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Abstract. In this paper, the homotopy analysis method (HAM) proposed by Liao is
adopted for solving Davey–Stewartson (DS) equations which arise as higher dimensional
generalizations of the nonlinear Schrödinger (NLS) equation. The results obtained by
HAM have been compared with the exact solutions and homotopy perturbation method
(HPM) to show the accuracy of the method. Comparisons indicate that there is a very
good agreement between the HAM solutions and the exact solutions in terms of accuracy.
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1 Introduction

Partial differential equations which arise in real-world physical problems are often too
complicated to be solved exactly. In this paper, we consider the Davey–Stewartson (DS)
equations [1–3]

iqt +
1

2
σ2
(
qxx + σ2qyy

)
+ λ|q|2q − φxq = 0,

φxx − σ2φyy − 2λ
(
|q|2
)
x = 0.

(1)

The case σ = 1 is called the DS-I equation, while σ = i is the DS-II equation. The para-
meter λ characterizes the focusing or defocusing case. The Davey–Stewartson I and II are
two well-known examples of integrable equations in two space dimensions, which arise
as higher dimensional generalizations of the nonlinear Schrödinger (NLS) equation [4].
They appear in many applications, for example in the description of gravity-capillarity
surface wave packets in the limit of the shallow water. Davey and Stewartson first derived
their model in the context of water waves, from purely physical considerations. In the
context, q(x, y, t) is the amplitude of a surface wave packet, while φ(x, y) reperesents the
velocity potential of the mean flow interacting with the surface wave [4].

In 1992, Liao [5] employed the basic ideas of the homotopy in topology to propose
a general analytic method for nonlinear problems, namely the homotopy analysis method
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(HAM), [5–11]. This method has been successfully applied to solve many types of
nonlinear problems [12–18]. The HAM offers certain advantages over routine numerical
methods. The HAM is better since it does not involve discretization of the variables hence
is free from rounding off errors and does not require large computer memory or time. In
this paper, we will apply homotopy analysis method to the problem mentioned above.

2 Basic idea of HAM

Consider the following system of partial differential equations,

Ni

[
zi(x, y, t)

]
= 0, i = 1, 2, . . . , n, (2)

where Ni are nonlinear operators and zi(x, y, t) are unknowns functions. By means of
generalizing the traditional homotopy method, Liao [9,10] constructed the so-called zero-
order deformation equations

(1− q)Li

[
φi(x, y, t; q)− zi,0(x, y, t)

]
= qhiNi

[
φi(x, y, t; q)

]
, (3)

i = 1, 2, . . . , n,

where q ∈ [0, 1] is an embedding parameter, hi are nonzero auxiliary functions, Li are
auxiliary linear operators, zi,0(x, y, t) are initial guesses of zi(x, y, t) and φi(x, y, t; q)
are unknown functions. It is important to note that, one has great freedom to choose
auxiliary objects such as hi and Li in HAM. Obviously, when q = 0 and q = 1, both
φi(x, y, t; 0) = zi,0(x, y, t) and φi(x, y, t; 1) = zi(x, y, t), hold. Thus as q increases
from 0 to 1, the solutions φi(x, y, t; q) varies from the initial guesses zi,0(x, y, t) to the
solutions zi(x, y, t). Expanding φi(x, y, t; q) in Taylor series with respect to q, one has

φi(x, y, t; q) = zi,0(x, y, t) +

+∞∑
m=1

zi,m(x, y, t)qm, (4)

where

zi,m =
1

m!

∂mφi(x, y, t; q)

∂qm

∣∣∣∣
q=0

, (5)

if the auxiliary linear operators, the initial guesses, the auxiliary parameters hi, and the
auxiliary functions are properly chosen, then the series equation (4) converges at q = 1
and

φi(x, y, t; 1) = zi,0(x, y, t) +

+∞∑
m=1

zi,m(x, y, t), (6)

which must be one of solutions of the original nonlinear equations, as proved by Liao
[9, 10]. As hi = −1, Eq. (3) becomes

(1− q)Li

[
φi(x, y, t; q)− zi,0(x, y, t)

]
+ qNi

[
φi(x, y, t; q)

]
= 0, (7)
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which are mostly used in the homotopy-perturbation method.
According to (5), the governing equations can be deduced from the zero-order

deformation equations (3). Define the vectors

~zi,n =
[
zi,0(x, y, t), zi,1(x, y, t), . . . , zi,n(x, y, t)

]
. (8)

Differentiating (3) m-times with respect to the embedding parameter q and then setting
q = 0 and finally dividing them by m!, we have the so-called mth-order deformation
equations

Li

[
zi,m(x, y, t)− χmzi,m−1(x, y, t)

]
= hiRi,m(~zi,m−1), (9)

where

Ri,m(~zi,m−1) =
1

(m− 1)!

∂m−1Ni[φi(x, y, t; q)]

∂qm−1

∣∣∣∣
q=0

, (10)

The solution of the mth-order deformation Eq. (9) is readily found to be

zi,m(x, y, t) = χmzi,m−1 + hiL
−1[Ri,m(zi,m−1)

]
(11)

and

χm =

{
0, m ≤ 1,

1, m > 1.

It should be emphasized that zi,m(x, y, t) (m ≥ 1) is governed by linear equation (9)
with the linear boundary condition that come from the original problem, which can be
easily solved by symbolic computation softwares such as Mathematica and Maple. For
the convergence of the above method we refer the reader to Liao’s work [8]. If Eq. (2)
admits unique solution, then this method will produce the unique solution. If Eq. (2) does
not possess unique solution, the HAM will give a solution among many other (possible)
solutions.

3 Analysis of the method by the HAM

Without loss of generality, first we separate the amplitude of a surface wave packet q into
real part and imaginary part, i.e., q = u + iν. Then we rewrite the system (1) in the
following form,

ut = −
1

2
σ2
(
νxx + σ2νyy

)
− λ

(
u2 + ν2

)
ν + φxν, (12)

νt =
1

2
σ2
(
uxx + σ2uyy

)
+ λ

(
u2 + ν2

)
u− φxu, (13)

φxx − σ2φyy − 2λ
(
u2 + ν2

)
x
= 0. (14)
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To investigate the traveling wave solution of Eqs. (12)–(14), using homotopy analysis
method, we choose the linear operators L1=L2=L3=∂

2/∂y2 and nonlinear operators as

N1 =
∂2ν

∂y2
+

1

σ2

(
∂2ν

∂x2

)
+

2

σ4

(
∂u

∂t

)
+

2λ

σ4

(
u2ν + ν3

)
− 2

σ4

(
∂φ

∂x
ν

)
,

N2 =
∂2u

∂y2
+

1

σ2

(
∂2u

∂x2

)
− 2

σ4

(
∂ν

∂t

)
+

2λ

σ4

(
u3 + ν2u

)
− 2

σ4

(
∂φ

∂x
u

)
,

N3 =
∂2φ

∂y2
− 1

∂2

(
∂2φ

∂x2

)
+

2λ

σ2

(
∂

∂x

(
u2 + ν2

))
,

for Eqs. (12)–(14) respectively. The initial guesses are considered as follow,

ν0(x, y, t) = ν(x, 0, t),

u0(x, y, t) = u(x, 0, t),

φ0(x, y, t) = φ(x, 0, t).

(15)

According to HAM ν1, u1, φ1 are obtained as follow:

ν1 = h

y∫
0

y∫
0

R1(ν0) dy dy,

u1 = h

y∫
0

y∫
0

R1(u0) dy dy,

φ1 = h

y∫
0

y∫
0

R1(φ0) dy dy.

(16)

In view of (11) other components of ν, u, φ are obtained using the following recursive
relations:

νi = νi−1 + h

y∫
0

y∫
0

Ri(νi−1) dy dy,

ui = ui−1 + h

y∫
0

y∫
0

Ri(ui−1) dy dy,

φi = φi−1 + h

y∫
0

y∫
0

Ri(φi−1) dy dy, i = 2, 3, . . . .

(17)
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In view of Eq. (10), we obtained

R1(ν0)=

(
∂2ν0
∂y2

)
+

1

σ2

(
∂2ν0
∂x2

)
+

2

σ4

(
∂u0
∂t

)
+
2λ

σ4

(
u20ν0+ν

3
0

)
− 2

σ4

(
∂φ0
∂x

ν0

)
,

R1(u0)=

(
∂2u0
∂y2

)
+

1

σ2

(
∂2u0
∂x2

)
− 2

σ4

(
∂ν0
∂t

)
+
2λ

σ4

(
u30+ν

2
0u0
)
− 2

σ4

(
∂φ0
∂x

u0

)
,

R1(φ0)=

(
∂2φ0
∂y2

)
− 1

σ2

(
∂2φ0
∂x2

)
+
2λ

σ2

(
∂

∂x

(
u20+ν

2
0

))
,

R2(ν1)=

(
∂2ν1
∂y2

)
+

1

σ2

(
∂2ν1
∂x2

)
+

2

σ4

(
∂u1
∂t

)
− 2

σ4

(
∂φ1
∂x

ν0 + ν1
∂φ0
∂x

)
+
2λ

σ4

(
2u0u1ν0 + ν1u

2
0 + 3ν20ν1

)
,

R2(u1)=

(
∂2u1
∂y2

)
+

1

σ2

(
∂2u1
∂x2

)
− 2

σ4

(
∂ν1
∂t

)
− 2

σ4

(
∂φ1
∂x

u0 + u1
∂φ0
∂x

)
+
2λ

σ4

(
3u20u1 + 2ν0ν1u0 + u1ν

2
0

)
,

R2(φ1)=

(
∂2φ1
∂y2

)
− 1

σ2

(
∂2φ1
∂x2

)
+
2λ

σ2

(
∂

∂x

(
2u0u1 + 2ν0ν1

))
,

R3(ν2)=
∂2ν2
∂y2

)+
1

σ2

(
∂2ν2
∂x2

)
+

2

σ4

(
∂u2
∂t

)
− 2

σ4

(
∂φ2
∂x

ν0+ν1
∂φ1
∂x

+ν2
∂φ0
∂x

)
+
2λ

σ4

(
u21ν0 + 2u2u0ν0 + 2ν1u1u0 + ν2u

2
0 + 3ν0ν

2
1 + 3ν2ν

2
0

)
,

R3(u2)=

(
∂2u2
∂y2

)
+

1

σ2

(
∂2u2
∂x2

)
− 2

σ4

(
∂ν2
∂t

)
− 2

σ4

(
∂φ2
∂x

u0+u1
∂φ1
∂x

+u2
∂φ0
∂x

)
+
2λ

σ4

(
3u0u

2
1 + 3u20u2 + ν21u0 + 2ν2ν0u0 + 2u1ν0ν1 + u2ν

2
0

)
,

R3(φ2)=

(
∂2φ2
∂y2

)
− 1

σ2

(
∂2φ2
∂x2

)
+
2λ

σ2

(
∂

∂x

(
u21 + 2u2u0 + ν21 + 2ν2ν0

))
,

and so on. We will obtain

ν(x, y, t) = lim
n→∞

n∑
i=0

νi(x, y, t),

u(x, y, t) = lim
n→∞

n∑
i=0

ui(x, y, t), (18)

φ(x, y, t) = lim
n→∞

n∑
i=0

φi(x, y, t).
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4 Application

For solving Eqs. (12)–(14) using HAM, we consider the following initial conditions:

ν(x, 0, t) = r sech
[
s(x− ct)

]
sin[k1x+ k3t],

u(x, 0, t) = r sech
[
s(x− ct)

]
cos[k1x+ k3t],

φ(x, 0, t) = f tanh
[
s(x− ct)

]
,

(19)

where c = k2 + σ2k1, r =
√
−(2k3 + k21σ

2 + k22)/λ, s =
√

(2k3 + k21σ
2 + k22)/σ

2,
f = 2σ

√
−λ/(1− σ2) and ki (i = 1, 2, 3) are arbitrary constants. Now we substitute the

initial conditions (19) into the system (16), we obtain

ν1 = h

[
− frsy2 sech[s(−ct+ x)]3 sin[xk1 + tk3]

σ4

− rs2y2 sech[s(−ct+ x)]3 sin[xk1 + tk3]

2σ2

+
r3y2λ cos[xk1 + tk3]

2 sech[s(−ct+ x)]3 sin[xk1 + tk3]

σ4

+
r3y2λ sech[s(−ct+ x)]3 sin[xk1 + tk3]

3

σ4

− ry2 sech[s(−ct+ x)] sin[xk1 + tk3]k
2
1

2σ2

− ry2 sech[s(−ct+ x)] sin[xk1 + tk3]k3
σ4

+
crsy2 cos[xk1 + tk3] sech[s(−ct+ x)] tanh[s(−ct+ x)]

σ4

− rsy2 cos[xk1 + tk3] sech[s(−ct+ x)]k1 tanh[s(−ct+ x)]

σ2

+
rs2y2 sech[s(−ct+ x)] sin[xk1 + tk3] tanh[s(−ct+ x)]2

2σ2

]
,

u1 = h

[
− frsy2 sech[s(−ct+ x)]3 cos[xk1 + tk3]

σ4

− rs2y2 sech[s(−ct+ x)]3 cos[xk1 + tk3]

2σ2

+
r3y2λ cos[xk1 + tk3]

3 sech[s(−ct+ x)]3

σ4

+
r3y2λ sech[s(−ct+ x)]3 sin[xk1 + tk3]

2 cos[xk1 + tk3]

σ4

− ry2 sech[s(−ct+ x)] cos[xk1 + tk3]k
2
1

2σ2
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− ry2 sech[s(−ct+ x)] cos[xk1 + tk3]k3
σ4

− crsy2 sin[xk1 + tk3] sech[s(−ct+ x)] tanh[s(−ct+ x)]

σ4

+
rsy2 sin[xk1 + tk3] sech[s(−ct+ x)]k1 tanh[s(−ct+ x)]

σ2

+
rs2y2 sech[s(−ct+ x)] cos[xk1 + tk3] tanh[s(−ct+ x)]2

2σ2

]
,

φ1 =
hsy2(fs− 2r2λ) sech[s(−ct+ x)]2 tanh[s(−ct+ x)]

σ2
.

In the same manner, using recurnce relations in (17) the other components ν2(x, y, t),
ν3(x, y, t), . . . , u2(x, y, t), u3(x, y, t), . . . and φ2(x, y, t), φ3(x, y, t), . . . can be obtained.
Substituting these components into Eqs. (18) to be obtain ν(x, y, t), u(x, y, t), and
φ(x, y, t). Using a Taylor series, then the closed form solutions yields as follows:

u(x, y, t) = r sech
[
s(x+ y − ct)

]
cos
[
(k1x+ k2y + k3t)

]
,

ν(x, y, t) = r sech
[
s(x+ y − ct)

]
sin
[
(k1x+ k2y + k3t)

]
,

φ(x, y, t) = f tanh
[
s(x+ y − ct)

]
,

(20)

where c = k2 + σ2k1, r =
√
−(2k3 + k21σ

2 + k22)/λ, s =
√

(2k3 + k21σ
2 + k22)/σ

2,
f = 2σ

√
−λ/(1− σ2), k1, k2 and k3 are arbitrary constants.

5 Comparing the HAM results with the exact solutions

To demonstrate the convergence of the HAM, the results of the numerical example are
presented and only few terms are required to obtain accurate solution. Tables 1–3 show
the absolute errors between the analytical solutions and the 3th-order HAM solutions of
DS for y = 0.2, k1 = 0.1, k2 = 0.03, k3 = −0.3, σ = I , λ = 1, and h = −.75. Both the
exact solutions and the approximate solution of u(x, y, t), ν(x, y, t) and φ(x, y, t) (for the
same parameters as mentioned before) are plotted in Figs. 1–3.

Table 1. Absolute errors of u(x, y, t).

x \ t 0.1 0.2 0.3 0.4 0.5
20 1.27831×10−8 1.16602×10−8 1.05388×10−8 9.41974×10−9 8.30419×10−9

17 1.90799×10−8 7.39331×10−9 4.17318×10−9 1.56101×10−8 2.69083×10−8

14 1.00238×10−6 1.11316×10−6 1.22171×10−6 1.32795×10−6 1.4318 ×10−6

11 2.19709×10−5 2.29084×10−5 2.38145×10−5 2.46887×10−5 2.55306×10−5

8 3.28063×10−4 3.34711×10−4 3.40978×10−4 3.46861×10−4 3.5236 ×10−4
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Table 2. Absolute errors of ν(x, y, t).

x \ t 0.1 0.2 0.3 0.4 0.5
20 3.51132×10−8 3.52876×10−8 3.54247×10−8 3.55329×10−8 3.56044×10−8

17 3.87977×10−7 3.86258×10−7 3.84202×10−7 3.81812×10−7 3.79095×10−7

14 3.91158×10−6 3.85862×10−6 3.80266×10−6 3.74379×10−6 3.68211×10−6

11 3.57663×10−5 3.49 ×10−5 3.40109×10−5 3.30999×10−5 3.21682×10−5

8 2.87696×10−4 2.76213×10−4 2.64599×10−4 2.52867×10−4 2.41028×10−4

Table 3. Absolute errors of φ(x, y, t).

x \ t 0.1 0.2 0.3 0.4 0.5
20 1.11022×10−16 1.11022×10−16 1.11022×10−16 1.11022×10−16 2.22045×10−16

17 1.4877 ×10−14 1.46549×10−14 1.43219×10−14 1.43219×10−14 1.39888×10−14

14 1.58651×10−12 1.5693 ×10−12 1.5522 ×10−12 1.53555×10−12 1.51901×10−12

11 1.70145×10−10 1.69595×10−10 1.67752×10−10 1.65929×10−10 1.64126×10−10

8 1.8514 ×10−8 1.8313 ×10−8 1.81141×10−8 1.79174×10−8 1.72228×10−8

Fig. 1. Comparison between the exact solution and the 3th-order HAM solution of
u(x, y, t).

Fig. 2. Comparison between the exact solution and the 3th-order HAM solution of
ν(x, y, t).
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Fig. 3. Comparison between the exact solution and the 3th-order HAM solution of
φ(x, y, t).

Remark 1. The numerical result given in the Tables 1–3 have better approximate with
those given in [3] using HPM.

Remark 2. When we select h = −1 we get same result as obtained by Zedan and
Tantawy [3].

6 Conclusions

In this paper, the homotopy analysis method has been successfully applied to finding the
solution of Davey–Stewartson equations. The solution obtained by the homotopy analysis
method is an infinite power series for appropriate initial condition, which can, in turn, be
expressed in a closed form, the exact solution. We found that HAM logically contains
HPM. Besides, if the same initial value and the same auxiliary linear operator are chosen,
the approximations given by HPM are exactly a special case of those given by HAM when
h = −1 and H = 1. In comparison with HPM [3] and VIM [2] methods we will find
better approximations. The results show that the homotopy analysis method is a powerful
Mathematical tool for solving Davey–Stewartson equations. It is also a promising method
to solve other nonlinear equations. Mathematica has been used for computations in this
paper.
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