims of Erlang(2) renewal risk model are distributed
according to the discrete law with distribution function

H(x) =
1

A

[x]∑
k=1

e− log2(k) 2 log k

k
,

where

A =

∞∑
k=1

2 log k

k
e− log2 k ≈ 0.851222.
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Let, in addition, λ = 2, δ = 0.03 and % is positive. It is evident thatH(x)∼e− log2(1+x)/A
for large x. Distribution function(

1− e− log2(1+x)
)
1{x>0}

belongs to the class S (see, for instance, [15, p. 87]. Hence H ∈ S according to the basic
properties of subexponential distribution (for details see [13, Corol. 3.13], and

φ(u) ∼ 38.86786e− log2(1+u),

as u→∞, according to Theorem 2.
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