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Abstract. Formal graphical procedures to calculate function’s derivative are proposed. This can be
applied to calculate expressions of geometric objects, construct approximate schemes in numerical
analysis of solution of differential equation.
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1 Introduction

Finding derivatives of functions becomes a fatal obstacle in more complex analysis. Par-
tial derivatives of a function over Euclidean space were used in Riemann’s geometry from
the 19th century [1]. There was an attempt to escape such cumbersome expressions with
the help of notions from algebraic geometry [2]. We can call such method as an algebraic
specification of geometric objects. It has its own difficulties. V. Arnold freely applied
such abstract notions in the analysis of infinite dimensional spaces and described the
flow of an ideal fluid governed by Euler equations as geodesic in the group of diffeo-
morphisms [3]. To calculate concrete derivatives for a detailed study we need an easy
notation of derivatives. Everyone who tryed to define concrete topologies in some infinite
dimensional spaces will agree with this. Specialists of algebraic geometry like S. Lang
knew the shortages of algebraic specifications and suggested the derivative’s notion for
a function over a Banach space [4]. These new derivatives needed a new more precise
marking. That is obvious for derivatives of higher order. I started to mark derivatives by
graphs, and applied this to calculate derivatives for the Runge–Kutta algorithm [5]. Later
I applied the graphs of derivatives to describe asymptotic expansions in the Banach alge-
bra of probabilities on a lattice [6]. In this work we present an overview of methods to
mark derivatives, define more explicitly the natural ordering of graphs. Graph construc-
tions for other new geometric or asymptotic problems remain to be found.
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2 Virtual derivative

Every mapping can be pictured as an arrow:
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1. Introduction. Finding derivatives of functions becomes a fatal obstacle in
more complex analysis. Partial derivatives of a function over Euclidean space were
used in Riemann’s geometry from the 19-th century [1]. There was an attempt
to escape such cumbersome expressions with the help of notions from algebraic
geometry [2]. We can call such method as an algebraic specification of geometric
objects. It has its own difficulties. V. Arnold freely applied such abstract notions
in the analysis of infinite dimensional spaces and described the flow of an ideal
fluid governed by Euler equations as geodesic in the group of diffeomorphisms [3].
To calculate concrete derivatives for a detailed study we need an easy notation
of derivatives. Everyone who tryed to define concrete topologies in some infinite
dimensional spaces will agree with this. Specialists of algebraic geometry like S.
Lang knew the shortages of algebraic specifications and suggested the derivative’s
notion for a function over a Banach space [4]. These new derivatives needed a new
more precise marking. That is obvious for derivatives of higher order. I started
to mark derivatives by graphs, and applied this to calculate derivatives for the
Runge Kutta algorithm [5]. Later I applied the graphs of derivatives to describe
asymptotic expansions in the Banach algebra of probabilities on a lattice [6]. In this
work we present an overview of methods to mark derivatives, define more explicitly
the natural ordering of graphs. Graph constructions for other new geometric or
asymptotic problems remain to be found.

2. Virtual derivative. Every mapping can be pictured as an arrow:

•
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The target of the arrows will be upper directed, therefore we shall use the arrows
without heads.

A mapping of several arguments will be pictured by means of the corresponding
number of arrows having the common vertex:

•
a

•
b

•
c
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1
We choose an order of arguments pictured in the graph, i.e. we know which

argument is the first, second, and so on. The composition of mappings will be pictured as
a graph with wedges corresponding to the mappings under consideration. We get a tree
with the top point marking the target space, and the roots marking the arguments in the
source spaces. Every root will be called an entrance of the graph. The top vertices would
be an outlet of the graph. The youngest mappings start with entrances, and the eldest
mapping ends with the top vertex of the tree. We pretend a composition of mappings to
call as a joint mapping.

If each mapping with n arguments is written as 〈x1, x2, . . . , xn〉 ◦ f , then the tree
of joint mapping can be written as

〈
〈x1, . . . , xn1〉 ◦ f1, 〈x(n1+1), . . . , x(n1+n2)〉 ◦ f2, . . . ,
〈xn(k−1)+1, . . . , xn(k−1)+nk〉 ◦ fk

〉
◦ f.

The arguments of a derivative will be understood as increments 4x for argument x of
taken function.

The function’s n-order derivative is defined as symmetric n-linear form. Therefore
it coincides with a symmetric polynome

〈41,42, . . . ,4n〉 ◦ f (n) =
1

n!

∑

σ∈n!
〈4σ(1),4σ(2), . . . ,4σ(n)〉 ◦ f (n).

Each term of this sum will be called a concrete derivative graph. The virtual graph is
understood as a class of similar concrete derivative graphs. The symmetry number S of a
virtual graph helps to calculate the number of similar members in such class. This number
we shall call a weight of virtual graph.

We identify the function’s nth order derivative with the collection of all virtual
graphs with n entrances. The virtual graph denotes the whole class of similar concrete
derivative graphs.
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At the beginning we picture virtual graphs of the simple mapping for the first three
derivatives

We choose an order of arguments pictured in the graph, i. e. we know which
argument is the first, second, and so on. The composition of mappings will be pic-
tured as a graph with wedges corresponding to the mappings under consideration.
We get a tree with the top point marking the target space, and the roots marking
the arguments in the source spaces. Every root will be called an entrance of the
graph. The top vertice would be an outlet of the graph. The youngest mappings
start with entrances, and the eldest mapping ends with the top vertex of the tree.
We pretend a composition of mappings to call as a joint mapping.

If each mapping with n arguments is written as 〈x1, x2, . . . , xn〉◦f , then the tree
of joint mapping can be writen as

〈〈x1, . . . , xn1〉◦f1, 〈x(n1+1), . . . , x(n1+n2)〉◦f2, . . . , 〈xn(k−1)+1, . . . , xn(k−1)+nk〉◦fk > ◦f .

The arguments of a derivative will be understood as increments 4x for argument
x of taken function.

The function’s n-order derivative is defined as symmetric n-linear form. There-
fore it coincides with a symmetric polynome

〈41,42, . . . ,4n〉 ◦ f (n) =
1

n!

∑

σ∈n!

〈4σ(1),4σ(2), . . . ,4σ(n)〉 ◦ f (n) .

Each term of this sum will be called a concrete derivative graph. The virtual graph is
understood as a class of similar concrete derivative graphs. The symmetry number
S of a virtual graph helps to calculate the number of similar members in such class.
This number we shall call a weihgt of virtual graph.

We identify the function’s n-th order derivative with the collection of all virtual
graphs with n entrances. The virtual graph denotes the whole class of similar
concrete derivative graphs.

At the beginning we picture virtual graphs of the simple mapping for the first
three derivatives

•
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0! = 1 1! = 1 2! = 2 3! = 6

Usually we don’t picture the virtual graphs, it is enough that we can pick a
needed virtual graph and calculate its weight number. The drawing of a virtual
graph and the calculation of its weight number can be easily done automatically
using a computer.

For the derivative of the simple mapping all members are similar, and we get
the virtual graph identic with concrete derivative graph, only without ordering of
argument increments

1 =
n!

S
.

We shall choose a concrete derivative graph with increasing order

〈41,42, . . . ,4n〉

2

Usually we don’t picture the virtual graphs, it is enough that we can pick a needed
virtual graph and calculate its weight number. The drawing of a virtual graph and the
calculation of its weight number can be easily done automatically using a computer.

For the derivative of the simple mapping all members are similar, and we get the
virtual graph identic with concrete derivative graph, only without ordering of argument
increments

1 =
n!

S
.

We shall choose a concrete derivative graph with increasing order

〈41,42, . . . ,4n〉

as representing for the virtual graph.
The derivative of some joint mapping is found by changing the wedges of the

mapping tree by the virtual graphs of derivatives for each composed simple function.
Such changing must be correct: each increment of any vertex must produce increment
of elder vertexes, and is produced by increment of some argument. At this moment such
formulation will be sufficient for the drawing of virtual graphs.

The number of similar members for each virtual graph is calculated as a fraction
over graph’s symmetry number

n!

S
.

Each vertex ` has a symmetry number S` coinciding with the factorial of the degree of
the taken vertex

S` = |`|!.
The symmetry number of the whole graph is calculated as a product of its vertices sym-
metry numbers

S =
∏

S`.

We shall say that a virtual graph is totally asymmetric if the only identical replacement
Id ∈ n! doesn’t change the representing concrete derivative graph. Each replacement
σ ∈ n! will provide a different similar member, therefore the weight number for totally
asymmetric virtual graph will be n!. It is hard imagine such possibility as interesting, but
it will be usual for more complex cases of derivative calculation.

We shall say that a virtual graph is totally symmetric, if every replacement σ ∈ n!
provides the same representing concrete derivative graph. In such case all similar mem-
bers coincide, and we shall have the unitary weight 1 for totally symmetric virtual graph.
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We remark that for the linear function of two arguments F (y, z) = y+z, the deriva-
tives for composition F (f(x), g(x)) will be calculated with usual binomial coefficients

Dn =
∑

0≤k≤n

n!

k!(n− k)!f
(k)g(n−k).

The virtual graph for such function must be drawn with coloured entrances and its weight
coincides with binomial coefficient. We can draw the virtual graph for the derivative of
order n = 5 with k = 2 black entrances corresponding the increment of argument f and
n− k = 3 white entrances corresponding the increment of argument g:

as representing for the virtual graph.
The derivative of some joint mapping is found by changing the wedges of the

maping tree by the virtual graphs of derivatives for each composed simple function.
Such changing must be correct: each increment of any vertex must produce incre-
ment of elder vertexes, and is produced by increment of some argument. At this
nmoment such formulation will be sufficient for the drawing of virtual graphs.

The number of similar members for each virtual graph is calculated as a fraction
over graph’s symmetry number

n!

S
.

Each vertex ` has a symmetry number S` coinciding with the factorial of the degree
of the taken vertex

S` = |`|! .
The symmetry number of the whole graph is calculated as a product of its vertices
symmetry numbers

S =
∏

S` .

We shall say that a virtual graph is totally assymetric if the only identical replace-
ment Id ∈ n! doesn’t change it. Each replacement σ ∈ n! would provide a similar
member, therefore the weight number would be n!. It is hard imagine such pos-
sibility as interesting, but it will be usual for more complex cases of derivative
calculation.

If the virtual graph is totally symmetric, then every replacement σ ∈ n! will
provide the same virtual graph, therefore all similar members coincide, and we
shall have the unitary weight 1.

We remark that for the linear function of two arguments F (y, z) = y + z, the
derivatives for composition F (f(x), g(x)) will be calculated with usual binomial
coeficients

Dn =
∑

0≤k≤n

n!

k!(n− k)!
f (k)g(n−k) .

The virtual graph for such function must be drawn whith coloured entrances and
its weight coincides with binomial coeficient. We can draw the virtual graph for the
derivative of order n = 5 with k = 2 black entrances coresponding the increment of
argument f and n−k = 3 white entrances corresponding the increment of argument
g:

• • ◦ ◦ ◦

∗xxxxxxxxxxx
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S = 2! · 3!

Proposition 1. The n-th order derivative of a joint function can be found using
the collection of n-degree virtual graphs. Their weights are equal to the cardinality
of the whole symmetry group n! divided by the symmetry number S of each virtual
graph.

3

Proposition 1. The nth order derivative of a joint function can be found using the col-
lection of n-degree virtual graphs. Their weights are equal to the cardinality of the whole
symmetry group n! divided by the symmetry number S of each virtual graph.

Proof. We must check that our procedure of virtual graph drawing provides all needed
concrete derivative graphs in the derivative calculation, and only such graphs. It is enough
to check that we can get all concrete derivative graphs, and then apply calculation of
similar concrete derivative graphs.

We apply the induction on the order n of a joint function derivative. For the zero
order derivative the proposition is trivial. We shall check the case n = 1. Calculating
the first derivative, all simple functions will be replaced by derivatives of first order. One
must be sure that we have got all concrete derivative graph, and every concrete derivative
graph is provided by such procedure.

The induction step from n to n+1: Taking the derivative of any member presented
by some concrete derivative graph, we differentiate some vertex, and get additional en-
trance of the concrete derivative graph of next degree (n + 1). Also we must check that
all concrete derivative graph of degree (n+1) can be obtained in such manner from some
concrete derivative graph of degree n. It is done by distraction anyone entrance from the
taken concrete derivative graph.

3 Ordering of virtual graphs

For easy virtual graphs recognition we need to choose simple ordering for all n-degree
virtual graphs. If this ordering will be useful for a wide class of users, it may become
standard. We prefer to order all virtual graphs, and secondly we induce this order to the
set of virtual graphs of given degree n. It will be called a natural order. It is hard to
imagine how somebody could choose the best ordering only in the set of n-degree graphs.

We order the virtual derivative graphs lexicographically. At first we order the virtual
derivative of the eldest function. If we have some of the eldest functions, then we choose
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the order between them. In such case we shall say that the top vertex is ordered by the
colour. Each colour corresponds to some sort of the eldest functions.

Then we order the vertices of one colour by the degree of this vertex. We begin
from the vertex of 0-degree, and then go to the higher degree. If the degree is higher than
1, then we order at first the vertex from the left argument, and after we go to the next
argument to the right.

The ordering of new vertices is the same: the colour, degree, the younger vertex first
from the left, and so on. Therefore virtual graph will be represented by concrete graphs
having at left the younger graphs with first colour and smaller degree.

4 The problems for the future

In geometrical calculations local coordinate change provides coordinate change for vari-
ous geometric objects. Such new change is calculated as derivatives of joint function. The
possible equality of joint functions compels us to construct some virtual graphs. In such a
way we obtain new weights. They are obtained from earlier weights with some concrete
addition operator. The earlier weights can be called as binomial and they present a free
object for the derivative calculation task. The question remains open, for what derivative
calculations such free object exists.

We shall give two examples of another free derivative calculation. The first one
provides the derivatives of inverse function g = f−. Let these functions operate over the
points x ∈ X and y ∈ Y

y = f(x), x = g(y).

Then the derivatives of inverse function is calculated

Dg(y) =
(
Df
(
g(y)

))−
,

D2g(y) =−
〈
Dg(y),Dg(y)

〉
•D2f

(
g(y)

)
•Dg(y),

D3g(y) = + 3
〈
Dg(y),

〈
Dg(y),Dg(y)

〉
•D2f(g(y)) •Dg(y)

〉
•D2f

(
g(y)

)
•Dg(y)

−
〈
Dg(y),Dg(y),Dg(y)

〉
•D3f

(
g(y)

)
•Dg(y).

The virtual derivative graphs are produced from the initial graph having only one vertex
and one wedge for the identic composition 1 = f ◦ g.

Then the derivatives of inverse function is calculated

Dg(y) = (Df(g(y))− ,

D2g(y) = −〈Dg(y), Dg(y)〉 •D2f(g(y)) •Dg(y) ,

D3g(y) = +3〈Dg(y), 〈Dg(y), Dg(y)〉 •D2f(g(y)) •Dg(y)〉 •D2f(g(y)) •Dg(y)

− < Dg(y), Dg(y), Dg(y) > •D3f(g(y)) •Dg(y) .

The virtual derivative graphs are produced from the initial graph having only one
vertex and one wedge for the identic composition 1 = f ◦ g.

•ÀÀ

The virtual derivative graphs are drown without first order derivatives, but these
derivatives must be written in final expression. The sign and weight of virtual
derivative graph are immediately appointed in the same manner as in the previous
case, cl. Valiukevičius [5], table V. We shall draw only virtual derivative graphs
having degree n = 3. Under the graphs we shall write the graph’s signed symmetry
number. The first virtual graph will have a weight number +3 and second virtual
graph will have a negative unitary numbe −1. A reader can verify that such weights
are needed for the corresponding members in the derivative formula.

•

• •

•̧
¸¸¸¸¸¸

+++++++

•¦¦¦¦¦
99999

• • •

•®®®®®®®®

ÃÃÃÃÃÃÃ

55555555

+2! −3!

The second example provides the derivatives of a solution of a differential equa-
tion

y′ = f(y) .

The following derivatives are obtained

y(2) = f(y) •Df(y) ,

y(3) = f(y) •Df(y) •Df(y) + 〈f(y), f(y)〉 •D2f(y) ,

y(4) = f(y) •Df(y) •Df(y) •Df(y)

+〈f(y), f(y)〉 •D2f(y) •Df(y)

+3〈f(y) •Df(y), f(y)〉 •D2f(y)

+〈f(y), f(y), f(y)〉 •D3f(y) .

5

The virtual derivative graphs are drown without first order derivatives, but these
derivatives must be written in final expression. The sign and weight of virtual derivative
graph are immediately appointed in the same manner as in the previous case, cf. Va-
liukevičius [5, Table V]. We shall draw only virtual derivative graphs having degree
n = 3. Under the graphs we shall write the graph’s signed symmetry number. The first
virtual graph will have a weight number +3 and second virtual graph will have a negative
unitary number −1. A reader can verify that such weights are good for the corresponding
members in the derivative formula.
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Then the derivatives of inverse function is calculated
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The virtual derivative graphs are produced from the initial graph having only one
vertex and one wedge for the identic composition 1 = f ◦ g.

•ÀÀ

The virtual derivative graphs are drown without first order derivatives, but these
derivatives must be written in final expression. The sign and weight of virtual
derivative graph are immediately appointed in the same manner as in the previous
case, cl. Valiukevičius [5], table V. We shall draw only virtual derivative graphs
having degree n = 3. Under the graphs we shall write the graph’s signed symmetry
number. The first virtual graph will have a weight number +3 and second virtual
graph will have a negative unitary numbe −1. A reader can verify that such weights
are needed for the corresponding members in the derivative formula.

•
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+2! −3!

The second example provides the derivatives of a solution of a differential equa-
tion

y′ = f(y) .

The following derivatives are obtained

y(2) = f(y) •Df(y) ,

y(3) = f(y) •Df(y) •Df(y) + 〈f(y), f(y)〉 •D2f(y) ,

y(4) = f(y) •Df(y) •Df(y) •Df(y)

+〈f(y), f(y)〉 •D2f(y) •Df(y)

+3〈f(y) •Df(y), f(y)〉 •D2f(y)

+〈f(y), f(y), f(y)〉 •D3f(y) .

5

The second example provides the derivatives of a solution of a differential equation

y′ = f(y).

The following derivatives are obtained

y(2) = f(y) •Df(y),
y(3) = f(y) •Df(y) •Df(y) +

〈
f(y), f(y)

〉
•D2f(y),

y(4) = f(y) •Df(y) •Df(y) •Df(y) +
〈
f(y), f(y)

〉
•D2f(y) •Df(y)

+ 3
〈
f(y) •Df(y), f(y)

〉
•D2f(y) +

〈
f(y), f(y), f(y)

〉
•D3f(y).

The virtual derivative graphs are provided from the initial graph having only one vertex
representing the field f .

The virtual derivative graphs are provided from the initial graph having only one
vertex representing the field f .

•

f

The virtual derivative graph is composed of field derivatives f (k), and each in-
stance of derivative is provided by concrete derivative graph with ordered vertices.

In this case the degree n of virtual graph is defined by cardinality of graph vertex
set, and the ”binomial” weight is calculated with the earlier graph’s symmetry
number and additionally with the new complexity number. We define the graph’s
cardinality as the number of its vertices. If some vertex k has the younger graphs
with cardinality c1, c2, . . . , c|k| then the complexity number of taken vertex is
defined by the product of these cardinalities

τk = c1 · . . . · c|k| .

For the whole graph of n-degree the complexity number is equal to the product of
its vertices complexity numbers

τ = τ1 · . . . · τn .
For the n-degree virtual derivative graph the weight is calculated as (n−1)! divided
by the symmetry number and complexity number

(n− 1)!

Sτ
.

The graphs are drawn in Valiukevičius [5], table VII. Now we shall draw only
the virtual derivative graphs of degree n = 4. Under the graphs we shall write
the graph’s symmetry number and complexity number. All virtual graphs have
the unitary weight numbers, only the third graph has the weight number 3. A
reader can verify that such weights are good for the corresponding members in the
derivative formula.

•

•

•

•

• •

•

•

¸¸¸¸¸¸¸
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•

•

•

•
·······

*******

• • •

•®®®®®®®®
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S = 1! S = 2! S = 1! S = 3!
τ = 3 · 2 τ = 3 τ = 2 τ = 1

References:

6

The virtual derivative graph is composed of field derivatives f (k), and each instance
of derivative is provided by concrete derivative graph with ordered vertices.

In this case the degree n of virtual graph is defined by cardinality of graph vertex
set, and the “binomial” weight is calculated with the earlier graph’s symmetry number
and additionally with the new complexity number. We define the graph’s cardinality as
the number of its vertices. If some vertex k has the younger graphs with cardinality c1,
c2, . . . , c|k| then the complexity number of taken vertex is defined by the product of these
cardinalities

τk = c1 · · · c|k|.
For the whole graph of n-degree the complexity number is equal to the product of its
vertices complexity numbers

τ = τ1 · · · τn.
For the n-degree virtual derivative graph the weight is calculated as (n − 1)! divided by
the symmetry number and complexity number

(n− 1)!

Sτ
.

The graphs are drawn in Valiukevičius [5, Table VII]. Now we shall draw only the virtual
derivative graphs of degree n = 4. Under the graphs we shall write the graph’s symmetry
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number and complexity number. All virtual graphs have the unitary weight numbers, only
the third graph has the weight number 3. A reader can verify that such weights are good
for the corresponding members in the derivative formula.

The virtual derivative graphs are provided from the initial graph having only one
vertex representing the field f .

•

f

The virtual derivative graph is composed of field derivatives f (k), and each in-
stance of derivative is provided by concrete derivative graph with ordered vertices.

In this case the degree n of virtual graph is defined by cardinality of graph vertex
set, and the ”binomial” weight is calculated with the earlier graph’s symmetry
number and additionally with the new complexity number. We define the graph’s
cardinality as the number of its vertices. If some vertex k has the younger graphs
with cardinality c1, c2, . . . , c|k| then the complexity number of taken vertex is
defined by the product of these cardinalities

τk = c1 · . . . · c|k| .

For the whole graph of n-degree the complexity number is equal to the product of
its vertices complexity numbers

τ = τ1 · . . . · τn .
For the n-degree virtual derivative graph the weight is calculated as (n−1)! divided
by the symmetry number and complexity number

(n− 1)!

Sτ
.

The graphs are drawn in Valiukevičius [5], table VII. Now we shall draw only
the virtual derivative graphs of degree n = 4. Under the graphs we shall write
the graph’s symmetry number and complexity number. All virtual graphs have
the unitary weight numbers, only the third graph has the weight number 3. A
reader can verify that such weights are good for the corresponding members in the
derivative formula.
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S = 1! S = 2! S = 1! S = 3!
τ = 3 · 2 τ = 3 τ = 2 τ = 1
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