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Natural convection in a square inclined enclosure
with vee-corrugated sidewalls subjected
to constant flux heating from below
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Abstract. Two-dimensional steady natural convective flow in a square inclined enclosure with
vertical vee-corrugated sidewalls and horizontal top and bottom surfaces has been numerically
studied. A discrete heat flux strip of 24% of the total length is flush-mounted on the bottom wall,
while the other non-heated parts of the bottom wall and the top wall are considered adiabatic. The
two vee-corrugated sidewalls are maintained at constant cold temperature. Grashof number is varied
from 10% to 10, corrugation frequency is varied from 0.5 to 2.0, corrugation amplitude has been
fixed at 10% of the enclosure height and the enclosure inclination angle is varied to 0°, 10°, 20°
and 30° respectively. The enclosure is filled with air (Pr = 0.71). The flow has been assumed
to be steady and laminar. Fluid properties have been assumed constant except for the density
change with temperature that gives rise to the buoyancy forces. The solution has been obtained
using the governing equations written in terms of dimensionless variables. The dimensionless
governing equations are solved using finite volume method. Results are presented in the form
of streamline and isotherm plots. The results of the present work show that the natural convection
phenomenon is greatly affected by increasing the enclosure inclination angle. The variation in
the average Nusselt number at the bottom wall, where the heat source exists and the maximum
dimensionless temperature are also presented. The results are compared and found to be in a good
agreement with other published results.

Keywords: natural convection, discrete heating, vee-corrugated inclined enclosure, laminar flow,
finite volume.
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Nomenclature
CF  corrugation frequency v velocity component in y-direction
g gravitational acceleration (m/s?) (m/s)
Gr  Grashof number W height or width of the enclosure (m)
k thermal conductivity of fluid X dimensionless coordinate
(W/m°C) in horizontal direction
L heat source length (m) x  Cartesian coordinate
Nu,, average Nusselt number in horizontal direction (m)
Nu, local Nusselt number Y dimensionless coordinate
P dimensionless pressure in vertical direction
P pressure (N/m?) y  Cartesian coordinate
Pr  Prandtl number in vertical direction (m)
q heat flux per unit area (W /m?) «  thermal diffusivity (m?/s)
T temperature (°C) B volumetric coefficient
T temperature of the cold surface (°C) of thermal expansion (K_l)
U dimensionless velocity component 6  dimensionless temperature
in z-direction @ enclosure inclination angle with
U velocity component in z-direction horizontal direction (degree)
(m/s) v kinematic viscosity of the fluid
\% dimensionless velocity component (m2/s)
in y-direction p  density of the fluid (kg/m?)

1 Introduction

The phenomenon of natural convection heat transfer plays an important role, both in na-
ture and in engineering systems. Many investigations have been performed on enclosures
both theoretically and experimentally for a wide range of Rayleigh number (Paroncini
and Corvaro [1], Raos [2] and Anilkumar and Jilani [3]). Natural convection in an
air filled enclosure with vee-corrugated vertical sidewalls has received a great attention
because many of the industrial applications employ this concept as a prototype. Many
investigations have been carried out on heat transfer across vee-corrugated and other
configured shapes. Free convection heat transfer in air layers bounded by a lower hot vee-
corrugated plate and upper cold flat plate has been investigated by Elsherbiny et al. [4].
A single correlation equation in terms of Nusselt number, Rayleigh number, tilt angle and
aspect ratio was developed for the aspect ratio ranging from 1 to 4 and angle of inclination
ranging from 0° to 60°. They concluded that the convective heat transfer across an air
layer bounded by vee-corrugated and flat plate was greater than those for parallel flat
plates by a maximum of 40%.

Randall [5] considered a study of natural convection heat transfer in flat-plate and
vee-corrugated enclosures. The flat plate enclosure was bounded by an isothermal, cooled
surface on top and a hot surface below, while the vee-corrugated enclosure consisted of
a cooled flat surface on top and a vee-corrugated heated surface below. The effects of
Grashof number, tilt angle, and enclosure aspect ratio on both the local and average
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heat transfer coefficients were determined for the flat plate enclosure. Grashof number
range was tested from 3000 to 310000 and the aspect ratio varied between 9 and 36.
The angles of tilt of the enclosure with respect to the horizontal were 45°, 60°, 75° and
90°. Correlations were developed for both local and average Nusselt number over the
range of test variables. The effect of tilt angle was found to reduce the average heat
transfer by about 18 percent from the value at 45° to that at 90°. No significant effect of
aspect ratio over the range tested was found. Hasanuzzamana et al. [6] studied the heat
transfer behavior inside the square enclosure with vee-corrugated vertical and insulated
horizontal walls by changing the input power, varying the mass flow rate of water and the
inlet water temperature. They found that heat transfer rate increased with the decrease
of inlet water temperature. Husain and Ali [7] carried out a numerical investigation on
natural convective heat transfer and fluid flow in a square cavity with vee-corrugated
vertical surfaces. Their study covered the range of corrugation frequency from 1 to 3 and
Grashof number from 103 to 10°. The corrugation amplitude has been fixed at 5% of the
enclosure height. The vorticity stream function formulation with the control volume based
on finite element method has been used to study the effects of corrugation frequency and
Grashof number. The results showed that the overall heat transfer through the enclosure
increased with the increase in corrugation for low Grashof number; but the trend was
reversed for high Grashof number. Ali and Hasanuzzaman [8] performed an experimental
investigation on natural convection heat transfer through an air filled square enclosure of
vee-corrugated vertical plates. They studied the variation in heat transfer rate through
the square enclosure with the variation in both hot and cold plate temperatures. In their
paper, hot plate temperature was varied by heat input, while the cold plate temperature
was varied by considering two parameters. The first was the mass flow rate of water
which was used to remove heat from cold plate and the other was the inlet temperature of
water. The results showed that the increase of mass flow rate increased the heat transfer
rate and the decrease in water inlet temperature increased the heat transfer rate. Saha
et al. [9] studied the steady state natural convection heat transfer and fluid flow in a
square enclosure with vee-corrugated vertical walls using finite element method. In their
work, Grashof number was varied from 103 to 10°, corrugated frequency was varied
from 0.5 to 2.0 and Prandtl number was taken as 0.71. The results are presented in the
form of streamline and isotherm plots. They concluded that the average Nusselt number
was maximum for low corrugation frequency but the reverse trend was found for high
corrugation frequency. Saha et al. [10] studied numerically a two-dimensional, steady
and laminar viscous incompressible flow in a sinusoidal corrugated inclined enclosure.
In their analysis, two vertical sinusoidal corrugated walls were maintained at a constant
low temperature, where a constant heat flux source whose length was varied from 20 to
80% of the total length of the enclosure was discretely embedded at the bottom wall. The
penalty finite element method has been used to solve the governing Navier—Stokes and
energy conservation equations of the fluid medium in the enclosure in order to investi-
gate the effects of inclination angles and discrete heat source sizes on heat transfer for
different values of Grashof number. Results are presented in the form of streamline and
isotherm plots. It was concluded that the average Nusselt number increased as inclination
angle increased for different heat source sizes. On the other hand, natural convection
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problem in differentially heated square enclosures has been studied extensively. Sharif
and Mohammad [11] studied numerically natural convection in rectangular cavities using
a finite volume method. Their study was based on a configuration, where a constant
flux heat source was symmetrically embedded at the bottom wall. The length of the heat
source was varied from 20 to 80% of the total length of the bottom wall. The non-heated
parts of the bottom wall were considered adiabatic. The Grashof number was varied
from 103 to 106, aspect ratios ranging from 0.5 to 2 and inclination angles of the cavity
from 0° to 30°. Results are presented in the form of streamline and isotherm plots as
well as the variation of the Nusselt number and maximum temperature at the heat source
surface under different conditions. Al-Bahi et al. [12] studied numerically the effect
of inclination angle on the steady laminar free convection in a rectangular enclosure,
which was discretely heated by an isoflux flush mounted small heater. The effect of
the orientation angle on the flow structure and associated transition between unicellular
and multiple cell flow was presented. The maximum Nusselt number was found close
to the vertical orientation while the minimum was at the horizontal position with fluid
heated from the top for which convection was effectual and the average Nusselt number
was greater than unity. Saha et al. [13] studied numerically natural convection in a two-
dimensional rectangular enclosure using a finite element method. In their work, top wall
was considered adiabatic, two vertical walls were maintained at constant low temperature,
the bottom wall was maintained at constant high temperature and the non-heated parts of
the bottom wall are considered adiabatic. Grashof number was varied from 10% to 109,
aspect ratios ranging from 0.5 to 1, inclination angles of the enclosure from 0° to 30° and
Prandtl number was taken as 0.71. Results are presented in the form of streamline and
isotherm plots as well as the variation in the Nusselt number at the heat source surface
under different conditions. From the above literature review, it is noticed that there are
some restricted studies on vee-corrugated inclined enclosure. The major object of the
present work is to investigate the effect of the inclination angle on the heat transfer and
fluid flow for natural convection in a vee-corrugated inclined enclosure. The present work
develops the work of Saha et al. [9] by studying the effect of enclosure inclination angle
on the natural convection in a square inclined enclosure with vee-corrugated sidewalls
subjected to constant flux heating from below. This important modification point is not
studied in the work of Saha et al. [9].

2 Problem description and the mathematical analysis

A sketches of the two-dimensional vee-corrugated inclined square enclosure of dimen-
sions (W x W) are shown in Figs. 1 and 2 respectively. It consists of two inclined
vee-corrugated sidewalls at constant temperature 7.. The present model is based on
the geometry of work of Saha et al. [9], where a discrete heat flux strip of 24% of the
total length L is flush-mounted to the bottom wall, while the other non-heated parts
of the bottom wall and the top wall are considered adiabatic. Grashof number was
varied from 102 to 10°, corrugation frequency was varied from 0.5 to 2.0, corrugation
amplitude has been fixed at 10% of the enclosure height and the enclosure inclination
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angle @, was varied to be # = 0°, 10°, 20° and 30°. The enclosure is filled with air
(Pr = 0.71) which is considered Newtonian and incompressible while viscous dissipation
effects are considered negligible with constant properties except for the density in the
buoyancy force. The Boussinesq approximation is used to relate the variable density to
the local temperature. The flow inside the enclosure is assumed laminar and steady. The
main purpose of the present work is to study the effect of enclosure inclination angle on
the natural convection in a square enclosure with vee-corrugated sidewalls subjected to
constant flux heating from below.
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Fig. 1. Schematic diagram of the calculation domain at an inclination angle ¢ = 0°.

2.1 Governing equations

The dimensionless steady-state equations for mass, momentum and energy in the Carte-
sian coordinates (X,Y") are given as follows:
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where
T-T. T Y ulL vL
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At = ﬂ, P = pﬁ, Pr=" and @G 95 ZW
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2.2 Boundary conditions

The boundary conditions which are used in the present work can be specified as follows:

U=V =0 (all walls), g—ff =0 (top wall), 6 =0 (right and left walls),

0 for 0 < X < 0.48,
—1 for 0.48 < X <0.62, (bottom wall).
0 for 0.62 < X < 1.2

o _
oy

2.3 Local and average Nusselt numbers

The rate of heat transfer is computed at each wall and is expressed in terms of local surface
Nusselt number (Nu,) and surface-averaged Nusselt number (Nu,,,) as given by Saha et
al. [9]:

1
Nu, = , 5
U I (X) )
L/W
w 1
Nurw - f / ex(X) dX7 (6)
0

where 6x (X) is the dimensionless local temperature.

3 Solution procedure

The preferred method for the present numerical simulation is the two-dimensional finite
volume method of Patankar [14]. In this investigation, a non-uniformly collocated grid
procedure is used in primitive variables with a power-law differencing scheme for the
convection terms, whereas a central differencing is used to discretize the diffusion terms.
The steady state governing equations (1)—(4) are solved by the finite volume method
using Patankar’s algorithm (Patankar [14]). The finite volume method is a method of
discretization in space of the entire domain, which can use a mesh with finite number
of volumes (Barth and Ohlberger [15]).The enclosure is divided with non-uniform and
non-orthogonal grid on the sub-volumes. Each of control volume surrounds one nodal
point in its center called discretization point. In the numerical scheme used in the present
work, it is necessary to link the pressure and velocity so the numerical algorithm that can
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solve all variables with velocity and pressure linked equation. The solution procedure
starts with input data and initial values. Velocities, temperatures and pressures are cal-
culated by solving algebraic equations. After than the Nusselt number is calculated. If a
convergence criterion is obtained, the output file is printed. Otherwise, it goes to starting
point. Schematic of grid arrangement is given in Fig. 2 and the discretization process is
performed according to this grid arrangement. This methodology is a interactive process,
where the error or residual is compared to a reference error, also named “target error”.
In this way, flow and heat transfer simulations require the introduction of suitable flow
and heat transfer models to guarantee a satisfactory convergence. The calculation process
stops when the maximum difference between two consecutive field values of variables is
less than or equal to 1076,

Fig. 2. Schematic physical configuration and boundary conditions (left) and a typical
grid distribution (120 x 120) with non-uniform and non-orthogonal distributions (right)
for inclined vee-corrugation square enclosure at corrugation frequency CF' = 2.0.

4 Grid sensitivity test

The numerical scheme used to solve the governing equations for the present work is a
finite volume approach. It provides smooth solutions at the interior domain including the
corners. The enclosure is meshed with a non-uniform rectangular grid with a very fine
spacing near the walls. As shown in Fig. 2, the 2-D computational grids are clustered
towards the walls. The location of the nodes is calculated using a stretching function so
that the node density is higher near the walls of the enclosure. Solutions are assumed
to converge when the following convergence criterion is satisfied at every point in the
solution domain:

|(¢)new - ¢old)/¢old| < 10767 (7)

where @ represents primary variables U, V, P and 6. In order to obtain grid independent
solution, a grid refinement study is performed for Gr = 10* and 10, Pr = 0.71, CF = 0
and 2.0, and @ = 0°. In the present work, nine combinations (80 x 80, 90 x 90, 95 x 95,
100 x 100, 120 x 120, 150 x 150, 175 x 175, 200 x 200 and 225 x 225) of control volumes
are used to test the effect of grid size on the accuracy of the predicted results. Figs. 3(a)
and 3(b) show the convergence of the average Nusselt number Nu,,, at the constant
heat flux surface with grid refinement. It is observed that grid independence is achieved
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with combination of (120 x 120) control volumes, where there is insignificant change in
Nug,, with the improvement of finer grid. The agreement is found to be excellent which
validates the present computations indirectly.
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Fig. 3. Convergence of average Nusselt number along the constant heat flux middle
bottom wall with grid refinement for (a) Gr = 10%, Pr = 0.71, CF = 0 and & = 0°;
(b) Gr = 105, Pr =0.71, CF = 2.0 and & = 0°.

5 Numerical results verification

The present numerical approach is verified against the results published by Saha et al. [9]
for natural convection heat transfer in square enclosure with vee-corrugated vertical walls
(CF = 0.5) for different Grashof numbers, G as shown in Table 1 and 2 respectively.
The comparison is made using the following parameters: Pr = 0.71, Gr = 10? to 10°
and @ = 0°. The normalized length of the constant flux heat source at the bottom wall is
fixed at L/W = 0.2. Itis seen in this comparison that both average Nusselt numbers at the
heated surface and maximum surface temperature are in good agreement with a maximum
deviation of about 1.240%. This validation makes a good confidence in the present
numerical model to deal with the same square enclosure configuration problem (except the
normalized length of the constant flux heat source at the bottom wall was fixed at L/W =
0.24 instead of L/W = 0.2) but it is considered inclined with different angles of inclina-
tion (¢ = 10°, 20° and 30°) to calculate the flow and thermal fields in the present work.

Table 1. Comparison of present surface-averaged Nusselt number with those of previous
numerical study for validation at CF = 0.5, = 0°, L/W = 0.2 and Pr = 0.71.

Mean Nusselt number at the heated bottom wall

Gr Present study Saha et al. [9] Error (%)
10° 6.022212 6.012256 0.165
10* 6.053254 6.052548 0.0116
10° 7.428247 7.435621 —0.100
108 11.497665 11.57548 —0.672
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Table 2. Comparison of present maximum temperature with those of previous numerical
study for validation at CF = 0.5, ¢ = 0°, L/W = 0.2 and Pr = 0.71.

Mean Nusselt number at the heated bottom wall

Gr Present study Saha et al. [9] Error (%)
10° 0.180612 0.1805112 0.055
10* 0.180522 0.1805114 0.005
10° 0.156058 0.154205 1.201
108 0.108786 0.1074528 1.240

6 Results and discussion

The properties of the temperature and flow fields in a square inclined enclosure with
vertical vee-corrugated sidewalls and horizontal top and bottom surfaces are examined
and discussed in this section. The following ranges of the dimensionless parameters
are considered: The Prandtl number Pr = 0.71, Grashof number is varied from 103
to 108, the normalized length of the constant flux heat source at the bottom wall was
fixed at L/W = 0.24, corrugation frequency is varied from 0.5 to 2.0 and the enclosure
inclination angle is varied to 0°, 10°, 20° and 30°. Figs. 4, 5, 6 and 7 present the
isotherms and streamlines for Grashof number from 103 to 106 at different inclination
angles and various corrugation frequency using flow conditions (Pr = 0.71, L/W =
0.24) respectively. In all these figures, when the inclination angle is zero, the flow field
begins to grow along the vertical mid plane and then stops near the adiabatic top wall.
After this, the top wall causes the flow field to turn horizontally towards the isothermal
cold sidewalls and then moves downwards along the isothermal cold sidewalls and turns
back horizontally to the central region after hitting the bottom wall. Similar behaviour
is noticed in results of Saha et al. [9] which validates the present computations process.
Furthermore, the isotherm contours are also symmetrical about the vertical symmetry
axis and collects morly near the hot bottom wall, where the heat source exists. These
isotherms show that a large temperature gradient exists there. Again similar behaviour
can be noticed in work of Saha et al. [9]. When the enclosure inclination angle is zero
and the range of Grashof numbers are low (as shown in Figs. 4 and 5 respectively), the
buoyancy force effect is small, so for this case the convection heat transfer contribution
is small and the diffusion heat transfer is dominant because the generated buoyancy
force is not strong enough to initiate fluid convection. When Grashof number range
increases (as shown in Figs. 6 and 7), the buoyancy force effect becomes larger so the
vortices shape becomes irregular due to the effective fluid motion coming from the higher
temperatures near the bottom wall, where the heat source exists and as a result making a
large convection heat transfer contribution. On the other hand, in all these figures it can
be observed that the isotherm lines shape changes significantly from the uniform, almost
linear and symmetrical shape at the upper part of the enclosure (as shown in Figs. 4 and 5
respectively), to non-symmetry, uniform horizontal and linear vertical shape at the upper
part of the enclosure (as shown in Figs. 6 and 7 respectively).
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The results show also that the thermal boundary layers near the bottom wall, where
the heat source exists increase and concentrate as Grashof number increases. Now, when
the enclosure inclination angle increases to 10°, 20° and 30° and Grashof number is low
(as shown in Figs. 4 and 5 respectively), the effect of inclination angle on the streamlines
and isotherms contour is weak but when Grashof number increases (as shown in Figs. 6
and 7 respectively) the flow and thermal fields have a different nature. The reason for
this nature, is that the buoyancy force effect resulting from the heat source at the bottom
wall is small when the effect of inclination angle is small, while the effect of buoyancy
force which becomes more dominant, as the inclination angle increases causes a clear
irregularity in the vortices shape due to the flow confusion which causes a clear convection
heat transfer effect. Also, the thermal boundary layers near the bottom wall increase and
concentrate as the inclination angle and Grashof number increase. The reason for this
phenomenon is that the fluid internal motion near the hot inclined bottom wall is more
dominant than that near the cold right and left sidewalls.

14 Inclination angle = 0° 1 Inclination angle = 10°

12

4L a1l a1l (AR 4 Ll L1 a1l AR ETT]
10° 10° 10° 10° 10° 10" 10° 10°
Gr Gr

Inclination angle = 20° 1 Inclination angle = 30°

14

4 Ll Ll AR T 4 L1l Ll AT
3 4 5 6 3 4 5 6
10 10 Gr 10 10 10 10 Gr 10 10
Fig. 8. Comparison of the average Nusselt number Nuq, at the constant flux heated
bottom surface for various Grashof numbers and corrugation frequencies with different
inclination angles.
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The variation in the average Nusselt number at the bottom wall, where the heat
source exists for various Grashof numbers and corrugation frequencies with different
inclination angles is explained in Fig. 8. From this figure, it is noticed that the average
Nusselt number increases dramatically with Grashof number and inclination angles at any
particular corrugation frequencies. This is due to the increase in the intensity of convec-
tion currents which causes a clear change in the heat transfer rate especially for Grashof
number greater than 10 with different inclination angles. When Grashof number is less
than or equal to 10*, the average Nusselt number almost has a constant behaviour with the
increase in inclination angles, since the buoyancy force effect is weak, so the convection
heat transfer contribution is weak also, and the diffusion heat transfer is dominant.

The variation in the maximum dimensionless temperature at the bottom wall, where
the heat source exists for various Grashof numbers and corrugation frequencies with
different inclination angles is explained in Fig. 9.
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Fig. 9. Comparison of the maximum temperature 0,4, for various Grashof numbers
and corrugation frequencies with different inclination angles.

From this figure, it is observed that the maximum dimensionless temperature de-
creases significantly for Grashof number greater than 10* with different inclination an-
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gles. When Grashof number is less than or equal to 10%, the maximum dimensionless
temperature is almost invariant with the increase in inclination angles.

7 Conclusions

The following conclusions can be drawn from the results of the present work:

1. When the inclination angle is zero; the flow field begins to grow along the ver-
tical mid plane and then stops near the adiabatic top wall. On the other hand,
the isotherm contours are also symmetrical about the vertical symmetrical axis
and collects near the hot bottom wall, where the heat source exists and a large
temperature gradient can be observed there.

2. When the enclosure inclination angle is zero and the range of Grashof numbers is
low (102 and 10*), the buoyancy force effect is small and the convection intensity
is weak. When the Grashof number range increases (10° and 10°), the buoyancy
force effect becomes larger so the convection intensity becomes high and strong.

3. The flow field is characterized by recirculating vortices which fill most size of the
enclosure. The results show also that the thermal boundary layers near the bottom
wall increase and concentrate as Grashof number increases.

4. When the enclosure inclination angle increases as 10°, 20° and 30° respectively
and the Grashof number is low, the effect of inclination angle on the streamlines
and isotherms contours is weak. But when the Grashof number increases the flow
and thermal fields have a clear nature as the enclosure inclination angle increases.

5. When the inclination angle and Grashof number increase, the thermal boundary
layers increase and concentrate near the bottom wall, whereg the heat source exists.

6. For Grashof number greater than 10* in different inclination angles, the average
Nusselt number increases at any particular corrugation frequencies. But when
Grashof number is less than or equal to 10*, the average Nusselt number is almost
invariant with the increase in inclination angles.

7. For Grashof number greater than 10* in different inclination angles, the maximum
dimensionless temperature decreases at any particular corrugation frequencies. But
when Grashof number is less than or equal to 10%, the maximum dimensionless
temperature almost has a constant behaviour with the increase in inclination angles.
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