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1 Introduction

The fractional Brownian motion (fBm) and processes based on it have found many appli-
cations in fields as diverse as economics and finance, physics, chemistry, medicine and
environmental studies. The fBm is a well-known example of a process with long-range
dependence property. Recently much attention has been given to the study of the Hurst
parameter, or of the other parameters associated to long rang dependence.

By fBm BH = {BHt : t > 0}, 0 < H < 1, we understand a centered Gaussian
process with BH0 = 0 and covariance

cov
(
BHt , B

H
s

)
=

1

2

(
t2H + s2H − |t− s|2H

)
, t, s > 0.

The parameter H is called the Hurst index of the process.
In 1961, E. Gladyshev [1] derived a limit theorem for a statistic based on the first

order quadratic variations for a class of Gaussian processes. The fBm BH belongs to this
class of processes. Gladyshev proposed an estimator of H which was strongly consistent,
but not asymptotically normal. In 1997, another estimator was introduced by J. Istas
and G. Lang [2] which again employed the first order quadratic variations and it was
asymptotically normal for H ∈ (1/2; 3/4). In 2005, A. Bégyn [3, 4] considered the
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second order quadratic variations for processes with Gaussian increments. In 2008–2010,
K. Kubilius and D. Melichov [7–10] studied the behavior of the first and second order
quadratic variations of the pathwise solution of certain stochastic differential equations
driven by fBm. It was shown that the quadratic variation based estimators remain strongly
consistent in that case as well.

In this note we define the modified Gladyshev’s estimator of fBm parameter H and
derive the rate of convergence of it to its real value. To our knowledge, this problem is
new and interesting from the practical point of view.

Let πn = {0 = tn0 < tn1 < · · · < tnNn
= 1} be a sequence of subdivisions of the

interval [0, 1] such that tnk = k
Nn

for all n ∈ N and all k ∈ {0, . . . , Nn}, where (Nn) is
an increasing sequence of natural numbers. Such subdivision πn is called regular.

For a real-valued process X = {Xt, t ∈ [0, 1]} taking values at the points tnk ,
k = 0, . . . , Nn, the first order quadratic variation is defined as

V (1)
n (X, 2) =

Nn∑
k=1

(
∆Xn

k

)2
, ∆Xn

k = X
(
tnk
)
−X

(
tnk−1

)
.

LetBH be the fractional Brownian motion with the Hurst indexH . Set tnk = k2−n,
k = 1, . . . , 2n. It is known (see Gladyshev [1]) that

2n(2H−1)V (1)
n

(
BH , 2

) a.s.−−→ 1 as n→∞.

This result yields that

H̃n =
1

2
− lnV

(1)
n (BH , 2)

2n ln 2

is a strongly consistent estimator of H .
Let us define a modified Gladyshev’s estimator of fBm parameter H by

Ĥn =

(
1

2
−

ln
[
V

(1)
n (BH , 2)

]
2 lnNn

)
1Cn ,

for a regular subdivision πn, where

Cn =
{
V (1)
n

(
BH , 2

)
> N−2n

}
.

The estimate Ĥn is strongly consistent. Moreover, we can derive the rate of convergence
of it to H . This follows from the following theorem.

Theorem 1. LetBH , 1/2 < H < 1, be the fractional Brownian motion. Ĥn is a strongly
consistent estimator of the Hurst index H and the following rates of convergence hold:

|Ĥn −H| = O
(√

N−1n lnNn

)
a.s. if

∞∑
n=1

N−2n <∞ (1)

and

E|Ĥn −H| = O
(√

N−1n lnNn

)
. (2)
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2 Proof of Theorem 1

First we have

Ĥn = H1Cn
− lnBn

2 lnNn
1Cn

,

where Bn = N2H−1
n V

(1)
n (BH , 2). Thus

|Ĥn −H| 6 H1Cn
+

∣∣∣∣ lnBn
2 lnNn

∣∣∣∣1{Bn>N
−2
n }

6 H1{Bn<N
−1
n } −

lnBn
2 lnNn

1{N−2
n 6Bn<1} +

lnBn
2 lnNn

1{Bn>1}.

Let (δn) be a sequence of positive numbers such that δn < 1 and δn ↓ 0. The
inequality − ln(1− x) 6 20x, 0 6 x 6 19/20, gives

(− lnBn)1{1−δn6Bn<1} =
(
− ln

[
1− (1−Bn)

])
1{1−δn6Bn<1}

6 20(1−Bn)1{1−δn6Bn<1},

if δn 6 19/20. So, we have

− lnBn
2 lnNn

1{N−2
n 6Bn<1} 6 1{N−2

n 6Bn<1−δn} + 10
1−Bn
lnNn

1{1−δn6Bn<1}

6 1{N−2
n 6Bn<1−δn} +

10δn
lnNn

1{1−δn6Bn<1}. (3)

An application of inequality ln(1 + x) 6 x, x > 0, yields

(lnBn)1{Bn>1} =
(

ln
[
1 + (Bn − 1)

])
1{Bn>1} 6 (Bn − 1)1{Bn>1}.

Thus

lnBn
2 lnNn

1{Bn>1} 6
Bn − 1

2 lnNn
1{16Bn61+δn} +

Bn − 1

2 lnNn
1{Bn>1+δn}

6
δn

2 lnNn
1{16Bn61+δn} +

Bn − 1

2 lnNn
1{Bn>1+δn}. (4)

Inequalities (3), (4) implies that

|Ĥn −H| 6
(

2 +
Bn − 1

2 lnNn

)
1{|Bn−1|>δn} +

10δn
lnNn

. (5)

To complete the proof, it suffices to estimate the first term in inequality (5) by using
Hanson and Wright inequality [5]. Note that N2H−1

n V
(1)
n

(
BH , 2

)
is the square of the

Euclidean norm of one Nn-dimensional Gaussian vector Xn with components

N2H−1
n ∆BH,nk , 1 6 k 6 Nn.
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By linear transformation of Xn one can get a new Gaussian vector Yn with independent
components. So there exists nonnegative real numbers (λ1,n, . . . , λNn,Nn) and one Nn-
dimensional Gaussian vector Yn, such that its components are independent Gaussian
variables N (0, 1) and

N2H−1
n V (1)

n

(
BH , 2

)
=

Nn∑
j=1

λj,Nn

(
Y (j)
n

)2
.

Numbers (λ1,n, . . . , λNn,Nn
) are the eigenvalues of the symmetric Nn ×Nn-matrix(

N2H−1
n E

[
∆BH,nj ∆BH,nk

])
16j,k6Nn

.

With the arguments of [6] and [3] one can get inequality

P
(
N2H−1
n

∣∣V (1)
n

(
BH , 2

)
−EV (1)

n

(
BH , 2

)∣∣ > ε
)
6 2 exp

(
−Kε2Nn

)
, (6)

which follows directly from Hanson and Wright inequality, where 0 < ε 6 1, K is a
positive constant.

Set

δ2n =
2 lnNn
KNn

.

From inequality (6) it follows that

P
(
|Bn − 1| > δn

)
6

2

N2
n

. (7)

Obviously,

P

((
2 +

Bn − 1

2 lnNn

)
1{|Bn−1|>δn} > 0

)
6 P

(
|Bn − 1| > δn

)
6

2

N2
n

.

Under condition of the theorem and from the Borel–Cantelli lemma it follows that

P

(
lim sup
n→∞

{(
1

2
+
Bn − 1

2 lnNn

)
1{|Bn−1|>δn} > 0

})
= 0,

i.e., (
2 +

Bn − 1

2 lnNn

)
1{|Bn−1|>δn} = 0

for sufficiently large n. From what has been said above and inequality (5) it follows that

|Ĥn −H| = O
(√

N−1n lnNn

)
a.s.
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which completes the proof of (1). Note that from the inequalities (5) and (7) we get

E|Ĥn −H| 6
2

N2
n

+ E
|Bn − 1|
2 lnNn

1{|Bn−1|>δn} +
10δn
lnNn

.

We now estimate the second term on the right side of the previous inequality. Note that

E|Bn − 1|1{|Bn−1|>δn}

6 E1/2|Bn − 1|2
√

P
(
|Bn − 1| > δn

)
6

2

Nn
E1/2

(
B2
n + 1

)
6

2

Nn

(
N2H−1/2
n E1/2

Nn∑
k=1

∣∣∆BH,nk

∣∣4 + 1

)

6
2

Nn

(√
3N−1/2n + 1

)
.

Thus

E|Ĥn −H| 6
2

N2
n

+

√
3N
−1/2
n + 1

Nn lnNn
+

10δn
lnNn

.

The proof of (2) is completed.
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