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Abstract. In this paper, dynamical complexities of a three species food chain model with Holling
type IV predator response is investigated analytically as well as numerically. The local and global
stability analysis is carried out. The persistence criterion of the food chain model is obtained.
Numerical bifurcation analysis reveals the chaotic behavior in a narrow region of the bifurcation
parameter space for biologically realistic parameter values of the model system. Transition to
chaotic behavior is established via period-doubling bifurcation and some sequences of distinctive
period-halving bifurcation leading to limit cycles are observed.
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1 Introduction

Ecological systems (natural systems, prey-predator communities etc.) are dynamic, com-
plex and non-linear in nature. In non-linear systems, the effect is not proportional to
the cause. This non-linearity in the presence of dissipation (frictional forces in physics
and non-trophic interactions in ecology) gives rise to different attractor types as repre-
sentations of asymptotic states of these dynamical systems. The attractors which are
frequently observed in the model ecological systems are: stable foci, stable limit cycles
and chaos [1]. These are obtained in the state space (or phase space) of an ecological
system when an intrinsic attribute (control parameter) of the system is varied; e.g., the
quantity and quality of food supplied to a chemostat. If the first two are most frequently
observed in a model ecological system, the system’s dynamics is classified to be regular.
On the other hand, if chaotic attractors are detected in a dense region in two-dimensional
parameter space, then the system is termed to be chaotic. Chaotic states are characterized
by exponential sensitivity of system’s dynamics with respect to initial conditions which
can not be fixed or determined without committing a finite amount of error either in the
laboratory or in the field. In a recent work [2], we studied how different attractor types
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appear and disappear in a suit of five model ecological systems when control parameters
are varied in two-dimensional parameter spaces. The sensitivity of the dynamics of model
ecological systems to variations in control (key) parameters are gauged in this way. But,
this is just one aspect of the dynamical behavior of a model ecological system. In the
natural world, dynamical behavior exhibited by various ecological systems is very com-
plicated. For instance, the number of wild animals and plants are continuously variable
quantities and these variations are irregular in period and also in amplitude [3]. Prince
et al. [4] remarked that the study of community behavior with the help of mathematical
models must be based on at least three trophic levels and hence more focus should be made
to study the complex behavior exhibited by deterministic models consists of three and
more trophic levels. Hastings and Powell [5] examined the complex nonlinear behavior
of three-species continuous-time ecological model. His study initiated a concerted effort
among theoretical ecologists who sought to analyze the subtle dynamics of these nonlinear
multi-trophic models [6—-10].

Predator-prey communities are embedded in complex food webs. These webs are
woven by trophic (predation) as well as non-trophic interactions (e.g., competition, mu-
tualism and interference). The latter forms weak links with food chains in the web and is
important as far as the stability of food webs are concerned. In the food chain the predator
which appears at the bottom of the chain is known as top-predator. The response of food
webs to external perturbations (e.g., forest fire, epidemics, invasion by alien species, etc.)
is dependent on the structure of interconnected food chains. In an earlier work [11], we
have shown that the response of a food chain to exogenous environmental perturbations
is dependent on whether the top-predator is a specialist or generalist.

Various mathematical techniques, like bifurcation analysis, extensive numerical sim-
ulations have been used to detect chaotic dynamics in multi-dimensional deterministic
models of ecological systems. There is no unique mathematical tool to detect the para-
metric domain for which the model under consideration will exhibit chaotic oscillations
and also what type of non-linear coupling terms are required to be present within the
mathematical models which have potential to exhibit chaotic dynamics.

In the history of population ecology, both mathematicians and ecologists have a great
interest in the Holling type predator-prey models [12—14]; including Holling type I-III,
originally due to Holling [15] and Holling type IV, suggested by Andrews [16]. The
Holling type IV functional response is of the form

wX
M) = i x T

As the parameter ¢ (which is a measure of the predator’s immunity from or tolerance
of the prey) decreases, the predator’s foraging efficiency decreases. In the limit of large i,
it reduces to a type II functional response [17]. The parameters w and a can be interpreted
as the maximum per capita predation rate and the half saturation constant in the absence of
any inhibitory effect. This response function describes a situation in which the predator’s
per capita rate of predation decreases at sufficiently high prey densities. Using the Floquet
theory of impulsive equations and small perturbation, Baek [18] obtained conditions for
the stability analysis of a food chain system with Holling type IV functional response.
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Lian and Xu [19] investigated the affects of time delay on the dynamics of the food
chain systems. Existence of local Hopf bifurcations is analyzed by choosing the delay
as a control parameter. Shen [20] obtained the sufficient conditions for the permanence
and global attractivity of the food chain system with Holling type IV functional response
are obtained using comparison theorem. Van Gemerden [21] fitted a type IV functional
response to the uptake of hydrogen sulphide by purple sulphure bacteria. Collings [22]
used the response function in a mite predator-prey interaction model and called it a
Holling type IV function.

Recently Upadhyay et al. [23] studied the model system under the influence of en-
vironmental driving forces. These driving forces are unable to drive the system from
a regime of deterministic chaos towards a stochastically stable situation. In the present
paper, we investigate the existence of complex dynamical behavior and persistence in
a three trophic levels food chain involving Holling type IV functional response. In the
next section, we present details of the model system. The existence of solution and the
dissipativeness are presented in Section 3. The stability analysis of the model system is
carried out and the persistence conditions are established in Section 4. Section 5 enumer-
ates results of our simulation experiments. Discussions and conclusions are presented in
the last section.

2 The food chain model system

The three species food chain models are consisting of one prey (z) and two predators
(y and 2z). The middle predator y feeds on the prey x and the top predator z preys
upon y, both according to the Holling type IV functional response. The three species food
chain model can be represented mathematically by the following system of differential
equations:

dx wTy

— = —br? - T 1
ar -~ T 22fi+x+a’ (1a)
dy wTY WYz

- = — , 1b
dt a2y+x2/i+x—|—a y2/in+y+a (15)
dz W3Yz

— =—cz4+ ", Ic
dt y2/ii+y+a (1e)

where aj, by, as, w, w1, wsa, ws, ¢, ¢, 11 and a are positive constants. a; is the intrinsic
growth rate of the prey population x, as be the intrinsic death rate of predator population
y in the absence of the only food z, the parameter c is the decay rate of the top predator 2z
in the absence of its prey y and the ratio w3 /ws is measure of the assimilation efficiency.
w is the maximum value which per capita reduction rate of x can attain, w; has similar
meaning to w. we is the maximum value which per capita reduction rate of y can attain,
ws has similar meaning to we. b; is the strength of intra-specific competition among the
prey species z. The parameter a can be interpreted as the half-saturation constant in the
absence of any inhibitory effect. The parameters ¢ and i1, in turn, are a direct measure of
the middle and top predator’s immunity from, or tolerance of the prey respectively.
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Clearly the model system (1) has eleven parameters in all and it can be written as the
following form:

dx [ wy

= | e z2/i+z+a} zg1(z,y,2), (22)
dy [ W1T Wo 2

dt y_ a2+m2/i—|—x+a y2/21+y+a ng(xayvz)v ( )
dz [ w3y }

— =z —c+ —"2—| = 2g3(2,y, 2). 2¢
dt L y2/in+y+a 93(,9,2) (20)

3 Existence and dissipativeness

Obviously the interaction functions g; (¢ = 1, 2, 3) of the model system (2) are continuous
and have continuous partial derivatives on R} = {(z,y,2) € R®: 2 >0,y > 0, z > 0}.
Therefore the solution of the model system (2) with non-negative initial condition ex-
ists and is unique, as the solution of system (2) initiating in the non-negative octant is
bounded. Further more, the system is said to be dissipative if all population initiating in
Rﬁ_ are uniformly limited by their environment [24]. Accordingly, the following theorem
establishes the dissipativeness of model system (2).

Theorem 1. The model system (2) is dissipative.
Proof. From Eq. (2a) of the model system (2) we have

dz ai
— < —b = < —
q Sl —hio) o) < G e

with k = % — by be the constant of integration. Hence for the large value of time we get

vt >0,

2(t) < CbL vt > 0.
1

Let m(t) = o +y + 22, hence it is easy to verify that

dm n <
h—— m
dr pm =

o (a1 +p),
wby

where p = min(as, ¢). So by comparison lemma we obtain, for all ¢ > T >0,

m(t) < wiai(ar +p) <wlal(al +p) m(f))e”(tﬂ.

wbi1p wbip
If T = 0, then
wyay (a1 + p) wiai(ay + p) —pt
t) < — —m(0 p
m(t) < wbip ( wbyp m(0) Je

< wiai(a; + p)

= m(t) < whip vt > 0.
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Thus m(t) = “ta+y+ 22 < %‘?pﬂ’), and then all species are uniformly bounded
for any initial value inRi.

Note that, for a biologically realistic model system (2) has to be dissipative (i.e., all
population are uniformly limited in time by their environments). Therefore, according to
the above theorem we assume that there exists (71, 112, 73) > 0 such that £2(z, yo, 20) C
R ={(z,y,2): 0<z <m, 0<y<m, 0< 2 <ng}forall (zo,yo, 20) > 0, where
£2(x0,yo, 20) is the omega limit set of the orbit initiating at (xg, Yo, z0). Thus, the model
system (2) is dissipative. O

4 Stability analysis of 3D system and persistence

In this section, the existence and local stability analysis of the non-negative equilibrium
point of model system (2) are investigated. Also the persistence condition of the sys-
tem (2) is established.

There are at most four non-negative equilibrium point of model system (2). The
existence and the stability condition for them are as follows:

1. The trivial equilibrium point Ey = (0, 0,0) always exists.

2. The equilibrium point E; = (a1/b1,0,0) always exists, as the prey population
grows to the carrying capacity in the absence of predation. However, the predator
population dies in the absence of its prey. Therefore the points (0,d;,0) and
(0,0,62) with 6; > 0, j = 1,2, does not exist.

3. In the absence of top predator the middle predator can survive on its prey. Hence
the equilibrium point E; = (Z,%,0) exists in the interior of positive quadrant of
xy-plane, where T and y are given as follows:

_ i(wy/ag — 1) £ \/(z'2(w1/a2 —-1))2 - 4ai’ (3a)

@':%(al—blﬁc’)(fﬁz/zﬂ-f—&-a) (3b)

=

4. Due to the extinction scenario of middle predator there is no equilibrium point in
the zz-plane. Moreover, neither y nor z can survive in the absence of prey species
x, hence there is no equilibrium point in the yz-plane.

5. The positive equilibrium point E3 = (z*,y*, 2*) exists in the interior of the first
octant if and only if there is a positive solution to the following algebraic nonlinear

system:
wy
91(50,3/,'3) ai 1T $2/Z+$+a )
w1 T Woz
T,Y,2) = —ag + - — - =0,
92(2,,2) T 2fivr+a Pli+y+a (4)

L wsy
y?/in+y+a

93(x7ya Z) =—C
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Straight forward computation show that
y* = (r£v/r?—4aiy)/2, where r =i(wz/c—1). (52)
x* is a positive root of the cubic equation
2 4 (i —ay/b))x** +i(a — ay/by)z* + i(wy* — aay) /by =0,
and this equation can be written as
f(z*) = Ax*3 + Bx** + Ca* + E =0, (5b)
where A=1,B = (i —a1/b1),C =i(a—a1/b1), E = i(wy* — aay)b;.
We note that 0 < z* < a1 /b;.
We have f(0) = E < 0, if y* < aay/w, and f(a1/b1) = twy* /by > 0.

Since, f(0)f(a1/b1) < 0, there is positive root of Eq. (5b) lies in (0, a1 /b;), when
y* < aay /w, is satisfied. Also

1
2* = — (—az +wiz* /(2™ )i+ 2* +a)) (y*? /i1 +¥* +a). (6)
2
Therefore the positive equilibrium point F3 = (z*,y*, z*) exists under the following
conditions:
ws > ¢, 4a/iy < (wz/c—1)2, (7a)
az/wy < z* /()i +2* +a). (7b)

Now, in order to study the behavior of solution near the equilibrium points, we need to
compute the variational matrix of the model system (2). Assume that V' (z,y, z) denotes
the variational matrix of the system (2) at the point(z, y, z). Then

x%Jrgl x%—gyl x%
Vir,y,z)=| v%  y52+9 y% |, ®)
z% z%—g; z%—f—gg
where
991 _ . wy@u/itl) O w9
oxr ' (@fitxz+a)? Oy  afitx+a 0z
%: wy(a — 22 /i) %: woz(2y/ip + 1) %:7 Wa
or  (2¥)i+x+a)?" Oy (y?/i1+y+a)? Oz y2)in+y+a’
993 _ 095 _ wsla—yfi)  Ogs _
oz Oy (Yfiit+y+a)? 0z '
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Accordingly, the linear stability analysis about the equilibrium points F;, 7 = 0, 1, 2, 3,
gives the following results:

1. The equilibrium point Ey = (0,0,0) is a saddle point, indeed near Fy the prey
population grows while both the predator population decline.

2. The equilibrium point Ey = (a;/b1,0,0) is a stable in the interior of positive
octant provided that (w;/a2) < {(a1/ib1) + abi /a1 + 1}, but when (wy/az) >
{(a1/ib1) + aby/a; + 1} and then F; is a saddle point with stable manifold in
the zz-plane and with unstable manifold in y-direction. Moreover, near F; the
prey population remains in the neighborhood of a; /by, while the middle predator
increase when the top predator decline.

3. The root of the characteristic equation p3(A) = 0 of the above variational matrix (8)
about Es = (7,7, 0) satisfy the following:

wy(2Z/i + 1)
(@2)i+T+a)?]’

ww1TY(a — T2 /1) e w3y .
@/itT+aP’ P Platita

M+ A=2|-b +

A2 =

The equilibrium point Es = (7, ¥, 0) is stable or unstable in the positive direction
orthogonal to the xy-plane, i.e., z-direction depending on whether A3 = %
— c is negative or positive, respectively.

4. The variational matrix of the model system (2) at the positive equilibrium EF3 =
(x*,y*, z*) is given as follows:

*[_ wy* (22" /i+1) _ wz*
' =bi+ 5 ] B 0 V11 V12 V13
o w2 (20 i -
V(Eg)z w1y (LIBZ:E /) way™*z (ag /i1+1) 7w2y = vo1 va va3 |, (9)
0 wgz*(a—2y*2/i1) 0 V31 U32 U33

e

where o = y*? /i1 + y* + a, and B = 2*2/i + 2* + a. So the characteristic equation of
the variational matrix (9) is written as:

A4+ AA2 + A\ + A5 =0,

where A; = —(1)11 + 1)22), A = v11V22 — V12V21 — V23U32, Az = V11V23V32.
According to the Routh-Hurwitz criterion, F3 = (z*,y*, 2*) is locally asymptoti-
cally stable provided that Ay, Ay, A3 and A = Ay Ay — Aj are positive. Note that,
straightforward calculation shows that
wr*y*(2z*/i+ 1) woy*z*(2y* /i1 + 1)

A >0 = BQ + o2 < bl.’L‘*, (10)
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As >0
biwex*2*(2y* Jiy +1)  wwia*(a —x*2 /i)  wowsz*(a — y*2/iy)
2 < 3 + 3
« 153 «
wwox*y*2* (22* /i + 1)(2y* /iy + 1)
+ 0232
and (2%)? < ai, (y*)? < aiy, (11)
.o b1 B
A3 >0 = y*"(2z"/i+1) > o (12)

AZAlAQ—A3>O

I i )[Ml(M1+w2yz(y2/“ ))
a e
wowsy*2* (a — y*? iy) wz* wz*
+ My—— | + M My—— < 0, (13)
o’ B B

where

wy* (22* /i + 1) wiy*(a — 2% /i)

T 3 M2 == T .
Therefore, depending on the above analysis the following theorem can be proved

easily.

M1=$*|:—b1+

Theorem 2. Suppose that the positive equilibrium point Es = (x*,y*, z*) exists in the
interior of the positive octant, and then Ej3 is locally asymptotically stable provided that
conditions (10)—(13) hold.

In the following theorem, the global stability analysis of F5 = (a*,y*, z*) is investi-
gated.

Theorem 3. Assume that the positive equilibrium point E5 = (x*,y*, z*) is locally
asymptotically stable. Then it is a globally asymptotically stable in the interior of positive
octant (i.e., Int R?jr ) provided that

. o abyi(z*? )i+ x* + a)

14a
w(z* 4+ m +1) (142)
wyx” wanensy*

- + - - < ag, 14b
x2fi+ax*+a  i1ad(y*2/i1 +y* +a) 2 (14b)
wsn2 < ac, (14c)

where ny = ¢, mp = (14 £), n3 = 5 (14 1) and p = min(az, c).

Proof. The proof is based on a Lyapunov direct method. Consider the following positive
definite function V' (z,y, z) = Vi(z,y, 2) + Va(z, y, 2) + Vs(x, y, 2), where
C3

x C
‘/i:cl |:x—x*—x*ln<x*>:|, Vv2:72(y—y*)27 %:7(3—2*)2
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Obviously, V' is a continuous function on Int Ri, C; ( = 1,2,3) are the positive
constants to be determined. Now in order to investigate the global dynamics of the non-
negative equilibrium point /3 of the model system (2) the derivative of V' with respect to

time along the solution of system (2) is computed as

vV dvi Al dVs

w - a bt ta (13)
Since,
dv (wy*/i)(z + z* + 1) 2
M ol - _
dt Cl[l (x*2)i+x* +a)(2?/i+ 2+ a) (=27
Crw(z —2%)(y —y")
— 1
22/i+z+a ’ (162)
dv, wyz* woz(a — (yy*/i1)) 2
— =—-C - - + - : —
R T e e S
N Cowry(a — (zz* /i) (z — 2*)(y — y”)
(x*2 )i+ z* +a)(a?/i+ x+a)
Coway*(y — y*) (2 — 2¥)
_ 7 16
y2 /ity +a (16
Vs o foowsy ] e
B =l ) )
Cswsz*(a — (yy*/il))(y—y*)(z—Z*). (16¢)
(y*2/i1 +y* +a)(y*/ir +y +a)
Substituting (16a)—(16c) in (15) we obtain
dt YT @i+t 4+ a)(@?)i+ 2 + a)
wyz* waz(a — (yy*/i1)) } 2
- C — - + - - -
o e G a0
w3y *\2
~Oale— _
B[C y?/i1+y+a)}(z )

Chw Cowyy(a — (za* /1))

a0

Cswsz*(a — (yy*/i1)) Coway™

C2?fi+x+a + (x*2)i+a*+a)(2?/i+ 2+ a)

|

ORIl
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The above equations can be write as sum of the quadratics

d 1 1
dit/:*iall(xfx*y+a12(I*$*)(y*y*)*5022(9*9*)2
1 * * * 1 *
= *§a22(y*y )? +as(y—y*)(z—2) — 5%3(2*2 )?
1 * * * *
= —iall(w—x )2—|—a13(x—x )z —2%)— 5@33(2’—2’ )2,
where
wy* /i) (x +x* +1
ary = G| by — Q(y{)( 37 ) ;
i (z*2/i+x* +a)(x?/i+ 2z +a)
wix™* waz(a — * /i
(22 :CQ az — *2 /5 - * + *2 /5 2 5< (ny/l)) :|,
LT z?fitatta (Yt yt+a)(yPii+y+a)
w3y
=C3lc— ——"F——|,
T iyt a)
w— |- Chw n Cowry(a — (za* /i)
12 22fitz+a  (x2)i+z*+a)(2?/i+z+a)]
don — Cswsz"(a — (yy*/i1))  Cowgy” ]
Wity ity t+a) vty tal
CL13:O.

Sufficient conditions for $¥ to be negative definite are that the following inequalities

dt
hold:

ayp >0, a >0, a3 >0, (17)
a%Q < ajjase, (18)
a3, < apaszs, (19)
af3 < a110a33. (20)
Since a;3 = 0, condition (20) is automatically satisfied. It can be seen that under
condition (14a), a;; > 0. Under condition (14b), ass > 0; and under condition (14c),
*2 /., Wor™ )
as3 > 0. If we choose C; = %, Cy = % and C3 = Caiugfi , then it can be
checked that conditions (18) and (19) are automatically satisfied. O

In the following, we shall find the conditions for the persistence of the food chain
system (2).

Theorem 4. Assume that there are no non-trivial periodic solutions in the xy-plane, and
then the necessary condition for the persistence of system (2) is

w3y
M= =——"—— — >0 21a
’ (ﬂ%ﬁyw C)— Gl

www.mii.Jt/NA



Complex dynamics of a three species food-chain model 363

and the sufficient condition for the persistence of the system is

w3y
M= =—"""—— — > 0. 21b
; (172/1'1 +ti+a C) 16)

Proof. Since the boundedness is proved and A3 is the eigenvalue which gives the stability
in the positive direction orthogonal to the zy-plane (i.e., z-direction). Hence if there are no
non-trivial periodic solution in the zy-plane and condition (21a) is violated (i.e., A3 < 0).
Then Ej is a stable equilibrium point, which means that there is orbit converges to it in the
positive cone. Therefore, condition (21a) is the necessary condition for the persistence.
Now for the sufficient condition of persistence of the model system (2), we shall apply
the abstract theorem of Freedman and Waltman [25]. According to the growth functions
g1, g2 and g3 of system (2) the following hypothesizes are satisfied:
ay 990 _ w0 9
y 2?/i+z+a T Oz ’
09y _ wia— /i) 0 < i
a—x—m>0 (if z° < ai),

993 7 _
% - 07 92(07yaz) -

wWoZ
- <0, 0,0,2) = —c < 0.
Vi tyta g3 ( )
(A2) The prey species x grows to carrying capacity in the absence of predator that
is ¢1(0,0,0) = a1 > 0 and g1(3*,0,0) = 0. While, due to the intraspecific
competition within prey species we have %(m, 0,0) =—b; <O.

(A3) There is no equilibrium point in xz-plane and yz-plane.

(A4) The intermediate predator can survive on its prey in the absence of top predator,
that is there exist an equilibrium point Fs = (Z,%,0) in the zy-plane such that
91(Z,9,0) = 0 = go(7, ¥, 0). However the top predator cannot survive on the prey
x in zy-plane.

Therefore, according to Freedman and Waltman theorem [25], model system (2)
persists if condition (21b) is satisfied. O]

Theorem 5. Suppose that condition (21b) holds and there are a finite number of limit cy-
cles in the xy-plane. Then for each limit cycle (6(t),v(t)) in the xy-plane the persistence
condition for system (2) takes the form

T
/93 (6(t),v(t),0) dt > 0. (22)
0
Here T is the time period of the limit cycle.
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Proof. Assume that there exists a limit cycle in the xy-plane, then the variational matrix
about the limit cycle, z(t) = 0(t), y(t) = v(t), z(t) = 0, take the form

0% +ag1 ()% 0
V(6(t),0(t),0) = | w(t)de 0 wt)de], (23)
0 0 g3

where all the partial derivative and g; (j = 1,2,3) in (23) are computed at the limit
cycle (6(t),v(t),0). Consider now a solution of the model system (2) with positive initial
condition (¢, a1, ag, ai3) sufficiently close to the limit cycle.

From the variational matrix (23), 3653 is a solution of the system % = g5(6(t), v(t), 0)z

with z(0) = 1. Thus,

%Z(t,al,ozg,as) = exp (/93(0(3),1)(3),0) d3>.
0

Hence by using Taylor expansion, we have

t

z(t, a1, a0, a3) — z(t, a1, az,0) = agexp </ g3 (9(5),1}(5), O) ds).
0

Then z increase or decrease according to fOT g3(0(¢),v(t),0) dt is positive or neg-
ative, respectively. Since E'3 and those limit cycles are the only possible limit in the
zy-plane of trajectories with positive initial condition, hence the trajectories go away
from the xy-plane if conditions (21b) and (22) hold. O]

5 Numerical results

The global dynamical behavior of the non-linear model system (2), in the positive octant,
is investigated numerically. A numerical integration for model system (2) is carried out
for various choices of biologically feasible parameter values and for different sets of
initial conditions. In all the cases being considered here the data is chosen such that the
persistence conditions are satisfied. Therefore, as the solution for system is bounded we
expect that model system (2) have a rich dynamics including limit cycle, quasi-periodic or
even chaotic dynamic. Model system (2) is solved numerical using the predictor-corrector
method with sixth order Runge—Kutta method [26].

The chaotic attractor and its corresponding time series of the model system (2) are
decided on the following data set (see Fig. 1):

a=1, ar=1, a3 =02, b =1 =025 =03, i =0.3,

(24)
w=1.95 1w =138, w,=285 w;=L16.
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Fig. 1. Phase plane diagram for the model system (2) for the parameter values given

in Eq. (24) with initial condition [0.9302, 0.1795, 0.0132]: (a) phase portrait in the zy-

plane of a strange attractor; (b) phase portrait in the yz-plane of a strange attractor;

(c) phase portrait in the zz-plane of a strange attractor; (d) sensitive dependence on

initial condition (SIC) for the small change in prey population density z; (e) SIC for the

small change in middle predator population density y; (f) SIC for the small change in
top-predator population density z.
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Phase portrait in the zy, yz and zz-planes of a strange attractor are presented in
Figs. 1(a)-1(c). Model system (2a)—(2c) display sensitivity to the initial condition for
the small change in population densities are presented in Figs. 1(d)-1(f). The prey and
predator densities plots are redrawn for a small change of size 0.0001 in the initial con-
dition, which intersects the initial plot significantly. The temporal variations in prey and
predator densities show highly irregular oscillations in the model system. This behaviour
is observed when the time history of the population density is plotted with small changes
in the initial condition. The two time trajectories intersect each other confirming the
dynamics of the system to be chaotic for that particular set of parameter values. Therefore,
a detailed study of the system dynamics must include the SIC property of the system
leading to confirmation of chaos.

The data set given in Eq. (24), we only change the value of the strength of intra-
specific competition among prey species, b; from 1.0 to 1.5, we obtain the limit cycle
attractor of period 2 and its corresponding time series are presented in Fig. 2.
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Fig. 2. (a) Phase plane diagram for the limit cycle attractor of period 2; (b) time-series
corresponding to the population densities for limit cycle attractor of period 2 of model
system (2).

The limit cycle attractor of period 1 and its corresponding time series of model sys-
tem (2) are presented in Fig. 3 for b; = 1.75. The values of other parameters are same as
given in Eq. (24).

If we set the strength of intra-specific competition among prey species at the value
b1 = 2.2 and the value of other parameters are same as given in Eq. (24), we obtain the
stable focus for the model system (2) (see Fig. 4).

The simulation experiments were done to determine the regions in the parameter
spaces, which support different dynamical behaviors for the model system (2). The com-
puted results are given in Table 1, which are the main results of the complex dynamical
behavior of this model system. From Table 1, it is found that chaos was observed in
the ranges 1.4 < a; < 2.7,0.7 < b < 14,19 < w; < 2.3,0.08 < az < 0.089,
0.093 < as < 0.13 and at the discrete point as = 0.091 and other parameters are fixed
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at the limit cycle value i.e., by = 1.75. For this set of values no chaos was observed
in the whole range of parameter ¢ € [0.01,3.0] and w3 € [0.01,4.0]. But if we set
the strength of intra-specific competition among prey species at the value b; = 1.0, we
observe chaos for these parameter values in the ranges ¢ € [0.14, 0.3] and w3 € [1.4,4.0].
Extinction of top-predator (2) is also observed for most of the parameter values and in
some cases the extinction of the middle predator y is also observed. For fixed ¢ (¢ = 0.3)
and i1 € [0.2,4.0], chaos is observed but if we fixed 41 (i1 = 0.3) then chaos is observed
in the range 4 € [0.3,0.9] and stable limit cycle is observed in the range [1.0, 4.0].
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Fig. 3. (a) Phase plane diagram for the limit cycle attractor of period 1; (b) time-series
corresponding to the population densities for limit cycle attractor of period 1 of the
model system (2).
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Fig. 4. (a) Phase plane diagram for the stable focus; (b) time series corresponding to the
population densities for stable focus of the model system (2).
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Table 1. Simulation experiments of model system (2a)—(2c) with parameter values
w=1.9517=0.3,7 = 0.3, a =1, wp = 2.85. The values at which parameters a1,
b1, a2, w1, c and ws were kept constant are a; = 1, by = 1.75, a2 = 0.2, w1 = 1.38,
¢ = 0.25 and ws = 1.6. The initial conditions are z(0) = 0.5, y(0) = 0.5, z(0) = 0.5.

Parameter kept Parameter varied Range in which Dynamical
constant parameter was varied — outcome
b1, as, w1, ¢, W3 ai 0.1-0.6 Extinction
0.1<a;1 <£4.0 0.7-0.8 Stable focus
0.9-1.3 Stable limit cycle
1.4-2.7 Chaos
2.8-4.0 Extinction
ai, a2, Wi, ¢, W3 by 0.01-0.6 Extinction
0.01 <b; <4.0 0.7-1.4 Chaos
1.5-2.0 Stable limit cycle
2.1-3.5 Stable focus
3.6-4 Extinction
ai, by, wi, ¢, w3 as 0.01-0.07 Stable limit cycle
0.01 <az <20 0.08-0.089 Chaos
0.09 Stable limit cycle
0.091 Chaos
0.092 Stable limit cycle
0.093-0.13 Chaos
0.14-0.26 Stable limit cycle
0.27-0.29 Stable focus
0.3-2.0 Extinction
ai, by, as, ¢, ws w1 0.1-0.9 Extinction
0.1 <w; <4.0 1.0-1.04 Stable focus
1.05-1.8 Stable limit cycle
1.9-2.3 Chaos
2.4-4.0 Stable limit cycle
ai, b1, as, wi, w3 ¢ 0.01-0.3 Stable limit cycle
0.01 <ec<30 0.31-0.33 Stable focus
0.34-0.9 Extinction
1.0-3.0 Stable focus
by = 1.0, 0.14-0.3 Chaos
0.01 <c<3.0
ai, b1, az, wy,c w3 0.01-1.1 Extinction
0.01 < w3 <4.0 1.2-1.3 Stable focus
by = 1.0, 1.4-4.0 Stable limit cycle
0.01 <ws <4.0 1.4-4.0 Chaos
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Under the bifurcation analysis of the model system (2), very rich and complex dynam-
ics are observed, presenting various sequences of period-doubling bifurcation leading to
chaotic dynamics or sequences of period-halving bifurcation leading to limit cycles. For
bifurcation diagram of model system (2) presented in column (a) of Fig. 5, the value of
the intrinsic growth rate of prey population parameter a; varies in the range [0.62, 2.0]
and the values of other parameter are as follows:

a=1, a;=02 b =1 ¢=025 i=03, i =0.3,
w=1.95 1w =138, w,=285 w;=L6.

The blow-up bifurcation diagrams are presented in column (b) of Fig. 5, show that
the model system possesses rich variety of complex dynamic behavior for bifurcation
parameter a4 in the range [0.63,0.75].

The bifurcation diagrams are generated for the successive maxima of the prey pop-
ulation z in the range [0.001,2.0], the intermediate predator population y and the top
predator population z in the ranges [0.001, 2.5] and [0.001, 0.3] respectively as a function
of intrinsic growth rate of prey population a; in the range 0.62 < a; < 2.0. The blow-
up bifurcation diagrams show that the model system possesses rich variety of dynamical
behavior if the bifurcation parameter a; varies in the range 0.63 < a; < 0.75 and suc-
cessive maxima of the prey and predator populations in the ranges [0.01, 0.8], [0.01, 0.6]
and [0.005, 0.12] respectively.

The bifurcation diagrams are also generated for the successive maxima of the prey
population z in the range [0.001, 1.8] as a function of strength of intra-specific competi-
tion among prey population b; in the range 0.64 < b; < 2.2. The blow-up bifurcation dia-
gram is generated in the range %4, € [0.001,0.7] and the bifurcation parameter b; in the
range 1.4 < b; < 2.2. Similarly for the successive maxima of the predator populations y
and z and the control parameter b1, the bifurcation diagrams and the blow —up bifurcation
diagrams are presented in Fig. 6. The bifurcation diagrams are drawn for the parameter
values as given in Eq. (24) with a; = 1, by = 1, and presented by Figs. 5 and 6. These
Figures (Figs. 5 and 6) show clearly the evidence of the route to chaos through the cascade
of period-doubling and period-halving bifurcation respectively. The b;-bifurcation pa-
rameter is varied in the range [0.64, 2.2]. A period-halving cascade is observed. After the
accumulation point, the behavior settles down onto a chaotic attractor which is structured
on a skeleton of periodic orbit [27]. The period-doubling phenomena leading to chaos
is a well known feature of a range of nonlinear systems of biological populations. For
a1 bifurcation parameter, a period-doubling cascade is observed which is given in Fig. 5.
The increase in size of a chaotic attractor as the system parameter is varied is considered
to be the hallmark of the crisis (sudden destruction of a chaotic attractor) route to chaotic
dynamics [28,29]. The crisis occurs precisely at the point (a; = 0.687, b; = 1.622) where
the unstable period 3 orbit created at the original saddle —node bifurcation intersects with
the narrow chaotic region. It shows the evidence of the route to chaos through the cascade
of period halving and other important change in the chaotic set include interior crisis
in which a chaotic attractor undergoes a sudden increase in the size [27] along with the
appearance or sudden enlargement of a fractal structure in the basin boundary.
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Fig. 5. Period-doubling bifurcation of the model system (2) for the parameter values

given in Eq. (24): (a) successive maxima of the population densities verses the control

parameter a; for the range 0.62 < a; < 2.0; (b) blow-up bifurcation diagram of (a) for
the control parameter a; for the range 0.63 < a1 < 0.75.
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Fig. 6. Period-halving bifurcation of the model system (2) for the parameter values

given in Eq. (24): (a) successive maxima of the population densities verses the control

parameter by for the range 0.64 < b1 < 2.2; (b) blow-up bifurcation diagram of (a) for
the control parameter a; for the range 1.4 < b; < 2.2.
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6 Discussions and conclusions

In this paper, we have investigated the dynamical complexities of a three-species food
chain model with Holling type IV predator response. The boundedness of the trajectories,
existence of an attracting set, as well as existence of equilibrium points is established.
The local and global stability for non-negative equilibrium point has been analyzed.
Condition for the persistence of the model system is obtained. Numerical simulation
of model system (2) shows that, the food chain system has rich dynamics including
periodic and chaotic dynamics. Extinction of the top or middle predator population is
observed for the extreme values of the model parameters except for the death rate of
the top-predator z for which extinction is observed in the intermediate ranges [0.34, 0.9].
From the bifurcation analysis, we observed that the asymptotic behavior of the model
system is extremely sensitive to the value of intrinsic growth rate of prey population and
the strength of intra-specific competition among the prey species parameters a; and by
in the ranges (0.63,0.75) and (1.4, 2.2) respectively. From Figs. 5 and 6, we observed
the period-doubling route to chaos for the intrinsic growth of prey population parameter
(ay) and period-halving route to limit cycle for the strength of intraspecific competition
parameter (b;) among the prey species. Thus it is observed that even small variation
in parameters a; and b; may cause a shift from limit cycles to chaos and vice-versa
respectively. This study gives support to the view that multi-species model systems
are able to generate unpredictable and complex behavior and points to the difficulties
in understanding the observed dynamical behavior of even simple ecological systems in
the absence of a reasonable a priori model of their growth and dynamics.
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