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Abstract. In epidemiological research literatures, a latent or incubation period can be medelled by
incorporating it as a delay effect (delayed SIR models), or by introducing an exposed class (SEIR
models). In this paper we propose a comparison of a delayed SIR model and its corresponding
SEIR model in terms of local stability. Also some numerical simulations are given to illustrate the
theoretical results.
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1 Introduction

Epidemiological models with latent or incubation period have been studied by many
authors, because many diseases, such as influenza and tuberculosis, have a latent or
incubation period, during which the individual is said to be infected but not infectious.
This period can be modeled by incorporating it as a delay effect [1], or by introducing
an exposed class [2]. Therefore, it is an important subject to compare this two types of
modeling incubation period.

In this paper, we propose the following delayed SIR epidemic model with a saturated
incidence rate as follows:

dS

dt
= A− µS(t)− βS(t)I(t)

1 + α1S(t) + α2I(t)
,

dI

dt
=

βe−µτS(t− τ)I(t− τ)

1 + α1S(t− τ) + α2I(t− τ)
− (µ+ α+ γ)I(t),

(1)

where S is the number of susceptible individuals, I is the number of infectious individu-
als,A is the recruitment rate of the population, µ is the natural death of the population, α is
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the death of infectious individuals, β is the transmission rate, α1 and α2 are the parameter
that measure the inhibitory effect, γ is the recovery rate of the infectious individuals, and
τ is the incubation period. The incidence rate

βe−µτS(t− τ)I(t− τ)

1 + α1S(t− τ) + α2I(t− τ)

appearing in second equation represents the rate at time t − τ at which susceptible in-
dividuals leave the susceptible class and enter the infectious class at time t. Therefore,
the fraction e−µτ follows from the assumption that the death of individuals is following
a linear law given by the term −µS (Note that the death rate of infective individuals is µ
and if

N(t− τ) :=
βS(t− τ)I(t− τ)

1 + α1S(t− τ) + α2I(t− τ)

is a population infective individuals at t− τ , then the number that survive from t− τ to t
is e−µτN(t− τ)).

The corresponding SEIR model of system (1) is

dS

dt
= A− µS(t)− βS(t)I(t)

1 + α1S(t) + α2I(t)
,

dE

dt
=

βS(t)I(t)

1 + α1S(t) + α2I(t)
− (σ + µ)E(t),

dI

dt
= σE(t)− (µ+ α+ γ)I(t),

(2)

where E is the number of exposed individuals, and σ is the rate at which exposed indi-
viduals become infectious. Thus 1/σ is the mean latent period.

The potential of disease spread within a population depends on the basic reproduction
number R0i, i = 1, 2, that is defined as the average number of secondary infections
produced by an infectious case in a completely susceptible population [3]. If R0i < 1,
then a few infected individuals introduced into a completely susceptible population will,
on average, fail to replace themselves, and the disease will not spread. If R0i > 1, then
the number of infected individuals will increase with each generation and the disease will
spread.

In this paper we consider a local properties of a delayed SIR model (system (1)) and
its corresponding SEIR model (system (2)). If µτ is close enough to 0, then we show
that the two above models have the same value of the reproductive number R0i. Thus
a delayed SIR model (1) and its corresponding SEIR model (2) generate identical local
asymptotic behavior.

2 Stability analysis of delayed SIR model

In this section, we discuss the local stability of a disease-free equilibrium and an endemic
equilibrium of system (1).
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System (1) always has a disease-free equilibrium P1 = (A/µ, 0). Further, if

R01 :=
Aβe−µτ

(α1A+ µ)(µ+ α+ γ)
> 1,

system (1) admits a unique endemic equilibrium P ∗
1 = (S∗, I∗), with

S∗ =
A[(µ+ α+ γ) + α2Ae

−µτ ]

(µ+ α+ γ)[α1A(R01 − 1) + µR01] + α2Ae−µτ
,

I∗ =
A(R01 − 1)e−µτ (α1A+ µ)

(µ+ α+ γ)[α1A(R01 − 1) + µR01] + α2Ae−µτ
.

Now let us start to discuss the local behavior of the equilibrium points P1 = (A/µ, 0),
and P ∗ = (S∗, I∗) of the system (1). At the equilibrium P1, characteristic equation is

(λ+ µ)

[
λ+ (µ+ α+ γ)− βAe−µτ

µ+ α1A
exp(−λτ)

]
= 0. (3)

Proposition 1. If R01 < 1, then the disease free equilibrium P1 is locally asymptotically
stable. And if R01 > 1, then the equilibrium point P1 is unstable.

Proof. For τ = 0, the equation (3) reads to

(λ+ µ)
[
λ− (µ+ α+ γ)(R01 − 1)

]
= 0. (4)

Obviously, (4) has two roots λ1 = −µ < 0, and λ2 = (µ + α + γ)(R01 − 1). Hence, if
R01 < 1, then the disease free equilibrium P1 is locally asymptotically stable for τ = 0.
By Rouché’s theorem [4, p. 248], it follows that if instability occurs for a particular value
of the delay τ, a characteristic root of (3) must intersect the imaginary axis. Suppose that
(3) has a purely imaginary root iω, with ω > 0. Then, by separating real and imaginary
parts in (3), we have 

µ+ α+ γ =
βAe−µτ

µ+ α1A
cos(ωτ),

ω = − βAe−µτ

µ+ α1A
sin(ωτ).

(5)

Hence,

ω2 = (µ+ α+ γ)(R01 − 1)

[
(µ+ α+ γ) +

βAe−µτ

µ+ α1A

]
. (6)

For R01 < 1, equation (5) has no positive solution. Thus, the disease free equilibrium P1

is locally asymptotically stable for all τ ≥ 0.
If R01 > 1, then the disease free equilibrium P1 is unstable for τ = 0. By Kuang’s

theorem [5, p. 77], it follows that P1 is unstable for all τ ≥ 0. This concludes the proof.
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Let x = S − S∗ and y = I − I∗. Then by linearizing system (1) around P ∗
1 , we have

dx

dt
=

(
− µ− βI∗(1 + α2I

∗)

(1 + α1S∗ + α2I∗)2

)
x(t)− βS∗(1 + α1S

∗)

(1 + α1S∗ + α2I∗)2
y(t),

dy

dt
=
βI∗(1 + α2I

∗)e−µτ

(1 + α1S∗ + α2I∗)2
x(t− τ) +

βS∗(1 + α1S
∗)e−µτ

(1 + α1S∗ + α2I∗)2
y(t− τ)

− (µ+ α+ γ)y(t).

(7)

The characteristic equation associated to system (7) is

λ2 + pλ+ sλ exp(−λτ) + r + q exp(−λτ) = 0, (8)

where

p = µ+ (µ+ α+ γ) +
βI∗(1 + α2I

∗)

(1 + α1S∗ + α2I∗)2
, s = −βS

∗(1 + α1S
∗)e−µτ

(1 + α1S∗ + α2I∗)2
,

r =

[
µ+

βI∗(1 + α2I
∗)

(1 + α1S∗ + α2I∗)2

]
(µ+ α+ γ), q = −µβS

∗(1 + α1S
∗)e−µτ

(1 + α1S∗ + α2I∗)2
.

The local stability of the steady state P ∗
1 is a result of the localization of the roots of the

characteristic equation (8). In order to investigate the local stability of the steady state,
we begin by considering the case without delay τ = 0. In this case the characteristic
equation (8) reads as

λ2 + (p+ s)λ+ r + q = 0, (9)

where

p+ s = µ+
(µ+ α+ γ)2(α1A+ µ)(R01 − 1)

βA[(µ+ α+ γ) + α2A]

[
α2A+ α1A(R01 − 1) + µR01

]
,

r + q =
(µ+ α+ γ)2(α1A+ µ)(R01 − 1)

βA[(µ+ α+ γ) + α2A]

×
[
α2µA+ (µ+ α+ γ)

(
α1A(R01 − 1) + µR01

)]
.

hence, according to the Hurwitz criterion, we have the following proposition.

Proposition 2. All the roots of Eq. (9) with τ = 0 have negative real parts if and only if
R01 > 1.

Now return to the study of equation (8) with τ > 0.

Theorem 1. If R01 > 1, then the steady state P ∗
1 is locally asymptotically stable for all

τ ≥ 0.

Proof. Suppose that R01 > 1. Then from Proposition 2, the characteristic equation (8)
has negative real parts for τ = 0. By Rouché’s theorem [4, p. 248], it follows that if
instability occurs for a particular value of the delay τ , a characteristic root of (8) must
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intersect the imaginary axis. If (8) has a purely imaginary root iω, with ω > 0, then, by
separating real and imaginary parts in (8), we have{

r − ω2 − sω sin(ωτ) + q cos(ωτ) = 0,

pω + sω cos(ωτ)− q sin(ωτ) = 0.
(10)

Hence,
ω4 +

(
p2 − s2 − 2r

)
ω2 + r2 − q2 = 0. (11)

From the expressions of r and q, we have r − q > 0 and from hypothesis R01 > 1, we
deduce that r2 − q2 > 0.

Evaluating p2 − s2 − 2r,

p2 − s2 − 2r

=
α2(µ+ α+ γ)2(α1A+ µ)(R01 − 1)

β[(µ+ α+ γ) + α2A]e−µτ

[
(µ+ α+ γ) +

βS∗(1 + α1S
∗)e−µτ

(1 + α1S∗ + α2I∗)2

]
+

[
µ+

βI∗(1 + α2I
∗)

(1 + α1S∗ + α2I∗)2

]2
.

Since for R01 > 1, we have p2 − s2 − 2r > 0.
Thus, equation (11) has no positive solution for R01 > 1. This concludes the proof.

3 Stability analysis of SEIR model

In this section, we discuss the local stability of a disease-free equilibrium and an endemic
equilibrium of system (2).

System (2) always has a disease-free equilibrium P2 = (A/µ, 0, 0). Further, if

R02 :=
Aβσ

(σ + µ)(µ+ α+ γ)(α1A+ µ)
> 1,

system (2) admits a unique endemic equilibrium P ∗
2 = (S∗, I∗, E∗), with

S∗ =
A[(σ + µ)(µ+ α+ γ) + α2σA]

α2σµA+ (σ + µ)(µ+ α+ γ)[(α1A+ µ)(R02 − 1) + µ]
, E=µ+ α+ γ

σ
I∗

and

I∗ =
σA(R02 − 1)(α1A+ µ)

α2σµA+ (σ + µ)(µ+ α+ γ)[(α1A+ µ)(R02 − 1) + µ]
.

Now let us start to discuss the local behavior of the system (2) of the equilibrium
points P2 = (A/µ, 0, 0), and P ∗

2 = (S∗, I∗, E∗). At the equilibrium P2, characteristic
equation is

(λ+ µ)
[
(λ+ µ+ σ)(λ+ µ+ α+ γ)− (σ + µ)(µ+ α+ γ)R02

]
= 0. (12)
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Proposition 3. If R02 < 1, then the disease free equilibrium P2 is locally asymptotically
stable. And if R02 > 1, then the equilibrium point P2 is unstable.

Let x = S−S∗, y = I − I∗ and z = E−E∗. Then by linearizing system (2) around
P ∗
2 , we have

dx

dt
=

(
−µ− βI∗(1 + α2I

∗)

(1 + α1S∗ + α2I∗)2

)
x(t)− βS∗(1 + α1S

∗)

(1 + α1S∗ + α2I∗)2
y(t),

dy

dt
=

βI∗(1 + α2I
∗)

(1 + α1S∗ + α2I∗)2
x(t) +

βS∗(1 + α1S
∗)

(1 + α1S∗ + α2I∗)2
y(t)− (σ + γ)z(t),

dz

dt
= σz(t)− (µ+ α+ σ)y(t).

(13)

The characteristic equation associated to system (13) is

λ3 + a1λ
2 + b1λ+ c1 = 0, (14)

where

a1 = µ+ (σ + µ) + (µ+ α+ γ) +
βI∗(1 + α2I

∗)

(1 + α1S∗ + α2I∗)2
> 0,

b1 =
[
(σ + µ) + (µ+ α+ γ)

][
µ+

βI∗(1 + α2I
∗)

(1 + α1S∗ + α2I∗)2

]
+ (σ + µ)(µ+ α+ γ)

− σβS∗(1 + α1S
∗)

(1 + α1S∗ + α2I∗)2
,

c1 = µ

[
(σ + µ)(µ+ α+ γ)− σβS∗(1 + α1S

∗)

(1 + α1S∗ + α2I∗)2

]
+ (σ + µ)(µ+ α+ γ)

βI∗(1 + α2I
∗)

(1 + α1S∗ + α2I∗)2
.

Hence, according to the Hurwitz criterion, we have the following proposition.

Proposition 4. The equilibrium P ∗
2 is locally asymptotically stable if R02 > 1.

Proof. For R02 > 1, we have

(σ + µ)(µ+ α+ γ)− σβS∗(1 + α1S
∗)

(1 + α1S∗ + α2I∗)2
=
α2(σ + µ)(µ+ α+ γ)I∗

1 + α1S∗ + α2I∗
> 0,

this implies that b1 > 0, c1 > 0, and

a1b1 − c1 =

(
2µ+ α+ γ +

βI∗(1 + α2I
∗)

(1 + α1S∗ + α2I∗)2

)(
2µ+ α+ γ + σ

)
×
[
µ+

βI∗(1 + α2I
∗)

(1 + α1S∗ + α2I∗)2

]
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+

[
3µ+ α+ γ + σ +

βI∗(1 + α2I
∗)

(1 + α1S∗ + α2I∗)2

]
×
[
(σ + µ)(µ+ α+ γ)− σβS∗(1 + α1S

∗)

(1 + α1S∗ + α2I∗)2

]
+

σµβS∗(1 + α1S
∗)

(1 + α1S∗ + α2I∗)2
+ (σ + µ)2

[
µ+

βI∗(1 + α2I
∗)

(1 + α1S∗ + α2I∗)2

]
> 0.

By the Routh–Hurwitz Criterion, the endemic equilibrium P ∗
2 is asymptotically stable if

R02 > 1.

4 A comparison and numerical application

From Table 1, if 1/σ = (eµτ − 1)/µ, then delayed SIR model (system (1)) and SEIR
model (system (2)) generate identical local asymptotic behavior.

Table 1. A comparison of the threshold value R0i, i = 1, 2, in delayed SIR model (1)
and SEIR model (2).

Dealyed SIR model SEIR model Error

The basic reproduction ratio R01 R02
Aβ|σ−(σ+µ)e−µτ |

(σ+µ)(µ+α+γ)(α1A+µ)

Now, let’s compare the principal results of systems (1) and (2) by a numerical illus-
tration.

Consider the following parameters:

α1 = 0.01, α2 = 0.01, A = 0.94,

β = 0.1, µ = 0.05, α = 0.5, γ = 0.5.

The following numerical simulations are given for delayed SIR model (1) and for SEIR
model (2):

Table 2. A numerical comparison of the threshold value R0i, i = 1, 2, in delayed SIR
model (1) and SEIR model (2).

τ = 1/σ 0.01 0.02 0.1 0.2 5 10 50 100

R0 (delayed SIR) 1.5063 1.5056 1.4996 1.4921 1.1737 0.9141 0.127 0.0101

R0 (SEIR) 1.5063 1.5056 1.4996 1.4922 1.2057 1.0047 0.4306 0.2511

5 Concluding remarks and future research

In this paper we consider a local properties of a delayed SIR model (system (1)) and its
corresponding SEIR model (system (2)). If µτ is close enough to 0, then we show that
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the delayed SIR (1) and SEIR (2) models have the same value of the reproductive number
R0i, i = 1, 2. Thus a delayed SIR model (1) and its corresponding SEIR model (2)
generate identical local asymptotic behavior (see Fig. 1 and Fig. 2). But, if µτ � 0, this
proprieties are not true (see Table 1 and Table 2). Furthermore if τ = 10 and σ = 0.1,
the system (1) has only a disease free equilibrium P1 (stable) and system (2) has a disease
free equilibrium P2 (unstable) and an endemic equilibrium P ∗

2 (stable).

Fig. 1. If τ = 1, then the equilibrium P ∗1 of delayed SIR model (1) is asymptotically
stable.

Fig. 2. If σ = 1, then the equilibrium P ∗2 of SEIR model (2) is asymptotically stable.
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