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Abstract. We formulate a delayed SIR epidemic model by introducingemiigperiod into
susceptible, and infectious individuals in incidence.ratas new reformulation provides
a reasonable role of incubation period on the dynamics of &llRemic model. We
show that if the basic reproduction number, denotgl, is less than unity, the disease-
free equilibrium is locally asymptotically stable. Morewywe prove that ifRy > 1,
the endemic equilibrium is locally asymptotically stablm the end some numerical
simulations are given to compare our model with existing ehod
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1 Introduction and mathematical models

Epidemic models have been studied by many authors. Mostenf #re interesting in
the formulation of the incidence rate, i.e., the infectiaterof susceptible individuals
through their contacts with infectious (see, for example5]). In order to model this
disease transmission process several authors employltbeifiy incidence functions:
The first one is the bilinear incidence rgt817, whereS and/ are respectively the number
of susceptible and infective individuals in the populatiand 3 is a positive constant
[6-10]. The second one is the saturated incidence rate dfotine % wherea;

is a positive constant. The effect of saturation factoreréd «;) stems from epidemic
control (tacking appropriate preventive measures) [11-THe third one is the saturated
incidence rate of the forn@%, whereas is a positive constant. In the last one, the
number of effective contacts between infective and sugdephdividuals may saturate
at high infective levels due to crowding of infective indlvials or due to the protection
measures by the susceptible individuals [7, 15, 16].
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In a recent paper [17], we considered a delayed SIR epidemdaehwith a satu-
rated incidence rate as follows:

ds BS{t—7)I(t—71)

E :A—MS(I‘,)_ 1+O{15(t*7’)+0¢2](t*7’>,

dr _ BSI(t)

At~ 1+ aS(t) +aol(t) (m+a+v)I(t), 1)
W 1) - R,

whereS is the number of susceptible individualsis the number of infectious individu-
als, R is the number of recovered individual$,is the recruitment rate of the population,
1 is the natural death of the population,is the death rate due to diseaskis the
transmission ratey; anda, are the parameter that measure the inhibitory effeds
the recovery rate of the infective individuals, ant the incubation period [14, 16-18].

In the SIR model (1), the number of the new infective casedyced in the period
(t — 7, t] is neglected in the evolution of the susceptible class, sutakien into considera-
tion in the evolution of the infectious class. However, ityntee more realistic to tack this
period into consideration in the evolution of susceptiltéess, and not in the evolution of
infectious class, because susceptible individuals ietket timet — 7 is able to spread
the disease at time In this paper, incubation period is introduced into the 8fRdemic
model (1) to formulate a new delayed SIR model as follow:

ds _ BS(t)I(t)

@ A TS T el ()

% - 1+a?§((§_:;€£ta2;&_7) —(pt+a+)IQP), (2)
% =10 = uR ().

The first two equations in system (2) do not depend on the #ndpgation, and
therefore this equation can be omitted without loss of gaitgr Hence, system (2) can
be rewritten as

0s BS()I(t)
g_A—MS(ﬁ)_1+a15(t)+0421(t), 3
dI_ ﬁS(t_T)I(t_T) ( )

& - TT St taallt—r) HFaFNI®).

This model provides a reasonable role of incubation periodhe@ dynamics of
SIR epidemic model. We show that if the basic reproductiominer, denotedRy, is
less than unity, the disease-free equilibrium is locallynastotically stable, and disease
always dies out. Moreover, we prove thatif > 1, the endemic equilibrium is locally
asymptotically stable, so that the disease, if initiallggent, will persist at the unique
endemic equilibrium. In the end some numerical simulatiaresgiven to compare our
model with existing model.
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2 Steady state and local stability analysis

In this section, we discuss the local stability of an endeegjuilibrium and a disease-
free equilibrium of system (3) by analyzing the correspagdiharacteristic equations,
respectively [19]. System (3) always has a disease-freiteium F; = (ﬁ, 0). Further,
if

AB

Ry :=
O (ot ) (At p)

> 1,

system (3) admits a unique endemic equilibriith= (S*, I*), where

-~ pl(p+a+y)Re+ azA]’ (1 +a+7)Re + azA’

A= (ptaty)]

whereR,. := e

Remark 1. (i) The basic reproduction numbeR, representing how many secondary
infectious result from the introduction of one infectediindual into a population of
susceptible [20].

(i) Ry > 1is equivalenttar. > 1.

Now let us start to discuss the local behavior of the systénof(&he equilibrium
pointsE; = (%, 0), andE™ = (S*, I*). At the equilibriumE}, characteristic equation is

GA

A A+ (p+a+ry) - ———
(A +p) (n+a+7) oA

exp(—At)| =0. (4)

We have the following result

Proposition 1. If Ry < 1, then the disease free equilibrium E; islocally asymptotically
stable. And if Ry > 1, then the equilibrium point E; is unstable.

Proof. ForT = 0, the equation (4) reads to

plp+a+y) (R —1)
A A — =0. 5
(A+w) oA (5)
Obviously, (5) has two rootd; = —u < 0, and\, = “etetnBe D) - yence, jf

R, < 1, then the disease free equilibrium is locally asymptgfirgalllly stable for = 0.

By Corollary 2.4 in Ruan and Wei [21, p. 867], it follows th&instability occurs for a
particular value of the delay, a characteristic root of (4) must intersect the imaginary
axis. Suppose that (4) has a purely imaginary agtwith w > 0. Then, by separating
real and imaginary parts in (4), we have

= _p4
{u+a+’y oA Cos(wT), ®)

A .
/-LfalA sin(wT).

w=-
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Hence,

_pA
oAl

7
oA (7)

For R. < 1, equation (7) has no positive solution. Thus from Remark Eyi < 1, then
the disease free equilibriuii; is locally asymptotically stable for all > 0.
If R. > 1, then the disease free equilibrium is unstable forr = 0. By Kuang’s
theorem [22, p. 77], it follows that™* is unstable for alt- > 0. This concludes the proof.
Letx = S — S*andy = I — I*. Then by linearizing system (3) arouiitf, we
have

dz BI* (1 + aol™)

P t) —
dt # (1-‘1-0(15*4—0(2[*)2 :C()

dy  BI*(1 + aol*)
- _ t—
it - Qtas FarE 7

3S*(1 + a15%)
(1 + a1 S* +Oég[*)2

85*(1 + a1 5%) o
(1+a1$*+0¢21*)2y(t T) ( )

y(t),

— (p+a+7)y).

The characteristic equation associated to system (8) is

M pA + shexp(=AT) + 7+ gexp(—AT) = 0, 9)
where
B BI* (1 4 agl™) B BS*(1+ a1.8%)
p—M+(H+0‘+7)+(1+a15*+a21*>27 s = (1+0415*+0421*>2’

BI*(1 + asl*)
(1 + o1 S* + Oég[*)Q

pBS* (14 a15*)
1+ a1S9* + OéQI*)Q.

r=lp+ (h+a+7), 1=

The local stability of the steady staf&" is a result of the localization of the roots of the
characteristic equation (9). In order to investigate tlvalstability of the steady state, we

begin by considering the case without detay: 0. In this case the characteristic equation
(9) reads as

Mr(p+s)h+r+q=0, (10)
where

app(p+a+7)*(Re—1)  pP(p+a+79)°R(R: — 1)

p+s=p+

Bl + a+v)+ azAl BA[(1+ a4+ ) + azA]
g o+ a+7)?*(Re —1)  p*(p+a+7)°Re(R. — 1)
Bllp+ a+7v) + azA] BA[(p + a+ ) + azA]

hence, according to the Hurwitz criterion and Remark 1, weshhe following proposi-
tion. O
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Proposition 2. For 7 = 0, the equilibrium E* islocally asymptotically stable if and only
if Ry > 1.

We now return to the study of equation (9) with> 0.

Theorem 1. If Ry > 1, then the steady state £* is locally asymptotically stable for all
7> 0.

Proof. From the hypothesiB, > 1, the characteristic equation (9) has negative real parts
for 7 = 0 (see Proposition 2). By Corollary 2.4 in Ruan and Wei [21,6Y]8it follows

that if instability occurs for a particular value of the delg a characteristic root of (9)
must intersect the imaginary axis. Suppose that (9) haseypianaginary rootw, with

w > 0. Then, by separating real and imaginary parts in (9), we have

r — w? — swsin(wt) + qcos(wt) = 0, (11)
pw + sw cos(wT) — gsin(wr) = 0.
Hence,
W —st—2r)wi+r? -2 =0. (12)

From the expressions efandq, we haver — ¢ > 0 and from hypothesi®. > 1, we
deduce that? — ¢ > 0.
Evaluatingp® — s? — 2r,

2(R.—1) B5*(14a15%)
2 272:a2u(u+a+7)(c { ot +
e (s wwsy L R CRw ey Sy
BI*(1+Q21*> 2
i (1415 +asl*)?

Since forR. > 1, we havep? — s2 — 2r > 0.
Thus from Remark 1, equation (12) has no positive solutionidg > 1. This
concludes the proof. O

3 Numerical application

Let's compare the principal results of systems (1) and (2pbymerical illustration.
Consider the following parameters:

a1 =001, as =001, A=0.94, =0.1, p=0.05 a=05 ~=05.

System (1) and (2) has the positive equilibridgth = (11.771,0.334, 3.347). It follows
from Theorem 3.1 in [17], that for system (1), as the delagsisome critical valug, =
2.8465, E* loses its stability and a family of periodic solutions witeripd P = 38.0965
bifurcating fromE* occurs (see Fig. 1). However, for system (Z), is asymptotically
stable for allr > 0 (see Fig. 2).
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Fig. 1. Forr = 0, the solutions §(t), I(t), R(t)) of system (1) are asymptotically

stable and converge to the equilibridfii (top). Whenr = 2.8465, a Hopf bifurcation

occurs and periodic solutions appear, with same pefi) = 38.0965 (middle). For
7 = 4, the equilibriumE™ of system (1) is unstable (bottom).
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Fig. 2. Forr = 0; 7 = 2.8465; 7 = 4, the solutions §, I, R) of system (2) are
asymptotically stable and converge to the equilibribh
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4 Concluding remarks and future research

In this paper, we considered a delayed SIR model with a mad#&turated incidence
rate%, and a constant recruitment, We showed that the local stability of the
endemic equilibrium pointiz*, depend on the basic reproduction numlbgr,and doesn’t
change with respect to time delay, (the incubation period); I, < 1, the disease-
free equilibrium,E1, is locally asymptotically stable so the disease dies outrddver,
we prove that ifRy > 1, the disease-free equilibriunk;;, is unstable and the endemic
equilibrium, E*, is locally asymptotically stable for att > 0 (the disease approaches
the endemic valu&™*). In the end some numerical simulations are given to ilatstthe
theoretical analysis and to compare our model with existioglel in [17].

For the future research, we consider a delayed SIR modebva#tiurated incidence
rate of the form% and a logistic growth. In this case we show that the local
stability of the endemic equilibrium poink™, depend on time delay,
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