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Abstract. The mathematical model of nonlinear oscillations of wdiegg string is
analyzed. To find an asymptotic solution of the problem,amifly valid in a long interval
of time, an averaged system of integral differential equestihas been constructed.
A method for constructing special approximations of itaiiohs is proposed.
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1 Introduction

The differential equation;; = c3u., of the transverse oscillations of the absolutely
elastic weightless string is presented in nearly all han#bmf mathematical physics.
Here,u(x,t) is a string deviation in point at the time moment, ¢, = /7'/p is sound
velocity in string material, depending on its tensibrand density. However, this linear
differential equation turns into a mathematical model e€&flinear wave oscillations only
in the presence of a strongly simplified motion. It is possitd show [1] that with
rejecting the small gradient condition, i.e., whigh,| > 1 (hered(z,t) is the angle of
the string element deviation from the equilibrium posijidhe equation of string element
motion will be as follows:

2
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W27 ‘1)
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In the case when deviation from the equilibrium is negligjlle.,| 6.| < 1, the equation
of string motion (1) turns into the well known linear wave atjan.
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In paper [2], the mathematical model of nonlinear oscitiasi of the absolutely elas-
tic weightless string and the equation of motion (1) wereya®a under two important
preconditions:

1. Suppose that the sound veloaitis a weakly periodical spatial function
c=rco(l+ejcosw), &1 K 1.

The weakly periodic function is included in sound velocitycbnsider the possible
weak inhomogeneities of the string material or tension.

2. Upon introducing one more small dimensionless paramegtdet us employ the
expansion

1
(1+ (e2us)?)?

3 15
—1-Bagu e B o), <t

Introduction of the small parametes allows rejecting the requiremeft,| < 1
and analyzing non-small deviations of the string from theildzrium u, = O(1).

With the above preconditions and upon introducing: t/cy, equation (1) turns
into the following equation#(will be again marked ag:

3 15
ugr — (14 €1 coswz) (1 - §€§ui + geéui) = 0. (2)

2 The model of nonlinear string oscillations

It is important to emphasize, and we shall soon see it, tleatkissical wave equation is
obtained only in case the motion is highly simplified.

Let a strained string with fixed ends be able of freely ostiiltain thex, y plane.
The linear density of the string materialgs= const, and the tension force moduléis
a constant valué.

We shall consider the string to be massless. This meandgheafuilibrium position
coincides with ther axis, i.e., the effect of gravitation is neglected. Moreaka the
gravity force is mach more less than tension force. In theosji@ case of heavy string,
gravitation should be considered. The equilibrium pogitbsuch string is a “chain line”
~ coshy.

Depending on the context, the weightlessness of the stranglra expressed differ-
ently. For instance, when the spreading of elastic wavegasegis analyzed and when,
in direct approximation, the same wave equation is obtaitieel negligible effect of
gravitation equals ignoring the barometric pressure. presondition is valid for rather
“thin” layers of gas. The massless flow in hydrodynamicsesponds to the situation
with a rather small Galilei numbétia).

ITraditionally, tension force is marked &5 (“tension”); we shall differentiate it from the oscillatictime
which is marked also &5.

308



Asymptotic solution of the mathematical model of nonlinescillations

Every pointz of the string, under the effect of an external stimulus, dis from
the equilibrium:z — wu(z,t), i.e.,u(z,t) is an instantaneous deviation of the string in
pointz at moment. Let us single out a small fragmedt: of the string with the mass
pdz (Fig. 1). The string tension force at the ends of the fragrisetangential, therefore
the string fragmendx is pushed from the equilibrium by the transverse resultthe
forces:

dF, =Tsin (0 + df) — T'sinf ~ T cos 6 db. (3)

|

Fig. 1. Fragment of moving string and forces acting on it.

Applying the second law of Newton to a string fragment wita thass dz, in the
y direction we shall obtain

pdxii =T cosfdb, 4)
or

u T 00

W = ; COS 9% . (5)

At this point, it should be noted that the moving string déaig from the equilib-
rium is considered to be absolutely elastic. This meansthigatension forcd’ satisfies
Hook’s law of elasticity. In the opposite case of non-elastéformations, plastic de-
formations of the string should be accounted for, and itdlatons will be much more
complicated.

Another property of the string, related to its deformatimnits non tensility: we
shall consider its length to be stable even when the stringaths from the equilibrium
and its deformation satisfies Hook’s law. This condition ickhat first sight seems to
contradict the existence of elastic deformations, meaas ttie string length is an
invariant of motion. In this case, there is no contradictibacause the elasticity force
depends on the first and the length of the functional on therskdegree of the string
gradient. Therefore, even under elastic deformationsletingth of the oscillating string
may be considered to be constanilif« I.
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As follows from Fig. 1, let us benefit from

dy ou
tan9 = E = % (6)
ie.,
21 —-1/2
cosf = [1 + <@> } (7)
Ox
and, differentiating by (6), we shall obtain that
a0 5 0%u
% = (COS 9) @ (8)

Upon substituting expressions (7) and (8) into equationv{®)obtain the equation
of motion (1) of a string fragment, wherg = /T/p is sound velocity in the string
material.

Let us note some of the main properties of the string equatiomotion:

o first of all, we see that equation (1) is nonlinear, i.e., fersolution the principle
of superposition is invalid; from this, it follows that inglcase of equation (1) the
known D’Alembert principle cannot be applied;

e the harmonic waves(x,t) = A cos(xztcot+po) are not the solutions of nonlinear
equation (1);

e itis rather easy to show that equation (1) has no nontrikaakiling wave solutions;

e in case the deviations from the equilibrium are negligiple| < 1 the equation of
string motion turns into the well-known wave equatian; = c3u ..

The need for applied solutions of equation (1), on the onalhand the lack of
information on the analytical solutions of this equatiom, the other hand, urges the
applications of numerical methods.

3 State of problem

In paper [2], the averaged system of equation (2) was cartetiuwithout presenting its
solution. In the current work, we will analyze the non-remoce case of the problem,
whose analysis was studied in paper [3], and the resonaseevdaich has never been
analyzed.

We shall analyze equation (2), assuming that the small patexst; ande, have
the following correlation:

3 s 1 _
ﬁ-ag—a €1 = €. 9)
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Asymptotic solution of the mathematical model of nonlinescillations

Note that our method works also when precondition (9) is radidy i.e., when
€3 < g1 0re3 >> 1. This only alleviates the asymptotic analysis of problejrb@ause
in this case in equation (10) the number of terms ofd{e) order diminishes.

Then, from (2) and (9), we get the equation

Ut — Upy = 5(a cos(Wx) gy — ﬂui) + 0(52). (20)
Upon noting
P =w4+u, and r= = u; — ug,

we rewrite equation (10) into the following equivalent gystthrough the Riemann in-

variants:
ort _or® ot or~ b2
W$E—i€(a+%>'(ww—ﬁ(r - ) (11)

The nonperturbated system (11), i.e., when 0, describes two independent waves
o (x +t) andry (z — t) moving in two different directions. Here;*(z) are smoothly
differentiable functions describing the initial condit®of the problem (11). While trying
to construct the direct asymptotic approximation

rE(z,t;e) = ro(x £ t) + erf(z,t) +-- -, (12)

we shall encounter the problem of secular temnscharacteristic of the asymptotic
analysis. For this reason, the asymptotics (12) will bedvally whenet < 1, i.e.,
in a short time interval < 71,

The aim of the present work is the construction of asympgatiche large domain

(t,z) € [0, %] X (—00,400). (13)

Here,ry and all other constants are independent of the small paeamet

4 Method of averaging

In order to construct the asymptotic solution of the systéd) (niformily valid in the
region (13), we must annul the secular teraisn the explicit expansion. We apply
the principles of two scales and averaging along charatiesi For the details of the
averaging scheme, see [5] as well as [6, 7]. For the matheahatibstantiation of the
method, see [4].

Let us note the slow time

T=c¢t
and the fast characteristic variables

yi:xit.
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We shall look for the approximation of the asymptotic prabl@ 1) in the form [4-7]:
r+(z, t;e) ~ RT (T, yi).
The functionsk* will be searched for by solving the following averaged syste

OR* ORt  OR™
or oyt Oy~

) (acoswa — ﬁ(R+R_)2)> . (14)

+

The averaging operatots: - ) according to their characteristics are described as

S

<g(7’,x,y+7y7)>+ = SEIJ,I}OO g1 /g(q-7 y+ — s,er’y* _ 25) ds, (15)
0
S

(g(r,z,y"y7))_ = Gim st /g(mf + 5,97 +2s,y7 ) ds. (16)

0

From descriptions (15) and (16) there follow the propeniebe averaging operators [4]:

OR* OR* OR* | |2
<—ayi >¢=o, <—8yiR >$=0, <—8yi (R) >$=0, 17)
ORT ORT ORT
<5‘y¢ coswx> =0, <5‘y—¢(Ri)2> = 5‘y—¢<(Ri)2> ; (18)
F F F

which are valid for the function&* (7, %) (7o is a positive constant) described in the
region

(Ta y) € [057-0] X (_007 +OO)
Let us substitute formulas (17) and (18) into system (14):

OR*
or

28Ri ORT 0Ri 2
BT - ia< B coswaz:>jE + ﬁay—:F«RjF) >i' (19)

+ B(RF)

5 Averaging system
Suppose that system (11) has been complemented with tta @zihditions
r(2,0) =i (z), r (2,0) =75 (z), =€ (—o0,+00). (20)

The asymptotic solution is obtained by solving the averaystem (19), (20). In separate
casesg.g. when the functionst andr— disappear in the infinity,

lim 7*(z) =0, (22)

2| =00
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Asymptotic solution of the mathematical model of nonlinescillations

system (19) is split into two independent equations of samainlinear waves:

OR* 2 OR*

—— 4+ B(R*)"=— =0. 22

o AET) 5 =0 (22)

Note that the obtained equation (22) may be transformedtivaclassical Hopf
equation (also called the Riemann or Euler equation} ww, = 0 by employing the
substitutionw(z, t) = B(R*(z,t))?.

More complicated is the periodical problem. If function®)2re periodical with
the perio®7 andw is an integer, the averaging operators (15) and (16) maylstisuted
by integrals in a finite interval, and the averaged systenigl@resented as

2
OR™ 20RT o [OR(1,yT —2s) N
o +8-(RY) Y B v cos (w(yt —s))ds
0
ORT 7
5‘y+ "o / — 25) ds,
L (23)
OR~ 20R™ o (r, y ORT(1,y~ +2s) _
= —6-(R™ ) *72_/ cos (w(y~ +s))ds
0
OR™ ﬁ 2 _
+ —ay o (R ) (T,y +25) ds.

0
Let us supplement system (23) with periodical initial cdivais:

R*(r,y%)|,_, = Rg (v*) = Ry (y* +27). (24)

Herea, 3, w are constant parameters,= ¢t is the slow time, and/* = = T t are
the rapid characteristic variables. When the functi@js are smoothly differentiated,
there exists a positive constamt which makes the problem (23), (24) to have only one
smoothly differentiated (as many timesﬁ$) solution R* (1, y*) periodical according
to y* in the domaino, 7y] x (—oc, +o00) [4].

Let us note that systems like (23), (24) appear while apglyie method of av-
eraging in models of the resonance interaction of nonlimeates. In many cases such
systems are left unsolved as a separate problem for findymgstics [2,8—11]. In [5-7],
problems similar to (23), (24) were solved by numerical mdth

T7=0

6 Approximation of solutions

The aim of the present part is to construct for the solutiof28j and (24) an approxima-
tion of the following form:

N
RE (T, yi) =ai(r)+ Z aki (1) cos (kyi) + bki (1) sin (kyi) (25)
k=1
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Let us substitute (25) into system (23). We obtain a new aysié differential
equations. We show a fragment of the Maple program, whenstama grouped to the
similar harmonicgos(ky™*) andsin(ky*):

for k to n do af(r):= coeff(R*(r,yF),cos(k-y*)) end do;
for k to n do bf(r):= coeff(R*(r,yF),sin(k-y*)) end do.

We will look for functionsai (7),bi (), 7 € [0,70] in the form of M-degree
polynomials with undefined coefficients:

M
Za () =) bt (26)
1=1

1=0

Upon substituting phenomena (25), (26) into the obtainetesy of equations, we shall
group the terms near similardegrees and note the relations to find the polynom coeffi-
cientSaf, bf. The fragment of term grouping in the Maple program looksodisws:

for i to Mdo

for k to N do af :=subs(r =0,af) end do;

for k to N do b :=subs(r = 0,bf) end do;

for k to N do b := coeff(collect((1/k)-bi, [77]), ") end do;
for k to N do af := coeff(collect((1/k)-a, [r']),7") end do;

end do.

7 Nonresonance case

Let us analyze a non-resonance case, i.e., when in systémg2@w is not an integer.
Note that the same result will be obtained foe= 0:

aRi 20R: __OR* P
0

We shall solve equation (27) when the periodical initial ditions
R* (T, yi) ‘Tzo = cos (yi) (28)

Note that for function?™* (7, ) (25), valid is the equality

2m
1

2
0

(R:F) (1,y)dy = ao ) + Z ap(7) + b2
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i.e., the integrals of system (27) do not depend;&n Let us multiply each of equations
(27) by R™ and R~ respectively and integrate lyfrom 0 to 27. We obtain:

2m
ayii(% / (RF)"(r.y*5s) ds) =0. (29)

0

Thus, 5~ fOQW(R:F)Q(T, yEFs)dis = 5 027F(R:F)2(0, y*Fs)dis — const and the two
equations (27) are independent.

In this case, each solution of the problem (27), (28) may lesgted in the form
of an inexplicit function:

R* (T, yi) = cos (yi F ﬁ((Ri)2 + (R:F)Q)T). (30)

Let us note that (30) is the solution of the problem. The derre of the function
R*(7,y*) with respect tor is

sin(y™ F B((RF)? + (RT)*)7)(B((B*)? + (RT)?))

O 4y _

o V) = T B R ¢ (R e O
The derivative by of the functionsk™* (7, y*) is:

O i o4y _ sin(y™ F B((R*)* + (RT)*)7)

o ) = TG T AR+ B2 R (32)

Substitution (31) and (32) into equations (27) gives id@ati
Let us extend the function®* by the Taylor formula. Upon denoting the partial
derivativesD; R of the j-order of the functior by 7, we obtain

M pE + )
Ri(T,yi) :ZDJR (O,y )TJJFO(TM-H)'

|
j=0 J:
Upon calculatingD; R* order derivatives, we write the formulas of the approxiorad

+ + 2 4 6 +
R™(7 =|1——7"+ T — T
( Y ) ( 16 1024 245760 )COS (y )

337 4, 109 . 321 7)Sm(yi)

Sra 2l 4
T17 3317 T 20480” T 1835008

21 , 459 , 146043 , .
il 3

( 2" 512" T aameso” ) 8 (3v)

1 117, 2835 . 112671

42 e 5 7\ sin (34F

+( 1" T 128" T 10967 T assse )Sm( v7)

5, 875, 1068281 , .

( 27 T’ mn )0V
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9075 5 23125 . | 3526125
L (22 s 54 ) sin (50F
(384T 51927 T 017504 | )Sm( v7)
49 171521 . 2662093 .\ . .
L
* (¢ 5517 G0 T T 2amreo | ) ()
( 1715 , 18583901

6 (7t
T 20487 " 2049120 | >COb (7y=) + -

In [3], a numerical investigation was reported. The numiesf harmonics in for-
mula (25) and the polynom degréé in (26) varied. The obtained results were compared
with extensions of formulas (31) and (32). The effect of thenber of harmonics and
the polynom degree on the functidti extension coefficients was examined and A/
were analyzed up to (11)).

In the table are presented results of numerical calculatiomwhich the function
RT was found byMaple, as well as differences of approximatiai?’ -V — R*.

7=0.1 y=01 y=05 y=10 y=20 y=314 y=40 y=45 y=6.28
ijaple 0.9988 0.9350 0.6117 —0.3582 —0.9889 —0.7280 —0.2662  0.9886
R, — RT 0.0015 —0.0006 —0.0002 —0.0012 0.0012 0.0012 —0.0016 0.0012
Ry, — RT 0.0000 0.0000 0.0001 0.0001 0.0001 0.0001 —0.0001 0.0001
RI,—R" 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

T=02 y=01 y=05 y=10 y=20 y=314 y=40 y=45 y=6.28
Rxfaple 0.9813 0.9784 0.6941 —0.3056 —0.9593 —0.8096 —0.3277  0.9589
Ry, — RT 0.0038 —0.0008 —0.0029 —0.0069 0.0015 0.0060 —0.0074 0.0015
s — Rt —0.0003 0.0008 —0.0007 0.0001 0.0005 0.0013 —0.0011 —0.0005
Ry, — RT 0.0001 0.0002 —0.0002 0.0001 —0.0002 0.0002 —0.0001  0.0002

7=0.3 y=01 y=05 y=10 y=20 y=314 y=40 y=45 y=6.28
Rxfaple 0.9445 1.0009 0.7882 —0.2566 —0.9153 —0.8911 —0.3986  0.9148
Ry, — R" 0.0034 0.0057 —0.0102 —0.0167 0.0031 0.0101 —0.0175 —0.0032
RI,— RT 0.0041 —0.0003 —0.0049 —0.0024 —0.0039 0.0037 —0.0059  0.0039
RS, — RT 0.0038 —0.0011 —0.0026 0.0007 —0.0034 0.0004 —0.0017  0.0034

T=04 y=01 y=05 y=10 y=20 y=314 y=40 y=45 y=6.28
RLapze 0.8661 1.0212 0.8883 —0.2105 —0.8442 —0.9487 —0.4847 0.8441
Ry, — R" 0.0211 —0.0102 —0.0176 —0.0307 —0.0001 —0.0068 —0.0299 —0.0004
s —RT 0.0516 —0.0288 —0.0162 —0.0148 —0.0415 —0.0003 —0.0190  0.0411
RI, — RT 0.0339 —0.0178 —0.0157 —0.0004 —0.0215 —0.0063 —0.0104 0.0211

T=0.5 y=01 y=05 y=10 y=20 y=314 y=40 y=45 y=6.28
RLGPZE 0.6369 1.1317 0.9731 —0.1678 —0.6875 —0.9249 —0.5954  0.6894
Ry, — RT 0.1645 —0.1447 —0.0050 —0.0477 —0.0697 —0.0992 —0.0387 —0.0671
RI,— RT 02784 —0.1790 —0.0318 —0.0500 —0.1925 —0.0420 —0.0459  0.1898
RI, — R" 0.1682 —0.1048 —0.0609 —0.0171 —0.0856 —0.0501 —0.0397  0.0834
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The finding has been thaf = 7 andM = 7 are sufficient to ensure the graphical
precision. We will show how the graph of the functi®¥ approximations looks in the
case of non-resonance (i.e., wheis not an integer) of different values at the slow time.

0,5 | 0,5

--R — R ol

—1,0d

Fig. 2. Approximations oRR* for 7 = 0 andr = 0.2.

t=04 t=06

g2+ -2

04| -04-
—a64 05

08+ -03+

Fig. 3. Approximations oRR* for 7 = 0.4 andr = 0.6.

We see that with increasing the wave amplitude also increases. From equal-
ity (30) we see also thdR*| < 1. Therefore the obtained formulas are applicable for
calculating the function&=* only in cases of < [0, 0] when this condition is satisfied.

Exactly whenr € [0, 7o}, the problem has a classical continuous differential solu-
tion (see [4]). The approximation constructed in our workiglicable when < 70 < 7.
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The accuracy of this approximation (see the calculatiotetalm p. 316) is inversely
proportional to the value of°. In all cases;y® is a constant independent of the small
parametet. Therefore, the proposed asymptotical solution is unifgnalid in the large
area(t, x) € [0, %0] x R.

In the case under analysis) ~ 0.6.

8 Resonance case

Now, let us proceed to the case of resonance, i.e., whentesy23)w is an integer. We
shall solve this system by constructing approximationg &l (26) with the aid of the
software written in the Maple medium.

Let us investigate the case when the periodical initial d@ors are

R™(7,y)|r=0 = sin (y+), R™(7,y)|r=0 = 0. (33)

We expand function&®* (7, y*) to Fourier series and insert into our system. We
obtain:

6@55(7-) aaf(r) + abiﬁ(T) . +
or + or o8 (y ) + or St (y )
+ +
+ 8a’2 (T) cos (2yi) + abg/](—T) si (Qyi) + .-

or
+ ﬁ(agt(r) + ait(r) coS (yi) + bit(r) sin (yi) + agt (1) cos (Qyi)
+ b2jE (1) sin (2yi) + - ~)2 (fafE(T) sin (yi) + bljE (1) cos (yi)

—2a3 (1) sin (2y*) +2b3 (1) cos (2y*) +-+ )

+ — [ (—af(7)cos (y* F 25) + b sin (y* F 25) — 2a5 cos (2y™ F 2s)
+ 2b§t(7) sin (Qyi T 25) + - ) cos (w(yi + S)) ds

- (—af(r) sin (yi) + b (7) cos (yi)
— 2aF (1) sin (Qyi) + 2bF (7) cos (Qyi) +0)
X <:|:£ / (a(:)F(T) —+ af (T) coSs (yi F 25) + biF(T) sin (yi F 28)

2
0

+ a3 (7) cos (2y™ F 2s) + b3 (1) sin (2y™ F 2s)+- - -)2d5> .

We obtain a new scheme in which we put together terms withaheesndexes and thus
obtain a system of ordinary differential equations. Therfolas are rather cumbersome,
so we don’t show them, and the Maple program is used to finddb€icients.
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We show the results of calculation when in formula (28) = 3, M = 5 and
M=T.

. - - - - 3 harmonics
——— 5 harmonics

05
—— — 5 harmonics

- - - - 3 harmonics "

—— 7 harmonics

—— 7 harmonics

——— 5 harmonics

== - = 3 harmonics
——— 5 harmonics

- - - - 3 harmonics

—— 7 harmonics —— 7 harmonics

Fig. 5. Graphs o7, Ry 5, R7, for 7 = 0.7 andr = 1.

From the above graphs we see also that to insure the graplemalacy of calcula-
tions N = 7 is sufficient. It is possible to show that the same holds asdhfe polynom
degreeM = 7.

Note that because of the resonance interaction of the wawv#se course of time
the waveR ™~ appears, although at the time moment 0, R~ was a zero function. It
is notable also that in the non-resonance case the Wavdoes not appear, i.e., at all
values we havér~ = 0.
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9 Profile of string

Let us show, by the method of asymptotic integration preskirt this paper, the profile
variation dynamics of an absolutely elastic weightlesagtrBecause we have formulas
for the Riemann invariants

P =w4+u, and r~ =y — ug,
we obtain that

T

2

r
Uy =

We return to the fast characteristic variables:
Yy =x —t, y+:$+t

and write the string profile equation
S
u= / % dz +C.

We shall analyze string profile variation dynamics for nesemance and resonance
caseswheiV =7, M = 7ands = 0.35,w = 1, a = 3.0. At the initial moment of time,
we have the Riemann invariants (0, z) = sinx, ~(0,2) = 0, and the corresponding
string profile isu(0,z) = %sin:c. We show approximation graphs of the functions
u(t,x;€), rT(t,x;¢€), v~ (¢, ;) whene = 0.01 andt¢ varies from10 to 100 (¢ values
are indicated).

The left side shows the functions in the non-resonance dése. that the wave™
in this case does not appear, ise.,= 0. On the right side, the same functions are shown

for the case of resonance.

L0

—0,5]

()
e ) 05
— — — profile of string -0,3 4

@

---- )
— — — profile of string

-1,04

Fig. 6. Profiles of string in non-resonance and resonanasdast = 10.

320



Asymptotic solution of the mathematical model of nonlinescillations

—0,5

H

S )
— — — profile of string

0,84
0,64
04

02

-0,2

—04. %

—0,6

-0,54

]
e )
— — — profile of string
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Fig. 10. Profiles of string in non-resonance and resonarsesdart = 100.

10 Conclusions

Thus, the obtained results are as follows.

An integral differential system of averaged equations leenitzonstructed for mod-
elling nonlinear oscillations of the absolutely elasticigigless string. To solve this
system, the Maple software has been compiled, which allawsteucting the solution
approximations of a special form.

In the non-resonance case, an exact solution is possildéhemllowed testing the
program. The accuracy of the approximation under constmuckepends on the number
of harmonics and the degree of the polynoms that approxithatextension. The effect
of these parameters is analyzed by numerical experiments.

The calculations presented in the paper deal with the neoriance case. In future,
we intend to carry out a theoretical investigation and taladgh whether the approxima-
tion error of calculations presented in the paper dependiseparametersy, M, N.

For the resonance case, calculations of similar probleme bhaen presented in
[5-7], where finite difference schemes were proposed. liavbe interesting to compare
the results obtained by this method with numerical simateti

Calculations have been performed to show string profileatians in a long time
interval for the resonance and non-resonance cases.

Interestingly, the obtained asymptotic formulas, e.g.)(28ow recalculating the
values of functions for other values ofand¢. For example, the same graphs will be ob-
tained whene = 0.001 and the corresponding values ofwill be ¢ = 100,

t = 300,..., t = 1000 ore = 0.0001 andt = 1000, t = 3000, ..., t = 10000.
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