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Abstract. This paper describes a technique for modeling nonlinear systems using
multiple piecewise linear equations. The technique provides a means for linearizing
the nonlinear system in such a way as to not limit the large signal behavior of the
target system. The nonlinearity in the target system must be able to be represented as
a piecewise linear function. A simple third order nonlinear system is used to demonstrate
the technique. The behavior of the modeled system is compared to the behavior of the
nonlinear system.
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1 Introduction

The technique in this paper uses multiple piecewise linear equations to model nonlinear
systems. It provides a means for piecewise linearizing the nonlinear system in such a way
as to not limit the large signal behavior of the target system. By doing this, any linear
estimation technique may be used to generate an estimate of the internal system states in
order to provide a means to use state feedback controls. The modeling technique will be
demonstrated on a simple third order nonlinear system.

Many techniques have been used to solve the problem of estimating the states of
nonlinear systems. The most basic approach is to linearize the system about an operating
point and use standard linear estimation techniques [1]. In this case, the first derivative
of the nonlinear function, evaluated at a specific operating point, is used to develop a first
order set of linear state equations. Other techniques use least squares methods directly
to try to minimize the errors in the nonlinear estimation problem [2,3]. For special
classes of nonlinear estimation problems with linear models excited by white Gaussian
noise, explicit estimation results may be obtained by using Gaussian probability density
functions. These functions are used to predict the most likely values of the state variables
based on the current values of the output and the covariance of the state estimation
error [4]. Finally, for sampled data systems, much work has been done on using numerical
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differentiation for state observer design [5, 6]. This approach uses the derivative of the
measurement data to predict certain states that are the derivative of a linear combination
of the output variables. This approach suffers from rather noisy signals obtained by
computing the derivatives of sampled data.

The technique presented here extends the linearization technique by using piece-
wise linear models that cover the expected range of the state variables. As such, this
method does not limit the large signal behavior of the modeled states. The only restriction
is that the nonlinearities must be able to be approximated as piecewise linear functions.

The type of nonlinear systems we are trying to model are of the form:

x(t) = £(x(t), u(t)),
y(t) = h(x(t), u(t)),
where x(t) € R™ and y(t) € R™. The functions, f(x(¢), u(t)) and h(x(t), u(t)), are

the nonlinear functions of appropriate order. The system is to be modeled as a set of
piecewise linear equations of the form:

6]

%(t) = Ax(t) + Bu(t),

- 5 ) )
y(t)=Cx(t)+Dju(t) Vi=1,...,q.

Each of the system’s nonlinearities is modeled with a suitable piecewise linear
function that covers the dynamic range of the state variables. The piecewise functions
must not have any discontinuities. Assuming the nonlinearities were broken up into m
individual linear functions, this may result in ¢ individual system, input, output and feed
forward matrices (A;,B;,C;,D; Vi = 1,2,3,...,q). The boundaries of the piecewise
linear functions may be a function of one or more of the state variables. The boundary
functions are used to select the appropriate system, input and gain matrices for the system
by using a data selector or multiplexer. Thus, the piecewise linear model dynamically
switches from one set of system and gain matrices to another as the estimated states
traverse through their trajectories.

The example presented in Section 3 illustrates this technique. We will start from
a nonlinear set of state equations. Then, a piecewise linear model will be developed.
Finally, the simulation results of the piecewise linear modeled system will be compared
to the actual nonlinear system.

2 Piecewise linear modeling

The nonlinearities in the real world can take on many different forms. For instance, the
very simple pendulum problem has a state formulation of the form:

) = Lcusintantn — o

where c; and ¢y are system constants and 1 and x5 are the angular position and velocity,
respectively. Here the nonlinear function is the sine function.

)
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For this method, a nonlinear function, f(x1(t),22(t),...,z,(t)), is modeled as a
collection of linear functions of the form:

fi(@1(t), 22(t), ..., zn(t))
= mﬂxl(t) + migl‘g(t) —+ -4 mm.’L‘n(k) +0b; Vi= 1,2,...,q. 3)

The number of linear regions that the nonlinear function is broken up into is represented
by g. If the function is non-linear in one state variable, the total number of regions is
simply the number of line segments used to represent the function. For example, the
function f(x1) = sin(x;) may be broken up into a minimum of 3 line segments in the
regions of (0 < x; < 7/2), (/2 < 1 < 37w/2), (37/2 < x; < 27). In this case,
q = 3. For a more complicated function f(z1,72) = 2% sin(xy), assuming 1 and z2
are broken up into 4 segments each, the maximum number of approximation functions
is 32 (4 x 4 x 2 = 32). For this function, the regions become triangular planes instead
of lines. The boundaries between the triangular planes are the intersections of adjacent
planes, which are obviously lines in space.

In general, the maximum total number of functions required will be equal to the
product of the segments into which each of the state variables’ range is broken up into
times the number of geometric shapes required to cover the region. In mathematical terms,
q = S1 X 83 X -+ X S, X g, where s; — the number of segments that each state variable
involved in the nonlinearity is broken into and g — the geometric multiplier. Typically,
the number of approximation functions can be greatly reduced due to symmetries in the
nonlinearity. Table 1 shows some common functions, the types of geometric regions, and
the geometric multiplier value.

Table 1. Typical functions and regions.

# of Typical Piecewise linear functions Regions  Boundaries g
var. functions
1 z%,sin(z1)  fi(z) = maz + b Lines Points 1
2 T, fi(x) = miiz1 + maaze + b; Triangular Lines 2
x1 sin(x2) planes
3 xixoms, fi(z) = mi1z1 + mizx2 + muszws + b; Asymmetric  Triangular 6
12 sin(z3) tetrahedrons  planes
There are three basic methods for computing the coefficients m;1, mi2, ..., M4n

and b; for (3). First, there is multiple regression analysis, where the coefficients in (3) are
determined using Gauss’s least squares regression applied to multiple variables [7]. This
method gives the best estimate for each of the regions but suffers from discontinuities at
the boundaries of the regions. This can cause issues when using the approximate function
for controls or state estimation.

The next method is the multi-variable Taylor series method [8]. This method of
computing the coefficients uses the constant and linear terms of the multi-variable Taylor
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series. With this method the function must be differentiable and the center point of each
of the regions must be established. This method also suffers from discontinuities at the
boundaries.

Lastly, there is the method that comes from the definition of a piecewise linear
function. This method, for the purpose of this paper, shall be called the “point-to-point”
method. This method uses basic linear algebra to solve for the coefficients in (3). The
correct number of points, corresponding to the number of variables in the nonlinear
function, are chosen at the verticies of the region boundaries. These points, together
with the actual value of the function at these points, are used to compute the solution
to the coefficients in (3). The number of points depends on the number of variables in
the nonlinear function. For a single variable function, only the starting and end point of
each region is needed. For a two variable nonlinear function, three points are needed.
This is because three points define the plane for each region. Assuming the region is
rectangular, this means each rectangular region will have two triangular planes defining
the approximate function within the region.

To illustrate two of these methods, we can look at the nonlinear function in (4).

2 .
x1? sin(zs)

= : 4

f(xla QTQ) 0.5 COS2(1'2) + 2 COS($2) + 2.375 ( )

First, we will look at the regression model. Next, we will look at the “point-to-point”
model and contrast the differences. The regions are chosen as rectangular regions in the
1 and xo cartesian plane as follows:

z1 € {[-10< 2 < =5, [-5 <@y <0],[0 <2y <5], [6 <z <10]},
zy € {[-m < a1 < —2.252], [-2.252 < @y < —7/2], [-7/2< 22 < 0], (5)
[0 <@y <m/2], [7/2 < 2o <2.252], [2.252 < @ < 7]}

This gives 4 regions for z; and 6 regions for x5 for a total of 48 triangular planes,
considering 2 triangular planes per rectangular region.

A plot of the nonlinear function in (4) over the above regions is given in Fig. 1.

Now this can be compared to the plot of the approximate function using the re-
gression model in Fig. 2. As can be seen, there are significant discontinuities between
the triangular planar regions at the boundaries. This can cause some real problems if the
model is to be used for a linear state estimation or to design a linear controller.

Turning to the “point-to-point” piecewise linear model, we can see in Fig. 3 that
there are smooth transitions between the region boundaries. No discontinuities are present
in the piecewise linear function itself. There are discontinuities in the first derivative of
the function on either side of the boundaries, but this is of no real significance since we
are looking for the value of the function, not its derivative. As stated previously, the error
with the “point-to-point” piecewise linear model is greater than the multiple regression
piecewise linear model within the regions, but there are none of the discontinuities expe-
rienced by the regression model. This makes the ’point-to-point” model more desirable
from a linear estimation and controls perspective.
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Function f(x, x,) Funtion f{x, x,)

4 10
%0 50 5,0 R
Fig. 1. The actual function to be estimated. Fig. 2. Multiple regression piecewise linear
model.

Function f(x1 'Xz)

0

%0
Fig. 3. Point-to-point piecewise linear model.

In the next section, we shall look at this piecewise linear modeling technique ap-

plied to a simple 3rd order nonlinear system.

3 Application to a motor driven pendulum

To demonstrate the above technique, a simple motor driven pendulum, used in another of
the authors’ papers, will be used [9]. Piecewise linear modeling of the nonlinearities of
of this system will reduce the computational power required to estimate the system states.
The system model is shown in Fig. 4.

The equations of motion for this system are given in (6).

.. _ Bg . KQ mgl .

00 =~ my 7, 0O+ ey g ) — (),

. R, K, - | ©)
Ia(t) = _L_aIa(t) - L_ae(t) - L_au(t)a
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where the system parameters are defined as:

K7 motor back EMF constant Jp, ~ motor inertia

K> motor torque constant By  viscous damping of the pendulum support
R, armature resistance l length of the pendulum

L, armature inductance m  mass of the pendulum

l mgsin(6)
Fig. 4. Simple system block diagram of a motor driven pendulum.

Now, to facilitate writing state equations, we let 21 (t) = the pendulum angle, 6(t),

22(t) = the pendulum angular velocity, 6(¢), and x3(t) = the motor current, I, (t). Using
specific values for the above system parameters involved in the equations of motion, we
get the following nonlinear state equations for the system:

:i‘l(t) = :L‘Q(t)7

@o(t) = —40.69sin (z1(t)) — 0.1z2(t) + 8.9963(1),

I3(t) = —28.89x4(t) — 722.225(t) + 555.5u(t),

y(t) = o1(t).

The nonlinear term in the &2 (¢) equation can be modeled as a set of seven piecewise linear
functions of the form —40.69 sin(z1 (t)) ~ —40.69(m;xz1(¢) + b;) Vi = 1,...,7 over the

interval from —7 < z1(¢) < w. The nonlinear system equations become a set of seven
piecewise linearized state equations of the form in (7):

%(t) = Aik(1) + B, [1 u(t)] : )

y(t) = Cx(t) + Du(¢).

The piecewise linear system matrices are shown in (8):

0 1 0 0 0
A, = |—40.69m; —0.1 899 |, B;= |—40.69; 0 |,
0 —928.89 —722.2 0 555.5 ¥

C=1[ 0 0, D=]Jo0].
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The values for m; and b; are given in Table 2 and are computed using a linear regression
technique. The Aq,..., A7 and B, ..., B7 matrices form the set of system and input
matrices for a dynamically switching data selector. For the purposes of determining which
set of A; and B; to use within the data selector, the state, #1(t), is normalized to the range

- < z(t) <.

Table 2. Slope and intercept values for sin(x1 (¢)).

7 m; b; Range

1 —0.8706 —2.7615 —m <& (t) <-0.7T7
2 —0.3059 —1.5114 —0.77 <#1(t) <—0.57
3 0.3059 —0.5505 —0.57 < (t) <—0.37
4 0.9107 0.0000 —0.37 <#1(t) <0.37

5 0.3059 0.5505 0.3m <#1(t) <0.57

6 —0.3059 1.5114 0.5m <#1(t) <0.77
7 —0.8706 2.7615 0.7 <z1(t)<m

The nonlinear system and the piecewise linear system were co-simulated. When
simulating the piecewise linear system, the correct set of A; and B; matrices are chosen
by using a data selector driven by a lookup table based on #1(t). For example, when
Z1(t) is in the range 0.5 < Z;(¢) < 0.77, the lookup table will output a 6 and the data
selector will use Ag and Bg. This switching is done dynamically so as to minimize the
lag introduced into the system. Only the results for x1(¢) and % (¢) are presented here to
demonstrate the concept.

The system was excited with a 1-second step pulse of sufficient magnitude to force
the system through a complete revolution. As can be seen in Fig. 5, the multiple piecewise
linear model provides a very good estimate of the nonlinear system’s state.
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Fig. 5. Piecewise model (&1 (t) vs. actual (x1(t)), and error (z1err = z1(t) — £1(t)).
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The mean error is —0.0245 radians and the standard deviation is 0.181 radians.
The effect of some of the errors introduced by the model can be seen in the initial rapid
acceleration through one full rotation, where the model over-predicts the position initially,
then under predicts the position once the system has reached its maximum travel. The
effect of the system integrator can be seen by the phase shift that is introduced between
the actual and estimated positions after the 10-second point in the trace. Of course, any
type of linear feedback estimation technique may be used to reduce this error.

4 Conclusions

In this paper, a technique was presented for using multiple piecewise linear models on
nonlinear systems in order to estimate the internal states. The only restriction on this
method is that the nonlinearities must be able to be expressed as piecewise linear models.
In addition, there needs to be a reasonable estimate of the range the state variables will
traverse for those state variables that are in nonlinear portions of the state equations. With
the resulting model, any type of linear control or estimation optimization technique can
be used. In fact, using this method in conjunction with optimal or robust linear estimation
methods, like standard predicting Kalman filters or H,, estimators, produces excellent
estimation results. Of course, different optimization methods for each of the linear regions
of the piecewise model may be used if desired.
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