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Blvd. V. Parvan 4, Timişoara 300223, Timis, Romania
gabriela.mircea@feaa.uvt.ro; mihaela.neamtu@feaa.uvt.ro; opris@math.uvt.ro

Received: 28 January 2011 / Revised: 12 May 2011 / Published online: 30 May 2011

Abstract. This paper is concerned with the deterministic and the stochastic delayed Kaldor–Kalecki
nonlinear business cycle models of the income. They will take into consideration the investment
demand in the form suggested by Rodano. The existence of the Hopf bifurcation is studied and
the direction and the local stability of the Hopf bifurcation is also taken into consideration. For
the stochastic model, the dynamics of the mean values and the square mean values of the model’s
variables are set. Numerical examples are given to illustrate our theoretical results.
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1 Introduction

The model proposed by Kaldor [1] is one of earliest and simplest nonlinear models of
business cycles. This model cannot be considered as a satisfying description of actual
economies. Nevertheless, it continues to generate a considerable amount of economic,
pedagogical and methodological interest, for the researchers in applied dynamics and
economics.

Kalecki introduced the idea that there is a time delay for investment before a business
decision. Krawiek and Sydlowski [2, 3] used the Kalecki’s idea into Kaldor’s model and
considered the Kaldor–Kalecki model of business cycles.

The parameters of the real models are subject to perturbations that can be considered
as stochastic or uncertain. Starting with these considerations, the associated stochastic
model can be taken into consideration.

In the present paper, we investigate the effects of the random perturbation for the
Kaldor–Kalecki model analyzing the steady state of the model with stochastic perturba-
tion.

The analysis of this model is related to the equilibrium point. The obtained results are
connected to the stability or the existence of the limit cycle and the existence of the limit
cycle for the expected values and variances in the stochastic case.
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The reminder of the paper develops as follows. In Section 2, we describe a deter-
ministic Kaldor–Kalecki model using the investment demand proposed in [4]. We set the
conditions for the existence of the delay parameter value for which the model displays
a Hopf bifurcation. Also, the normal form is given. In Section 3, the stochastic system
is presented and the locally asymptotic stability is analyzed according to the mean of
variables and the square mean. Numerical simulations are carried out in Section 4.
Finally, concluding remarks are given in Section 5.

2 The deterministic model of a Kaldor–Kalecki business cycle with
delay

In the last decade, the study of delayed differential equations in business cycles has re-
ceived much attention. The first model of business cycles can be traced back to Kaldor [1],
who used a system of ordinary differential equations to study business cycles in 1940
by proposing nonlinear investment and saving functions so that the system may have
a cyclic behavior or limit cycles, which are important from the point of view of economics.
Kalecki introduced the idea that there is a time delay for investment before a business
decision. Krawiec and Szydlowski incorporated Kalecki’s idea into Kaldor’s model by
proposing the following Kaldor–Kalecki model of business cycles [2, 3, 5]:

Ẏ (t) = α
(
I
(
Y (t),K(t)

)
− S

(
Y (t),K(t)

))
,

K̇(t) = I
(
Y (t− τ),K(t)

)
− qK(t),

(1)

where Y is the gross product, K is the capital stock, α is the adjustment coefficient in the
goods market, q ∈ (0, 1) is the depreciation rate of capital stock, I(Y,K) and S(Y,K) are
investment and saving functions, and τ ≥ 0 is a time lag representing delay for investment
due to the past investment decision.

The discrete systems associated to the Kaldor and Kaldor–Kalecki models were ana-
lyzed in [6, 7].

Consider that past investment decisions also influence the change in the capital stock
and the model (1) is extended by imposing delays in both the gross product and capital
stock [8, 9]. Thus, by adding the same delay to the capital stock K in the investment
function I(Y,K) in the second equation of the system (1), the following Kaldor–Kalecki
model business cycles is obtained [8–10]:

Ẏ (t) = α
(
I
(
Y (t),K(t)

)
− S

(
Y (t),K(t)

))
,

K̇(t) = I
(
Y (t− τ),K(t− τ)

)
− qK(t),

(2)

As usual in a Keynesian framework, savings are assumed to be proportional to the
current level of income:

S(Y,K) = pY, (3)

where the coefficient p, p ∈ (0, 1) represents the propensity to save.
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As usual, the investment demand is assumed to be an increasing and sigmoid-shaped
function of the income. Without loss of generality, in what follows we shall consider the
form proposed in [4]:

I(Y,K) = pu+ r

(
pu

q
−K

)
+ f(Y − u), (4)

where pu
q is the “normal” level of the capital stock u.

In (4), two short-run investment components are considered: the first one is pro-
portional to the difference between normal capital stock and current stock, according to
a coefficient r(r > 0), usually explained by the presence of adjustment costs; the second
one is an increasing, but non-linear function of the difference between current income and
its normal level. Function f has the properties f(0) = 0 and f ′(0) 6= 0.

This second component of the short-run investment function is a convenient specifi-
cation of the sigmoid-shaped relationship between investment and income proposed by
Kaldor. We note that this analytic specification does not compromise the generality of the
results.

From (2) with (3) and (4) we obtain the following system:

Ẏ (t) = α

(
pu+ r

(
pu

q
−K(t)

)
+ f

(
Y (t)− u

)
− pY (t)

)
,

K̇(t) = pu+ r

(
pu

q
−K(t− τ)

)
+ f

(
Y (t− τ)− u

)
− qK(t).

(5)

The system (5) with the initial conditions:

Y (θ) = h1(θ), K(θ) = h2(θ), θ ∈ [−τ, 0]

and h1, h2 : [−τ, 0] → IR of C1-class functions, represent a system of differential
equations with delay [11].

By carrying out the translation u1(t) = Y (t) − u, u2(t) = K(t) − pu
q from (5) we

get the system:

u̇1(t) = −αpu1(t)− αru2(t) + αf
(
u1(t)

)
,

u̇2(t) = −qu2(t)− ru2(t− τ) + f
(
u1(t− τ)

)
,

u1(θ) = h1(θ)− u, u2(θ) = h2(θ)− pu

q
, θ ∈ [−τ, 0], α ∈ (0, 1).

(6)

The linearized system of (6) in (0, 0)T is given by:

ẏ1(t) = a11y1(t) + a12y2(t),

ẏ2(t) = b21y1(t− τ) + b22y2(t− τ) + a22y2(t),
(7)

where

a11 = −α(p− ρ1), a12 = αr, a22 = −q,
b21 = ρ1, b22 = −r, ρ1 = f ′(0).
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The characteristic function for (7) is given by:

f(λ, τ) = λ2 + bλ+ c+ (dλ+ g)e−λτ ,

where b = α(p− ρ1) + q, c = αq(p− ρ1), d = r, g = rα(p− 2ρ1).
The analysis of the characteristic equation f(λ, τ) = 0 with respect to parameter τ is

done using methods from [8, 12]. This analysis leads to the following proposition:

Proposition 1. (i) If τ = 0 and

ρ1 < min

{
p+

q + r

α
,
p(q + r)

q + 2r

}
then equation f(λ, 0) = 0 has roots with a negative real part.

(ii) If τ > 0, then there exists τ0 > 0 so that equation f(λ, τ) = 0 admits the roots
λ(τ0) = ±iω0, where ω0 is given by:

ω0 =

√
d2 + 2c− b2 +

√
∆

2
,

where ∆ = (α2(p− ρ1)2 − q2)2 + r4 + 6r2α2(p− ρ1)2 and

τ0 = arctan
ω0(dω2

0 − cd+ bg)

ω2
0(g − bd) + cg

.

(iii) The solution of equation f(λ, τ) = 0, denoted by λ = λ(τ), depends on τ . For
τ = τ0, λ = iω0, we have:

M : = Re

(
dλ

dτ

)
τ=τ0, λ=iω0

= Re

(
iω0(diω0 + g)

2iω0 + b+ (d− diω0τ0 − gτ0)e−ω0τ0

)
,

N : = Im

(
dλ

dτ

)
τ=τ0, λ=iω0

.

(8)

From Proposition 1, if M 6= 0 then τ = τ0 is a Hopf bifurcation.
In what follows we analyze the direction and the local stability of the Hopf bifurcation

as in [13,14]. For notational convenience, let τ = τ0 + µ, µ ∈ (−ε, ε). Then ε = 0 is the
Hopf bifurcation value of the system (6). In the study of the Hopf bifurcation problem,
first we transform the system (6) into an operator equation of the form:

u̇t = A(µ)ut +R(ut), (9)

where u = (u1, u2)T , ut = u(t+ θ), θ ∈ [−τ, 0]. The operators A andR are defined as:

A(µ)φ(θ) =

{
dφ(θ)

dθ , θ ∈ [−τ, 0),

Aφ(0) +Bφ(−τ), θ = 0,
(10)

www.mii.lt/NA



The Kaldor–Kalecki stochastic model of business cycle 195

where φ ∈ C1([−τ, 0],C2), A, B are given by:

A =

(
a11 a12

0 a22

)
, B =

(
0 0
b21 b22

)
(11)

and

R
(
φ(θ)

)
=

{
(0, 0)T , θ ∈ [−θ, 0),(
F1(µ, φ), F2(µ, φ)

)T
, θ = 0,

(12)

F1(µ, φ) = −1

2
αρ2φ

2
1(0)− 1

6
αρ3φ

3
1(0),

F2(µ, φ) = −1

2
ρ2φ

2
1(−τ)− 1

6
ρ3φ

3
1(−τ).

(13)

For ψ ∈ C1([0, τ ],C2), the adjoint operator A∗ of A is defined as:

A∗(µ)
(
ψ(s)

)
=

{
−dψ(s)

ds , s ∈ [0, τ),

AψT (0) +BψT (τ), s = τ,

For φ ∈ C1([−τ, 0),C2) and ψ ∈ C1([0, τ ],C2) define the bilinear form:

〈ψ, φ〉 = ψ̄T (0)φ(0)−
0∫

−τ1

( θ∫
0

ψ̄T (ξ − θ)Bφ(ξ) dξ

)
dθ. (14)

To determine the Poincaré normal form of the operatorA(µ), we need to calculate the
eigenvector φ of A associated with the eigenvalue λ1 = iω0 and the eigenvector ψ of A∗
associated with the eigenvalue λ2 = λ̄1.

Using (10), (11) we obtain:

Proposition 2. (i) The eigenvector φ of A associated with the eigenvalue λ1 is given by:

φ(θ) = veλ1θ, θ ∈ [−τ, 0],

where v = (v1, v2)T , v1 = a12, v2 = λ1 − a11.
(ii) The eigenvector ψ of A∗ associated with the eigenvalue λ2 = λ̄1 is given by:

ψ(s) = weλ2s, s ∈ [0, τ ],

where

w = (w1, w2)T , w1 = hη, w2 = η,

h =
b21e

λ1τ

λ2 − a11
, η =

1

(h̄− τb21)v1 + (1− τhb22)v2
.

(iii) With respect to (14) we have:〈
ψ(s), φ(θ)

〉
= 1,

〈
ψ(s), φ̄(θ)

〉
=
〈
ψ̄(s), φ(θ)

〉
= 0,

〈
ψ̄(s), φ̄(θ)

〉
= 1.
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Next, we construct the coordinates of the center of the manifold Ω0 at ε = 0, [13].
Let

z(t) = 〈ψ, ut〉, w(t, θ) = ut − 2 Re
{
z(t)φ(θ)

}
.

On the center manifold Ω0, we consider w(t, θ) = w(z(t), z̄(t), θ), where

w(z, z̄, θ) = w20(θ)
z2

2
+ w11(θ)zz̄ + w02(θ)

z̄2

2
+ · · ·

and z, z̄ are the local coordinates of the center manifold Ω0 in the direction of φ and ψ,
respectively. Notice that for µ = 0, for the solution ut ∈ Ω0 of (9), we have:

ż(t) = λ1z(t) +
〈
ψ,R

(
w(t, θ) + 2 Re

{
z(t)φ(θ)

})〉
.

We rewrite this as ż(t) = λ1z(t) + g(z, z̄) on the center manifold Ω0 in the powers
of z and z̄:

g(z, z̄) = g20
z2

2
+ g11zz̄ + g02

z̄2

2
. (15)

From (12), (13) and (15) we obtain:

Proposition 3. For the system (6) we have:

g20 = w̄1F120 + w̄2F220, g11 = w̄1F111 + w̄2F211,
(16)

g02 = w̄1F102 + w̄2F202, g21 = w̄1F121 + w̄2F221,

where

F120 = −αρ2v
2
1 , F102 = F̄120, F111 = −αρ2v

2
1 ,

F220 = ρ2v
2
1 , F202 = F̄220, F211 = ρ2v

2
1 ,

F121 = −αρ2

(
w120(0)v̄1 + 2w111(0)v1

)
− αρ3v

2
1 v̄1,

F221 = −ρ2

(
w220(−τ0)v̄1 + 2w211(−τ0)v1

)
− ρ3v

2
1 v̄1,

and
w20(θ) =

(
w120(θ), w220(θ)

)T
, w11(θ) =

(
w111(θ), w211(θ)

)T
are given by:

w20(θ) =
g20

λ1
veλ1θ − ḡ20

3λ1
v̄eλ2θ + E1e

2λ1θ,

w11(θ) =
g11

λ1
veλ1θ − ḡ11

λ1
v̄eλ2θ + E2, θ ∈ [−τ, 0),

E1 = −
(
A+ e2λ2τ0B − 2λ1I

)−1
F20, E2 = −(A+B)F11,

F20 = (F120, F220)T , F11 = (F111, F211)T .

(17)
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Let
D1 = det

(
A+ e2λ2τ0B − 2λ1I

)
, D2 = det(A+B)

and

d1
11 =

a22 − 2λ1 + b22e
2λ2τ0

D1
, d1

12 = −a12

D1
, d1

21 = −b21e
2λ2τ0

D1
, d1

22 =
a11 − 2λ1

D1
,

d2
11 =

a22 + b22

D2
, d2

12 = −a12

D2
, d2

21 = −b21

D2
, d2

22 =
a11

D2
.

From (17) we have:

E11 = (αd1
11 − d1

12)ρ2a
2
12, E12 = (αd1

21 − d1
22)ρ2a

2
12,

E21 = (αd2
11 − d2

12)ρ2a
2
12, E22 = (αd2

21 − d2
22)ρ2a

2
12,

g20 = η̄(1− αh̄)a2
12, g11 = η̄(1− αh̄)a2

12, g02 = η(1− αh)a2
12 = ḡ20,

(18)

w120(0) =
g20

λ1
a12 −

g02

3λ1
a12 + E11, w111(0) =

g11

λ1
a12 −

ḡ11

λ1
a12 + E21,

w220(−τ0) =
g20

λ1
(λ1 − a11)eλ2τ0 − ḡ20

3λ1
(λ2 − a11)eλ1τ0 + E12e

2λ2τ0 ,

w211(−τ0) =
g11

λ1
(λ1 − a11)eλ2τ0 − ḡ11

λ1
(λ2 − a11)eλ1τ0 + E22.

(19)

From (16) and (19) we obtain:

g21 = h̄η̄F121 + η̄F221, (20)

where

F121 = −αρ2a12

(
g20

λ1
a12 −

g02

3λ1
a12 + 2

g11

λ1
a12 − 2

ḡ11

λ1
a12 + E11 + 2E21

)
− αρ3a

3
12,

F221 = −ρ2a12

(
g20

λ1
(λ1 − a11)eλ2τ0 − ḡ20

3λ1
(λ2 − a11)eλ1τ0

+ 2
g11

λ1
(λ1 − a11)eλ2τ0 − 2

ḡ11

λ1
(λ2 − a11)eλ1τ0

+ 2E22 + E12e
2λ2τ0

)
− ρ3a

3
12.

(21)

Therefore, we can compute the following parameters:

C(0) =
i

2ω0

(
g20g11 − 2|g11|2 −

1

3
|g02|2

)
+
g21

2
,

µ2 = −Re(C(0))

M
, β2 = 2 Re(C(0)), T0 = − Im(C(0)) + µ2N

ω0
,

(22)

where M and N are given by (8).
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In the formulas (22), µ2 determines the direction of the Hopf bifurcation; β2 deter-
mines the stability of the bifurcation periodic solutions; T0 determines the period of the
bifurcating periodic solution.

Proposition 4. (See [12, 13].) (i) If µ2 > 0 (< 0) the Hopf bifurcation is supercritical
(subcritical) and the bifurcating periodic solution exists for τ > τ0 (< τ0).

(ii) If β0 < 0 (> 0) the solutions are orbitally stable (unstable).
(iii) If T0 > 0 (< 0) the period increases (decreases).

The solution of the system (5) is:

Y (t) = u+ v1z(t) + v1z(t) + w120(0)
z(t)2

2
+ w111(0)z(t)z(t) + w120(0)

z(t)2

2
,

K(t) =
pu

q
+ v2z(t) + v2z(t) + w220(0)

z(t)2

2
+ w211(0)z(t)z(t) + w220(0)

z(t)2

2
,

where z(t) is the solution of the equation:

ż(t) = iω0z(t) + g20
z(t)2

2
+ g11z(t)z(t) + g02

z(t)2

2
.

3 The analysis of the stochastic Kaldor–Kalecki model associated
to (5)

For the dynamical system (5), we are interested in finding the effect of the noise pertur-
bation on the equilibrium point (Y0 = u, K0 = pu

q ). Let the perturbed stochastic model
of (5) given by a system of stochastic differential equations with delay:

dY (t) = α

(
pu+ r

(
pu

q
−K(t)

)
+ f

(
Y (t)− u

)
− pY (t)

)
dt

− σ1

(
Y (t)− u

)
dw(t),

dK(t) =

(
pu+ r

(
pu

q
−K(t− τ)

)
+ f

(
Y (t− τ)− u

)
− qK(t− τ)) dt

− σ2

(
K(t)− pu

q

)
dw(t),

(23)

where σ1 > 0, σ2 > 0.
The solution of (23) is a stochastic process denoted by Y (t) = Y (t, ω), K(t) =

K(t, ω), ω ∈ Ω. From the Chebyshev inequality the possible rang of Y , K at a time t
is “almost” determined by its mean and variance at time t. So, the first and the second
moments are important for investigating the solution’s behavior.

Consider the stochastic system given by (23). Linearizing (23) around the equilibrium
(u, pu/q) yields the linear stochastic differential delay equation:

dy(t) =
(
A2y(t) +B2y(t− τ)

)
dt− Cy(t) dw(t), (24)
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where y(t) = (y1(t), y2(t))T and

A2 =

(
h11 h12

0 h22

)
, B2 =

(
0 0
k21 k22

)
, C =

(
σ1 0
0 σ2

)
.

h11 = α(ρ1 − p), h12 = −αr, h22 = −q, k21 = ρ1, k22 = −r.

Let y(t) be the fundamental solution of the system:

ẏ(t) = A2y(t) +B2y(t− τ).

The solution of (23) is a stochastic precess given by:

y(t,Φ) = yΦ(t) −
t∫

0

Y (t− s)Cy(t− τ,Φ) dw(s),

where yΦ(t) is the solution given by:

yΦ(t) = Y (t)Φ(0) +

0∫
−τ

Y (t− τ − s)Φ(s) ds

and Φ : [−τ, 0]→ IR2 is the family of continuous functions.
The existence and uniqueness theorem for the stochastic differential delay equation

has been established in [15].
The solution y(t,Φ) is a stochastic process with the distribution at any time t, deter-

mined by the initial function Φ(θ). From the Chebyshev inequality, the possible range
of y, at the time t is “almost” determined by its mean and variance at the time t. Thus,
the first and second moments of the solutions are important for the investigation of the
solutions’ behavior.

We have used E to denote the mathematical expectation and we denote y(t,Φ) by
y(t). From (24), we obtain:

Proposition 5. (i) The moments of the solution for the system (24) are given by:

Ė
(
y(t)

)
= A2E

(
y(t)

)
+B2E

(
y(t− τ)

)
, (25)

where E(y(t)) = (E(y1(t)), E(y2(t)))T .
(ii) The characteristic equation of the system (25) is given by:

λ2 +
(
α(p− ρ1) + q

)
λ+ αq(p− ρ1) +

(
rλ− α(p− ρ1) + αrρ1

)
e−λτ = 0. (26)

(iii) If τ = 0, the roots of the equation (26) have a negative real part if and only if ρ1

satisfies the relation:
p(1− q)

2− q
< ρ1 <

αp+ q + r

α
.
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(iv) If τ 6= 0 and ∆2 = (a2
2 − 2b2 − c2)2 − 4(b22 − d2

2) > 0, b22 − d2
2 > 0, where

a2 = α(p− ρ1) + q, b2 = αq(p− ρ1), c2 = r, d2 = αrρ1 − α(p− ρ1),

then there exists ω0 and τ0 so that λ0 = ±iω0, τ = τ0 is a solution of the equation (26);
ω0 is a positive solution of the following equation:

ω4 +
(
a2

2 − 2b2 − c2
)
ω2 + b22 − d2

2 = 0

and

τ0 =
1

ω0
arctan

ω0a2d2 + ω0c2(ω2
0 − b2)

d2(ω2
2 − b2)− ω2

0c2a2
. (27)

From (27) we have λ = λ(τ) and Reλ(τ0) = 0 and dλ(τ)
dτ |τ=τ0,λ=iω0 6= 0.

Thus, τ0 is a Hopf bifurcation. The solutions of the system (25) on the center manifold
are given by:

E(t) = z(t)Φ(0) + z̄(t)Φ̄(0),

where
Φ(0) = (h12, λ0 − h11)T , λ0 = iω0,

and
ż(t) = λ0z(t), z(t) = x(t) + iy(t).

For τ ∈ [0, τ0) the mean values of the variables for the system (24) are asymptotically
stable; for τ > τ0, they are unstable and while for τ = τ0 they are periodical.

To examine the stability of the second moments of y(t) for the linear stochastic
differential delay equation (24) we use the Itô rule. We have:

d

dt
E
(
y(t)yT (t)

)
= E

(
dy(t)yT (t) + y(t) dyT (t) + Cy(t)yT (t)C

)
= E

(
A2y(t)yT (t) + y(t)yT (t)A2 +B2y(t− τ)yT (t)

+ y(t)yT (t− τ)BT2 + Cy(t)yT (t)C
)
. (28)

Let R(t, s) = E(y(t)yT (s)) be the covariance matrix of the process y(t) so that
R(t, t) satisfies:

Ṙ(t, t) = A2R(t, t) +R(t, t)AT2 +B2R(t− τ, t)
+R(t, t− τ)BT2 + CR(t, t)C. (29)

From (29), R(t, s) = (Rij(t, s))i,j=1,2 and Rij(t, s) = E(yi(t)yj(s)) we obtain:

Proposition 6. (i) The differential system (29) is given by:

Ṙ11(t, t) =
(
2h11 + σ2

1

)
R11(t, t) + 2h12R12(t, t− τ),

Ṙ22(t, t) = σ2
2R22(t, t) + k22R22(t, t− τ) + k21R12(t, t− τ),

Ṙ12(t, t) = (h12 + h22 + σ1σ2)R12(t, t) + k21R11(t, t− τ) + k22R12(t, t− τ).

(30)
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(ii) The characteristic function of (30) is given by:

f2(λ, τ) =
(
2λ− σ2

2 + re−λτ
)(

4λ2 − 2
(
σ2

1 + σ1σ2 + 2α(ρ1 − p)− αr
)
λ

+ 2α(ρ1 − p)(σ1σ2 − αr − r) + 2αrρ1e
−λτ). (31)

For the proof of Proposition 6(ii), consider Rij(t, s) = eλ(t+s)Kij , i = 1, 2, where
Kij are constants. Replacing Rij(t, s) in (30) and setting the condition that the resulting
system we should accept nontrivial solution, we obtain f2(λ, τ) = 0.

The analysis of the second moments is done studying the roots of the characteristic
equation f2(λ, τ) = 0.

From (31) we have:

Proposition 7. (i) If τ = 0, the roots of the characteristic equation f2(λ, τ) = 0 have
negative real parts if and only if

σ2
2 < r, H1 < σ1 < H2, (32)

where

H1 =
−σ2−

√
σ2

2−4αr−8α(ρ1−p)
2

, H2 =
−σ2+

√
σ2

2 +4αr−8α(ρ1−p)
2

.

(ii) If τ 6= 0, σ2
2 < r then for τ ∈ (0, τ1) the roots of the equation 2λ−σ2

2 +re−λτ = 0
have negative real parts, where

τ1 =
1

ω1
arctan

2ω1

σ2
2

, ω1 =

√
r2 − σ4

2

2
.

(iii) If τ 6= 0 and the relations (32) hold, then for τ ∈ (0, τ2) the roots of the equation:

2λ2 + a1λ+ b1 + c1e
−λτ = 0,

where

a1 = −
(
σ2

1 + σ1σ2 + 2α(ρ1 − p)− αr
)
,

b1 = α(ρ1 − p)(σ1σ2 − αr − r), c1 = αrρ1

have negative real parts, where

τ2 =
1

ω2
arctan

a1ω2

2ω2
2 − b1

, ω2 =

√
4b21 − a2

1 +
√

(a2
1 − 4b21)2 + 16c21

4
.

Because the solution of the equation f2(λ, τ) = 0 is λ = λ(τ) from (31) we have:

Reλ(τi) = Re

(
dλ(τ)

dτ

)∣∣∣∣
τ=τi, λ=iωi

6= 0, i = 1, 2.

Thus, τ = τi, i = 1, 2 is a Hopf bifurcation.
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Let τ3 = min{τ1, τ2}. The square mean values are asymptotically stable if τ ∈
(0, τ3). For τ = τ3 the system (28) has a limit cycle. The solutions of the system (30) on
the center manifold are given by:

R(t) = z(t)φ(0) + z̄(t)φ̄(0),

where

φ(0) =

 2h12(2λ3 − k22e
−λ3τ3)

k21(2λ3 − 2h11 − σ2
1)e−λ2τ3

(2λ3 − 2h11 − σ2
1)(2λ3 − k32e

−λ3τ3)

 , λ3 = iω3,

and
ż(t) = λ3z(t), z(t) = x(t) + iy(t).

Let τ4 = min{τ0, τ3}, where τ0 is given by (27). From Proposition 4 and Proposi-
tion 7 we find that for τ ∈ [0, τ4) the mean values and the square mean values of the
variables are locally asymptotically stable.

4 Numerical simulations

The numerical simulation was made using a program in Maple 12.
In our numerical simulations we examine the Kaldor–Kalecki uncertainty and stochas-

tic models.
For the uncertainty model we consider: f(x) = 0.06x − 0.2x2 + 0.05x3, p = 0.3,

r = 1, q = 0.2, u = 3, α = 0.8, c1 = 0.2, c2 = 0.8, a = 0.2. The equilibrium point is
(Y0 = 3, K0 = 4.5) and it is asymptotically stable for τ = 0 and ω0 = 0.933, τ0 = 1.19,
µ2 = −0.037, β2 = 0.051, T0 = −0.010. The orbits (t, Y (t)), (t,K(t)), (Y (t),K(t))
are given by:

Fig. 1. (t, Y (t)). Fig. 2. (t,K(t)). Fig. 3. (Y (t),K(t)).

For the stochastic case we consider f(x) = 0.4/(1+exp(−4x))−0.5, p = 0.3, r = 1,
q = 0.2, u = 3, α = 0.8, σ2 = 0.4, σ1 = 0.7. The roots of the characteristic equation of
the square mean value have negative real parts if τ = 0. In this case τ1 = 3.18, τ2 = 5.09.
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If τ ∈ (0, τ1) the square mean values are asymptotically stable. For τ = τ1 we obtain the
orbits (t, R11(t, t)), (t, R22(t, t)), (t, R12(t, t)) given in Fig. 4, Fig. 5 and Fig. 6:

Fig. 4. (t, R11(t, t)). Fig. 5. (t, R22(t, t)). Fig. 6. (t, R12(t, t)).

For τ0 = 4.58, in Fig. 7 and Fig. 8 are displayed the orbits of the mean values.

Fig. 7. (t, E11(t, t)). Fig. 8. (t, E22(t, t)).

For τ ∈ (0, 3.18) the square mean values and the mean values are asymptotically
stable.

The numerical simulations verify the theoretical results. Also, we can consider the
functions f(x) = 0.02 sinx, f(x) = 0.2 arctan(x).

5 Conclusions

The analysis of a Kaldor–Kalecki business cycle model in this paper allowed us to ob-
tain some new dynamic scenarios which may be interesting for researchers in applied
dynamics and economics.

The paper has analyzed the Kaldor–Kalecki model and the equilibrium point of the
model with stochastic perturbation.
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We have determined the values of the delay for which the Kaldor–Kalecki system is
asymptotically stable and for which the system displays a limit cycle. The direction and
stability of the bifurcating periodic solutions are determined.

For the stochastic model, we have analyzed the square mean and the variance of the
model’s variables.

We have determined the values of τ for which the square mean values and the vari-
ances are stable.

As in [16] the hybrid Kaldor–Kalecki model will be taken into consideration in our
next paper.
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7. L. Dobrescu, D. Opriş, Neimark–Sacker bifurcation for the discrete-delay Kaldor model, Chaos
Solitons Fractals, 40(5), pp. 2462–2468, 2009.

8. A. Kaddar, H. Talibi Aluoui, Hopf bifurcation analysis in a delayed Kaldor–Kalecki model of
business cycle, Nonlinear Anal. Model. Control, 13(4), pp. 439–449, 2008.

9. P.X. Wu, Simple zero and double zero singularities of a Kaldor–Kalecki model of business
cycles with delay, Discrete dynamics in Nature and Society, 2009, doi:10.1155/2009/923809,
pp. 1–29, 2009.

www.mii.lt/NA



The Kaldor–Kalecki stochastic model of business cycle 205

10. L. Wang, X.P. Wu, Bifurcation analysis of a Kaldor–Kalecki model of business cycle with time
delay, Electron. J. Qual. Theory Differ. Equ., Spec. Ed. I(27), pp. 1–20, 2009.

11. J.K. Hale, S.M. Verduyn Lunel, Introduction Differential Equations, Springer-Verlag, Berlin,
1995.

12. B.D. Hassard, N.D. Kazarinoff, Y.H.Wan, Theory and Applications of Hopf Bifurcation,
Cambridge Univ. Press, Cambridge, 1981.

13. Y.A. Kutznetsov, Elements of Applied Bifurcation Theory, Springer-Verlag, 1995.
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