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Abstract. In this paper, a nonlinear mathematical model is proposedaaalyzed for
the survival of biological species affected by a pollutargésent in the environment.
It is considered that the emission of the pollutant into tingirenment is dynamic
in nature and depends on the environmental tax imposed oertfiters. It is also
assumed that the environmental tax is imposed to controkthission of pollutants
only when the concentration level of pollutants in the esminent crosses a limit
over which the pollutants starts causing harm to the pojulainder consideration.
Criteria for local stability, global stability and permaree are obtained using theory
of ordinary differential equations. Numerical simulasoare carried out to investigate
the dynamics of the system using fourth order Runge—Kuttthdde It is found that,
as the emission rate of pollutants in the environment irs@gathe density of biological
species decreases. It may also be pointed out that the lwalsgecies may even become
extinct if the rate of emission of pollutants increases icnu@usly. However, if some
environmental taxes are imposed to control the rate of éomis¥ these pollutants into
the environment, the density of biological species can biataiaed at a desired level.

Keywords: biological species, toxicant, environmental tax, nunarisimulation,
Runge—Kutta.

1 Introduction

Due to the rapid pace of industrialization, various kind offptants like oxides of sulphur
or oxides of carbon enter into both aquatic and terrestrigirenment. These pollutants
may be emitted into the environment from different souraeg.( industries, vehicles,
thermal power plant, refineries, etc.) as well as by incasssa of natural resources
without recharging and cleaning them. All these pollutachsersely affect the ecosystem
— water, air, vegetation, forestry resources and the landhih turn affect the survival
of large number of biological species directly as well asriectly by deteriorating the
resource biomass on which some biological species are depefl—5]. The examples
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of this kind of problems may be found in the ecosystems in tvtie air pollution affects

the forests and then the survival of forest dependent bicdbgpecies. In order to use
and irregulate these toxic substances wisely, we mustsa#isesisk of the populations
exposed to toxicants. Therefore, it is very important talgtthe effects of toxicants on
biological populations and to obtain conditions for susaaility of population.

In recent decades, several investigators have proposednatyzed mathematical
models to study the effects of toxicants on biological spef—9]. In particular, Hallam
et al. [8, 9] have proposed and analyzed mathematical madedtudy the effects of
toxicants on biological species when these are emittedlmtenvironment from external
sources. Hauping and Zhien [10] have proposed a matheraticke! to study the effect
of a toxicant on naturally stable two species communitigsthese investigations the
effects of a toxicant simultaneously on growth rate andy@agrcapacity of the species
have not been considered. However, Freedman and Shukleggdged models to study
the effects of a toxicant on single-species and preda&y-grstems by assuming that the
intrinsic growth rate of species decreases as the uptakeentmation of the toxicant in-
creases while its carrying capacity decreases with the@mviental concentration of the
toxicant. Shukla et al. [11] have studied the effects of aryrand secondary pollutants on
arenewable resource using the same consideration. Shatl§1] have also studied the
survival of two competing species in a polluted environmesihg similar assumptions
and showed that the usual competitive outcomes may be @lierthe presence of a
toxicant, see also [13]. Buonomo et al. [14] have proposedthematical model to study
the effects of toxicants on a biological population and ot&d a threshold value which
determines permanence or extinction of biological pojortat

The environmental problem in India is growing rapidly. Isthial pollution, soil
erosion, deforestation, rapid industrialization, urlzation, and land degradation are all
worsening problems that need to be addressed. So there musinhbe strategies to
improve the quality of environment declines and whosoeseesponsible for causing
damage must pay the costs of measures taking the remedgffedts. In the recentyears,
environmental policy makers have suggested that enviratathiaxes including pollution
charges (emission/effluent tax/pollution tax) are one @ndwimprove the environment
at right time. They also suggested for India to tackle thaedssf increasing pollution
that “Reduce tax on employees and employers and put a tax larigo’. Such taxes
make the polluters pay and thus internalize environmemrtatealities, revealing the true
social cost of production in prices. Examples of environtaktaxes include (i) carbon
taxes (where industry is taxed for every unit of carbon diexémitted, which incentivizes
firms to find energy-efficient and low-carbon alternativéls¢, more carbon dioxide one
emits the more he pays in taxes (ii) congestion charges evmatorists pay a fee for
entering the “congestion zone” which encourages them toenfaker journeys in these
areas), and (iii) fuel duties (where petrol is taxed to emage to motorists to buy more-
efficient cars or use their cars loss frequently). This typst@tegies have already been
adopted in some countries and the concept of polluters nayshps been popularized.
The government of India is considering to impose a spec@bfevehicles entering the
central business districts of metropolitan cities as padteps to cut carbon emission
and reduce traffic congestion (25/12/2008, Economy Time=s\v(®elhi)). Thomas et
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al. [15] proposed and analyzed a mathematical model to shedgffect of pollutant on a
single species population and obtained some criteria toicethe amount of toxicant
in the environment to ensure the survival of the species. ulink [1] showed that
environmental pollution limits or impact standard may beduto define the public risk
tolerance limits and carrying capacity constraints. He pl®ved that thematic indicators
and derived indices may be effective in resource assessameineconomic evaluation.
But in the above mentioned studies, impacts of environnhéateto limit the pollution
and its effect on biological species have not been congidere

Keeping in mind the above, in this paper, we propose and aeaymathematical
model to introduce the concept of environmental tax (pmhutax) and its effects on the
survival of biological population in a polluted environnte®tability theory of ordinary
differential equations is used to analyze the model. To dongmt these analytical
findings, we present a numerical simulation using fourtreoRunge—Kutta method.

2 Themathematical model

Consider a biological species such as plant/tree populatia forest stand affected by
the pollutant emitted into the environment by differenteyqf industrial process. It is
assumed that the growth rate of the species decreases witiptake of pollutant by the
species. Itis also assumed that the introduction of theifaoit from the different sources
is dynamic in nature and depends on the environmental tagsegbon the emitters. Tax
is imposed only if concentration of pollutant in the envinoent crosses a permissible
limit (limit up to which there is no harm to the population)damethod of imposing tax is
devised on the basis of emission of pollutants by a partigotiustry e.g. if an industry
emits one unit of carbon mono oxide in a day, tax of one unieeupould be imposed
on the same. A four-dimensional mathematical model gowegrtiie situation is given as
follows

&(t) = x(t )(M*TlU() fx(t)),

U(t) = kT () ()*mU(t), 0
T(t) = Q — kT (t)a(t) — hT(t) + LU (t)a(t) — pg(I(t)),

I(t) = ur ( t) [0(T(t )—To) — 0ol (t)],

wherez(0) = 29 > 0, U(0) = Uy > 0, T(0) = Ty > 0;

To, T'1, f7 ka la m, k17 h7 Z17 Qa P 97 907 TO > 07

ur, (T) = 0 ifT<TO’ for Ty > 0.
1 if T > Ty, B

In model (1),z(t) is the density of biological specie§/(t) is the uptake con-

centration of the pollutant by the specié3(t) is the concentration of pollutant in the
environment and (t) is the environmental tax imposed on the emitters at tirxe0.
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is the intrinsic growth rate of the population in the envimemt without pollutanty is
the decreasing rate of the intrinsic growth rate associattttthe uptake of the pollutant.
The first equation of (1) assumes that the populatign satisfies the logistic equation
and the pollutant causes the intrinsic growth rate of theufaijmn to decrease linearly.
We can see that ify — 11U < 0, thenz(t) will get extinct in the end, so we suppose
ro

U< —
T1

(2)

k is the uptake rate coefficient of pollutant due to the biatagpopulation/ andm are the
depletion rate coefficients @f due to egestion and depuration of pollutants, respectively
Constant) represents the rate of introduction of pollutant into theimmment,p is the

tax repulsion coefficient ang( 1) is the function of/, the environmental tax, introduced to
control the emission of pollutants, collected in unit pdrad time from various industries
of the ecosystem as they emit pollutants. When there is nothés emission of the
pollutants is considered &3, which is constant at particular point of time but with the
imposition of tax, this introduction is limited by the factag (7). This indicates that with
the increase in total environmental tax, concentrationalfupants in the environment
decreases with time. For our analysis, we consider thistimmg(7) as a very simple
identity function, i.e.g(I) = I. k; is the depletion rate coefficient @f due to its uptake
by the biological specieg, is the loss rate of pollutant due to various natural processe
including biological transformation, volatization, gitational deposition on the ground
leading to chemical hydrolysis etd,, is the increase rate of pollutant due to egestion
of the species. Tax is imposed only’ff crosses the permissible linif, (limit upto
which there is no harm to the populatiort).is the tax rate coefficient and the tefim/

in the fourth equation of system (1) is considered due to spraetical difficulties on
implementing the foolproof tax system. In every tax systdmyre are some pilferages,
natural and administrative problems and faults of the systee to which the increase of
the tax amount is not directly proportional to the differeraf 7" and7y. The unit step
functionur, (T') is introduced to ensure that whéhis less tharf, no tax is introduced
to the system, change éfwith ¢ becomes zero. The factég is small in comparison to

6 and it can be safely considered that whieis small so that right hand side of fourth
equation of (1) remains positive. For all practical purmae are concerned with a
system in which the concentration of pollutants has croisetiarmful limit and there is
no need to use the step function. Therefore, in the rest®pidyper, we consider the value
of step function ag and mathematical model as given below:

fU(t) Zx()(ro—ﬁU() fz(t)),
J(t) = kT () ()*mU(t)
T(t) = Q — kT(t)a(t) — hT(t
I(t) =0(T () To) — 6o (t),

3)

~— =
—+
o~
,_.
A
\/
/—\
~
~
\
S
~
—
~
~—

wherez(0) =29 >0, U(0) =Uy > 0, T(0) =Ty > 0.
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3 Boundedness of solutions

To analyze the model (3), we need the bounds of dependeablesiinvolved. For this
we find the region of attraction in the following lemma.

Lemmal. If h >k and [ +m — 172 > 0. Then the set

Q < Q0

0= T,0): 0<a< 0<U+T <=2, 0<1I

{(a:,U, 1) 0<x =7 0<U+ _5,0_ < 36,

whered = min{l +m — llT"O, h —k}, attracts all solutionsinitiating in theinterior of the
positive octant.

Proof. It is assumed here that all the initial values of variablessidered in model (3)
belongs to the regiof? and are positive.
From the first equation of system (3), we have

& < a(rg — fx).

This implies thatlim sup, _, (t) < .
From the second and third equation of model (3), we get

U+T<Q+KkI—IU—-mU —hT + 11Uz

<Q- (z+m— ll%)U—(h—k:)T
wheres = min{l+m — 1o 1 —k}. This implies thatlim sup, .. (U(t) + T(1)) < $.
Now from the last equation of model (3), we have

. 0
1 <0T -6 < %790].

This implies thatlim sup,_,  I(t) < %. This completes the proof of the Lemma 111

Biological interpretation of conditionsinvolved in Lemma 1

The conditionh > k implies that the loss rate of pollutants due to various rafpiro-
cesses should be greater than the uptake rate coeﬁicieoﬂofqmt due to the biological
population for the boundedness of solutions. The condlﬁ’éﬁ > o implies that if the
depletion rate coefficients @f due to egestion and depuratlon offpollutantsl.andm
respectively are small and increase rate of pollutants degéstion of the species i.kg.
is large then the solutions of the system (3) may not be badinde

4 Equilibrium analysis

The system (3) has two non-negative equilibriaji/, 7', I space namelyo (0, U,T,1)
andE, (&, U,T,1).
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Existence of Eq(0,U, T, TI)

In this casd/, T', I are obtained by solving the following equations:
KT —1U —mU =0,
Q — pl —hT =0,
0(T — Ty) — 0o = 0.

7 QO0+pT, = k(QB0+p0To) 7 0(Q—hTy) .
Clearly, T = pgT’jeoﬂ >0,U = wazgm >0,and] = =55 > 0ifand only
if Q > h1Ty.

Existenceof Ey (&, U, T, I)

In this caset, @, 7", I are the positive solutions of the following equations

ro —riU — fo =0, (4)
A
= k h likx po? (5)
1T+ N — Trm + O
l+m)A
- ( l>1ka; po "’ (6)
k(kﬁlI-i-h—m‘i‘%)
B O(l+m)A 0T @
ko (kya + h — BEZ 4 68) 0
where
k Py
A= — .
l—i—m<QJr ) )

It is noted from the equation (5) théf is a function ofz only. In order to show the
existence ofZ; we define a functiod'(x) from equation (4), after using (5), as follows

- Lke  p
F(x)—(ro—fx)(kw—i-h—ler—i—90) r1A. (8)

Now, from (8), we get
0
F(O) =70 (h + p—> - TlA.
o

This impliesF(0) > 0, iff ro(h + £2) > r1A. Also from (8), we have

F(%O) — 1A <O.
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Now sinceF (z) is quadratic inc and F/(0) > 0 andF'(*2) < 0, soF'(z) = 0 will have
a unique root: in the intervald < & < ’70 which is obtained by solving

F(@) = 0.

After knowing the value of, values ofU, 7" andI can be found from equations (5), (6)
and (7), respectively.

5 Stability analysis

5.1 Local Stability

If E*(z*,U*, T*, I*) is an equilibrium, then the local stability can be deterrdifrem
the eigenvalues of the variational matfiX £*), whose entries are given by the differ-
entiating the right hand side of system (3) with respect:to/, 7, I and evaluating at
U T* 1", i.e.

[rg — M U* — 2fz* —rix* 0 0

o 0 —(l+m) k 0
V(E ) B —kT* + [WU* lix* —(k’ll‘* + h) —p
0 0 0 —bp

Using the notatio/ ( Ey) for the variational matrix of equilibriuni, we get

I To — TlU 0 0 0

B 0 —(l+m) kE 0
VIE)=\_pT+n0 0 -h —p
0 0 0 —6p

The eigenvalues of (Ey) arerg — U, —(I + m) and\,, where

|
A= [ — (6o + h) £ /(0o + 1)% — 4(hby + pb)].

The signs of the real parts of. are negative. This implies thd, is locally asympto-
tically stable in the/ — 7" — I plane. As to thec-direction, E is stable ifU > ;—‘1’ and
unstable ifU < 2 (necessary condition fdt, to exists). Thereforé is a saddle point
if F; exists otherwise it is locally asymptotically stable. Hene also note thak), is
neutral af/ = > becaus@/ = 72 is the bifurcation pointi.e. df = ° stability change
occurs.

The stability behavior of2; is not obvious from the corresponding variational ma-
trix. Therefore by using Liapunov’s method in the followittgeorem, we find sufficient
conditions forE; to be locally asymptotically stable.

Theorem 1. Let the following inequality holds
o (2k(kT — LU)\? )
242
max{rlx , <—h+k;1§c > < fz(l +m), (9)
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then E; islocally asymptotically stable.

Proof. We first linearize system (3) around the positive equilibrié;, by taking the
transformations where = z1 + 2, U = Uy + U T=1T + T I =1, + I, wherex,
U1, Ti andI; are small perturbat|ons abobt . Then we consider the following positive
definite function in the linearised system of model (3),

1 1 C1 C2
Wi = 51% + §U12 + 3T12 + 31127

wherecy, ¢, are some positive constants to be chosen appropriately.
Now, differentiatingl¥; with respect to time we can findil’; along the solutions
of linearised system of (3) as follows

. 1 1
W1 = |: iflfl'% — Tli'Ull'l — 5([ +m)U12]
1 ) ) 1 -
+ | = 5([ + m)Ul + (k? + Cllll‘)TlUl — §Cl(h + k?ll‘)Tl

1
+ [— §Cl(h + kl.f?)Tf —C (k’l — ZlU)l‘lTl — —f$$1:|
— ClpllTl + 0 T) — 0290112

Now choosing:; = s k. andc, = <, we note that the sufficient conditions fidf, to be

negative definite are that the following inequalities hold
ria? < fa(l4+m),
4k> < Cl(l + m)(h + kli‘),
e (kT = L0)? < fa(h+ ki),

Summarizing above inequalities, we note that Hie would be negative definite under
the inequality (9) showing that’; is a Lyapunov'’s function. This completes the proof of
the Theorem 1. O

5.2 Global stability
Theorem 2. Let the following inequality holdsin €2

2N\ 2
max{rf, <2kz1T> } < f(l+m), (10)

then E; isglobally asymptotically stable.

Proof. Consider the following positive definite function abduit

o 2

W, = (x—x—mlnm) T ) R TC ARV ) L CEY
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wherecs, ¢4 are some positive constants to be chosen appropriately.
Computing the time derivative of (10) along solutions ofteys (3) and after doing
some algebraic manipulations, we get

W, = [—%f(a:—a})Q—m(m—fz)(U—U)—%(H—m)(U—U)Q
+ [—%(l—i—m)(U—U)Q+(k+0311§:)(U—U)(T—T)
1 A2
7563(h+k1x)(T7T) ]
T [ Lealh 4 baa) (T = T)? = e (b — b0 & — ) (1~ )
1 N2
if(ﬂffﬂ)]

—cap(I = D(T =T) + cs8(I — D) (T = T) — cabo (1 — 1)*.

Now choosing:s = 11% andcy = C—gﬁ we note that the sufficient conditions ftr, to be
negative definite are given by the following inequalities
rf < (I+m)f,
4k* < cs(l +m)(h + ki), (12)
(kT — LU < f(h+ k).

After maximizing the L.H.S. and minimizing the R.H.S. of tilequalities given in (12),
the stability conditions can be obtained appropriately.

r? < (l+m)f, (13a)
4k* < c3(l +m)h, (13b)
csk?T? < fh. (13c)

Now summarizing inequalities (13a)—(13c), we note that would be negative
definite under the inequality (10) showing th&} is a Liapunov’s function and hence the
Theorem 2 is proved. O

Remark 1. If , are is large, then condition (10) may not be satisfied. Thidies that if
the decreasing rate of the intrinsic growth rate of the pafoarh due to the uptake of the
pollutant is large, then it destabilizes the system.

Remark 2. If k¥ andk; are large, then condition (10) may not be satisfied. Thisiespl

that if the uptake rate coefficient of pollutant due to thddgical species and depletion
rate coefficient of pollutant due to its uptake by the biotadjispecies are large, then it
also destabilizes the system.
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Remark 3. If h,l andm are small, then the condition (10) may not be satisfied. This
implies that if the loss rate of pollutants due to variousurat processes, depletion
rate coefficients of uptake concentration of pollutantsh®ygpecies due to egestion and
depuration of pollutants, respectively are small, theregtdbilizes the system.

6 Permanence of solutions

Biologically, persistence means the survival of all pofiolss in future time. Math-
ematically, persistence of a system means that strictlytipessolutions do not have
omega limit points on the boundary of the non-negative c&eesistence may be defined
mathematically as, a populatidvi(¢) is said to persist (sometimes called strongly persist)
if N(0) > 0implies N (¢) > 0 andliminf;_, N(t) > 0. Further, a populatioiV (¢)

is said to be uniformly persistent (also known as permandhc€é(t) persists and there
exists¢ > 0 independent ofV(0) > 0 such thatim inf; .., N(¢) > ¢. Finally, we say
that a system persists (uniformly) whenever each compgregsists (uniformly).

Theorem 3. Assumethat Q > Ty(h + %). Then the system (3) is uniformly persis-
tent if

nQw(_Q
5>max{ o’ 0o <QT()(h+klfro)>}'

Proof. From the first equation of model (3), we get

T > a:<7"0 77"1% fx).

This implies that,

liminf x(t) > % (ro - 7“1%).

t—o0

From the third equation of model (3), we get

- SO D A
72Q(1- £ ) - (n+ B0

This implies that,

- Q Lid
liminf T'(t) > —%— (1 — '
152&1 ()— h—i—kl;() (590

Now from the second equation of model (3), we get

: kQ pY
> < (1L
v ( 59()

—(l+m)U.
> i )~ )
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This implies that,

lim inf U (t) > hQ - (1 _ p_@).
00 (I +m)(h+ Bi2) 66
Lastly, from the fourth equation of model (3), we get
. 1— L2
>0 Lﬂ“)—% — 0ol
h + 170
f
This implies that,
lim inf () > - Q- %) T
112(1)101 9() h+ klfro 0

According to the above arguments and Lemma 1, we have

S

%(m — %) < hmmf:c( ) <limsupz(t)

§ o
t—oo t—o00 f
( — p_) <liminf U(t) < limsup U(¢t) < Q,
(L +m) h Y R 5 e . 5
po - : Q
— — ) <liminf T'(¢t) < limsupT'(¢t) < =,
5 t—oo t—00 )
p
~ 300 0
% fE 1f )7T0 <11r£10r01f1() §li£risotolpl(t)§(?—90.
This completes the proof of the Theorem 3. O

7 Numerical simulations and discussion

To visualize the above analytical findings and the behavitm®system (3) for different
rates of emission of pollutants as well as in the presenceabrdnce of environmental
tax, numerical simulation is done here. For this, the syg@ns integrated using fourth
order Runge—Kutta Method under the following set of paramset

h=12, k=3, =08, [=02 m=4, k =01, 7y =S8,

14
f=4, 1,=002, p=5 0=10, 6y =5, Ty=D0.25, Q:10.( )

With the above values of parameters it is found that the imtequilibrium exists and is
given by

#=1.9194, U =0.4028, 71 =0.5639, I=0.6279.
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Here, we note that the conditions of local stability, globibility and permanence are
satisfied. Using MATLAB software package, graphs are ptbfte different values of
important parameteig, p andd in order to conclude and confirm some important points.

In Fig. 1, the biological species is plotted against timedifferent rate of emission
of pollutants. From this plot, we note that as the emisside od pollutants in the
environment increases, the equilibrium density of bicdagpopulation decreases.

Variations of the biological population) uptake concentration of pollutant by the
population (/) and pollutant ") with time in the presence and absence of the environ-
mental tax are plotted in Figs. 2, 3 and 4, respectively. Ritwse plots, we can infer that
the presence of the environmental tax increases the endlraiof biological population
and decreases the endemic levels of uptake concentratjpoilafant by the population
and pollutant, respectively for the same valu&of

2

19r r J:
18} 18t 5
171 17 2 : 1
‘ I —— Presence of environmental tax
T 16 18} * Absence of environmental tax
*x 15 x15 {
!
14 149
—— Q = 10| t
® Q=30
13§ I - 13
12 12p
1.1 11
1l 4” L L L L
8 10 0 1 2 3 4 5 6 7 8 9 10

Time () ——— Time ) —»

Fig. 1. Variation ofz with time for different ~ Fig. 2. Variation of z with time in the
rate of emission of pollutants and other presence and absence of environmental tax
values of parameters are same as (14). for the set of parameter values given in (14).

075 o Absence of environmental tax
‘ ~* Presence of environmental tax
07p i

o Absence of environmental tax |
* Presence of environmental tax 05!}

I I I I I I I I I 045 I I

0 1 2 3 4 5 6 7 8 9 10 0
Time() —* Time () ——»

Fig. 3. \Variation of U with time in the Fig. 4. Variation of 7" with time in the
presence and absence of environmental taypresence and absence of environmental tax
for the set of parameter values given in (14). for the set of parameter values given in (14).
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In Figs. 5, 6, the variation of population with time is shovan #ifferentp andé,
respectively. It is concluded that with the increase of ¢hgarameters, the equilibrium
density of population increases. It is observed that thdibgum density of the popula-
tion is more sensitive to the paramegerthe tax repulsion coefficient, in comparison to
0, the tax rate coefficient. Thus the tax repulsion coeffigipntvhich characterizes the
sensitivity of the industries which emit pollutants and plag required tax on the basis of
the amount of the emission is the key parameter which we reeeddose very carefully
in order to maintain the equilibrium level of population.

2 ‘ ‘ ‘ ‘ 2 ‘ ‘ . ‘
1.9—/F"”””””””””i T
18} | 1 180 —
1.7—{ ;piw L7y
TLG } p=15 1 Im— - gzég
><145:J 1 xis|] —— 829
14 1 1.4{
13 1 13
12 1 12
11 1 11
%o 2 8 10 % 2 8 10

Time () —» Time () —»

Fig. 5. Variation ofz with time for different Fig. 6. Variation ofz with time for different
tax repulsion coefficients pj and other  tax rate coefficientsf) and other values of
values of parameters are same as in (14). parameters are same as in (14).

Simulation is performed for differentinitial starts I, lll, IV in Fig. 7 to graphically
illustrate the global stability of the interior equilibriupoint, £, in thex—U plane, where
initial starts are

Initial start:  [1 0.045 0.6 1]J;
Initial start 1l [3 0.045 0.6 1]J;
Initial start I1l: [1 0.6 0.6 1];
Initial start IV: [3 0.6 0.6 1].

Itis depicted from the graph that the solutions of the systenverge to equilibrium
point £, for different value of initial starts, indicating that thgssem is globally asymp-
totically around this point. Now to depict the global sté&pibf the interior equilibrium
point F, in thex — T plane, we have performed simulations for different inisitrts I,
I, I, 1V, Vin Fig. 8, where initial starts are

Initial startI:  [1 0.45 0.2 1]

2 1§;
Initial start 1l: [1 0.45 1.2 1J;
Initial start I11: [4 0.45 0.2 1J;
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Initial start 1V: [4 0.45 1.2 1];
Initial start V: [2.5 0.45 1.2 1].

v Equilibrium point | V2

03 T\ L A p- Equilibrium point
061 v

0.asf B o4r
m

01 4 03F

0.05 . . . . . . . . . 0.2 . . . . .
1 12 14 16 18 2 22 2.4 26 2.8 1 15 2 25 3 35
x

—_ —_

Fig. 7. Variation of population with uptake Fig. 8. Variation of population with toxicant
concentration of toxicant for different initial ~ for different initial starts |, 11, Ill, IV and V.
starts I, II, Il and IV.

8 Conclusions

The main focus of this paper is to model the process of theiairef a biological
population, when the population is affected by a pollutaniteed into the environment
by external sources. It is assumed that the biological fdjou is growing logistically
in the environment. It is further assumed that the introidmcof the pollutant from
external sources is dynamic in nature and its cumulativegbemission is reduced due
to the levy of taxes. Existence of all the equilibria and #it#ds of the same have been
carried out. The first equilibrium corresponds to the estiorcof the population. When
the first equilibrium is unstable, the second equilibriunstxand is locally as well as
globally asymptotically stable under certain conditio@anditions which influence the
permanence of the system are also given. By numerical siionjat is shown that as
the cumulative rate of the emission of the pollutant froneexal sources increases, the
endemic level of population decreases and may become exthacwe need to control
the emission rate of pollutants from external sources. g we note that when taxes
are imposed on emitters of pollutants, the endemic levebpiitation increases and shift
more near to the level when the ecosystem is toxicant free.

The environmental taxes enhance the environmental queatity revenue. First,
pollution taxes provide a measure of certainty to reguléitets. Second, pollution taxes
raise revenue for the federal budget. These revenues celfgdihance some of the tax
reform initiatives and to reduce rates on distorting taxesind cleanup programs. Also,
the strategy of charging tax on the basis of emission of petlis proves as a disincentive
to the industries and the regulator may attempt to increffiséeacy, maintain a fair dis-
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tributional impact, minimize the costs of administratiordacompliance, and implement
an efficient use of revenue.
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