Nonlinear Analysis: Modelling and Control, 2010, Vol. 15088, 325-340

Estimation of the finite population covariance
using calibration

A. Plikusas, D. Pumputis

Institute of Mathematics and Informatics, Vilnius Univiéys
Akademijos str. 4, LT-08663 Vilnius, Lithuania

Vilnius Pedagogical University
Studenty str. 39, LT-08106 Vilnius, Lithuania
plikusas@ktl.mii.lt; dpumputis@vpu.lt

Received:2009-11-11 Revised:2010-04-30 Published online: 2010-09-17

Abstract. Estimators of the finite population covariance with seveyatems of weights
are considered. New calibrated estimators of the finite ladjpnn covariance (variance)
are derived, using two and three weighting systems thatefieead! by various calibration
equations and loss functions. The expressions of approgiv@iance for some of these
estimators are presented. The estimators derived are cethpg simulation. Finally,
it is shown how the calibrated estimators of the covarianag be applied in regression
estimation of the finite population total.
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1 Introduction

Survey statisticians are always concerned with the impnare of methods for estimation
of the finite population total, mean, proportion and otheapzeters. Auxiliary informa-

tion may be used for that purpose. The estimators that uséaaywariables are often

much more accurate than the standard ones. The calibrdiedtss belong to this class
of estimators. The idea of the calibration technique fonesting the population totals is
presented in [1].

The estimation of more complicated parameters using thibraiibn methods is
not widely studied in the literature. The calibrated estonaf the ratio of two totals
is considered by Plikusas [2], Krapavickaite and Plik84sCalibration estimation for
quantiles is studied by Harms and Duchesne [4], Rueda ebhl. Sitter and Wu [6]
proposed a model-calibrated method to estimate the quaflrétte population functions.
Singh et al. [7] applied the calibration technique in theneation of variance of the
Horvitz—Thompson estimator.
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Some calibrated estimators of the finite population coveeeare introduced in the
paper [8]. They use one weighting system, which is definedgusgarious calibration
equations and loss functions. In the following section, weatl these estimators and
provide some new estimators with several systems of weights

An overview of the calibration theory and application of tadibrated estimators
in survey practice is given by Sarndal in [9].

2 Calibrated estimators of the finite population covariance

2.1 Estimators with one system of weights

Consider a finite populatiold = {uy,us,...,un} of N elements. Without loss of
generality, we can assuni¢ = {1,2,...,N}. Lety andz be two study variables
defined on the populatiai, taking real nonnegative valugs, ..., yy andzy, ..., zn,

respectively. The values of the variableandz are not known.
Let the covariance

N

1 1< 1<
Cov(y,z) = N_1 Z <yk N Z%) <Zk N Z%)
k=1 k=1

k=1

be the parameter of interest.

Denote bys, s C U, a probability sample set drawn from the populatigrby 7, —
the inclusion probability of elemeftinto the sample, and byd,, = % —sample design
weight of elemenk, k. =1,2,..., N.

In the case of none auxiliary information, we can estimaggibpulation covariance
using the well-known only design based estimator

Cov(y,z) = ﬁ > di (yk - %deyk) (zk - %Z dkzk). (1)

kEs kEs kEs

Itis considered in Sarndal, Swensson and Wretman’s bddki1187].

The weightsd;, of estimator (1) may be modified using auxiliary variablesl an
calibration approach to obtain estimators with smalleiarare. Denote the auxiliary
variables taking values,, . .., ay andbq, ..., by by a andb. It should be noted that, de-
pending on the calibration equations used, in additionéovdiues of auxiliary variables
for sampled elements, only the covariance of auxiliaryalalgs, or covariance and totals
of these auxiliary variables are needed for the constrcti@alibrated estimators. In the
paper [8], we apply the calibration technique to modify tlesign weightsi;, provided
that the auxiliary variables are given. We consider herectidrated estimator of the
covariance of the following shape

Coviu(y, 2) = ﬁ > w <yk - % Zwkyk> <Zk - % Zwkzk)- )

kes kes kes

326



Estimation of the finite population covariance using calftom

The new (calibrated) weighis, are defined under the following conditions:
a) The weightsu;, satisfy some calibration equation;

b) The distance between the weights and w; is minimal according to some loss
functionL(w, d).

Conditions a) and b) can be specified in different ways. Thewiing calibration
equations are used in the paper:

l. — 1 Zwk Naw (bk - ﬁbw) = COV((L, b)a (3)
kes
. 1 Z N 1 Z b
Haw = =5 Wrag, Mbw = 77 WO .
N kes N kes
Il. N1 Zwk — 14a) (b — 1p) = Cov(a, b), 4)
kEs
N N
Ha = N ; Ak, Mo = N Z:
1R Zwkakfzak, Zwkbk—Zbk (5)
kEs kes
The loss function
(wy, — dy)?
Li(w,d) = ~—k "k 6
1w, d) ; o ©)

and some other ones are applied in the final specificationlibfrated weightav,.. Here
qrx, k € U, are free additional positive constants or additional wesgiThe calibrated
estimators can be modified by choosing

The callbr/aled estimators with one weighting system aretetbyCov; (”0”) (v, 2),
Covﬁf)") (y, 2), Covgw )( z), depending on the calibration equation used (3), (4), (5).
For exampleConZj’” (y, z) denotes the estimator whose weighissatisfy the calibra-
tion equation (3) and minimize the loss function (6).

Next, we extend the definitions, given in this subsectiornthto case of multiple

weighting systems.

2.2 Estimators with several systems of weights

Let us consider some other, more general estimators of the fiopulation covariance,
which are constructed using several weighting systemsnéhecalibrated estimators of
the covariance are of the following shape:

1 1
Covmw(y, Z w(l) ( N Z wl@)yl) (Zk - N Z wl(3)21>. (7)

st les les
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Several calibration equations may be used for definitiorhefdalibrated weights
w, w®, w®. Let us consider some of them.

Case 1. The nonlinear calibration equation
CoVu(a,b) = Cov(a,b). (8)

Case 2. The systems of weights! ", w'”, w'® are defined by calibration equations:

7 2 Wi (ax — pa) (b — ) = Cov(a, b), 9)
kes
Z wk ak = Z ag, Zwkd)bk Z bk (10)
kEs kEs

Case 3. The first system of Weighttsv,(c1> is defined by the nonlinear calibration equation
(3). Calibration equations (10) define the other two systeftise weightau,(f) andw,(f).

Case 4.We can consider the estimator of covariance which uses tates)s of weights:

_ 1 1
Covinu(y, z) = N1 Z ,g”( Yk — N Zw@) ) (zk N Zwl@)zl). (12)
kEs lEes

The first system of Weighta;,(j) is defined by equation (9), whereas the second
systemw,(f) satisfies the following equations

Zwk akuak, ZU} bk*Zbk (12)

kes kes

Case 5. We can use another combination of two systems of calibratdghs: the first

onew,(C ) satisfies nonlinear calibration equation (3), where thmslya;(Q) is defined by

(12).

Case 6. The system of Weighta;,(c1> satisfies equation (9), whereas the systeﬁ‘? is
obtained using nonlinear calibration equation (3).
The following loss function may be used for final definitioncalibrated weights:

Z Z dk w 13)

i€r kEs

wherer = {1, 2, 3}, if the estimators with three weighting systems are comsitieand
r = {1, 2}, in the case of two weighting systems.
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The first case is most complicated analytically, the expoasgor the approximate
iterative solutions of calibration equation (8) are cunsoene.

The following proposition defines the weight$", w'”, w * of estimator (7) for
all the six cases mentioned in this subsection.
Let us introduce some additional notation:

luaw* Zwk ag, ﬁ(()gf Zw](;)bk; N’S}) :Zw](:)v 1=1,2,3.

k€s st kes

Proposition 1. The weightsu,(f), k € s,i=1,2,3,which satisfy calibration equatiof8)

and minimize loss functiofi3), satisfy the equation|’ = dyu!”. Hereu!” = 1 +

Achﬁ),
1 ~(3
A = (o= ) (0 — 2,
R
o =~ (78 - Sl
, Y5
47 = (7 - a2

-1
A= A(deqk akbkck +c(2) cf))) ,

kEs

N

+ Ni@fig + NP = NP =S dyagby.
kes

-~ ~(3) ]’\71(‘)1)
A= (v - 1Covtab) + N2 (A2 - )

In Case<, 4,and6, the first system of weight&,(f) is defined by the equations:
-1
=dy, <1+qk<zcl Zdlcl> <Zdlqw%) Ck)v (14)
les lEes

Whereck = (ak — Ma)(bk — ,ub).
The equations

-1

wl(c") =d <1 + A(Z szzflazbz) %fk)
les

define the first system of Weigh&%l) in Cases3 and5, and the system;,(f> in Case6.

Here

" ]/\}1(01) ~ |
A(Nl)Cov(a,b)+N<2 ~ ) A =" dagby,
keEs
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RO\ /29, 70
_ b — a0y — (1 — 2w ) (Hew g Pow i =1,2,3.
fk (ak Maw)( k Mbw) ( N ) ( an + - by akbkv ? 12,3

In Case<2 and 3, the system of weights,f) is defined by

-1
w,(f) =dy, <1 + gk (Z ap — Z dﬂl) <Z dl‘]ﬂ%) ak>v (15)

les les

and the systerw ) is defined by the same equati@b) by replacinga with b.

In Casest and5, the second system of welglatff) satisfies these equations:

-1
(2) =d <1 + qk (le Zdlxl> (Zdlqlxlx;) Xk>7

les les
wherex;, = (ak,bk)'.

Proof. Let us take the loss function (13) and calibration equat®)y &nd define the
Lagrange function

Sy o

i€{1,2,3} kes dk 4k
( 1 Zw :LLau))) (b M;(,i)) — Cov(a, b)>
kes

By solving the equations

A
a—(,):o, 1=1,2,3, k€ s,
ow,’
we get
O (14 - Agecl? 1
wy, k( +2(N—1) axey,” - (16)
Hence
w,gl)akbk + w,(f) — w(?’)
1
= dk <akbk + m)\qk (akbkc + 022) (3))>. (17)

Then, summing derived equations (17) over the sample elsmaed taking into account
the calibration equation (8), we get the expressionXolnserting this expression into
(16), we get iterative equations fmfj), i=1,2,3.
The proof for other cases of calibration equations and the fonction is similar.
(I
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The calibrated estimators of covanance correspondmgeo:ases of calibration
equatlons mentioned above, are denotedjbymw(y, z),i=1,2,3,4,5,6. For exam-
ple, Covmzu(y, z) denotes the estimator which uses three weighting systemsatisfy
calibration equation (8) and minimize loss function (13).

3 Estimation of variance

The presented calibrated estimators of the covarianceoanplecated enough, there is no
explicit expression for the calibrated weights in some sase

Provided calibration equations (4), (5) are used for thendafn of calibrated
weights, we get the explicit solution of the calibration lplem and the Taylor lineariza-
tion techniqgue may be applied to derive an approximate neeieof estimators. The
following proposition gives an approximate variance fax dstlmatoCovsz (y, 2).

Proposition 2. The approximate variance of the estimator

4 1 1
CoVy (4, 2) = N1 Zw;(:)<ykﬁ Zw,@yi) ( N Z @) ) (18)

kEs 1€ES i€s

the weightss'", w > of which satisfy the corresponding equati¢@} (12)and minimize

the loss functior.(w, d) defined by equatio(L3), is given by

N N
1 Mgl — TR,
AV&Y(COVmw(% z)) = mzz g Ml eer,

T
k=1 I=1 k7

wheremy, k,1 = 1,..., N, is the inclusion probability of the elemeritsand! into the
sample,
ex = (Yr — ty) (26 — p1z) + Beg,

N

N
¢k = (ak = pa)(bk — ), py = NZyk, NZZNZ
k=1 k=1

B = tq_cc( tqcyz + ,uthyc + ,uytqcz - ,uy,uthc)7

N N
qcc § chk; tqcyz = § qrkCrYk 2k, tqcy = E qkCLYk,
k=1 k=1

N N

tgez = ZQkaZIw tge = Zchk-

k=1 k=1
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Proof. Estimator (18) can be expressed in the following form

COszu(ya <Zwk YkZk — Nzw(l)y Zw@)zk

k€Es kes kes

_ ]1[ S w5 Y w

kEs kes

+ %Zw,&l) Zw(Q)y Zwk zk) (29)

k€Es kes kes

It follows from Proposition 1 that the weights."’, w|” that satisfy the correspon-
ding equations (9), (12) and minimize the loss functlc(m; d), are given by

= dy, (1 - <ch de) (Z dlqlcf) 1chk>, (20)

lEs les
—1
w® = dj (1 + <le de) <Z dezXle> quk>a (21)
lEs les

wherex; = (a;, by)’.
Inserting expressions (20), (21) of weights into (19) we:find

——(4)

1 - SNl
=~ (tyz + (te — te)tqontaey=

(Fy + (te = £0)Ertaey) (F2 + (6= B) Ay ta)

ar o ~—14

L
N
1 R ~ ’
— N (tz + (t t )tqclctqcz) (ty + (tx - tX)AqX tqyx)
1

= f(fyzv tc; t 3 fqyx; ]/\\77 tch)~ (22)

qgx tqu7 tqcza

~
>
—>
>)

tqcc;tqcyzv yatqycv zy X

Here

kes kes kEs

toeys = deQkaykzk; deyk; tqye = dechkyka t, = dezk;

kEs kEs kes kes

N
by = dryrze, te= Z ke fe= dick, tgee =Y drgrci,

k=

ty =
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N
ty = Zxk; ty = dexk; Ay = Z dkqEXiXy, lgax = Z A qr 26X,

kEs kEs kEs

tgez = deQkaZm tyyx = Z drgrypXe, N = Z diy  tge = dechk-

kEs kEs kEs kEs

The estimators, .., e, fyce, Lyeyzr Ly Laeys 22 b Ager tgzxs fgezs tayxs N, fqe are Horvitz—
Thompson (or also called) estlmators (see e. g. [10, p. 43]), and therefore are uathias
estimators of the totals

N

N N N
2
tyz = E Y2k, te= E Ck, tqcc = E Kk Cl> tqcyz = E qkCrYkZk,
k=1 k=1

k=1

N N N
yzzyka qcy Zchkyka tz:ZZk7 tX:ZXIm
k=1 k=1 k=1
N N
Aqx - Z QEXEX}, qzx Z qk2kXE, tqcz = Z qkCk 2k,
k=1 k=1
N N N
toyx = Z TEXk Yk = Z = Z qkCh
b1 b1

respectively.

It follows from expression (22) tha(flovmw(y, z) is a function of the unbiased
estimators mentioned above. Using the Taylor linearipati@thod, we approximate the
function Cov,i)w (y, z) by a linear one. The linear part of the Taylor series expansfo
Covmzu(y, z) at the mean point

~ A A ~ -~

(tyz; tc; tqccv tqcyz; fyv tAqu; {Zv fX7 AqX; qux; chzv fqy)(v N; ch)

= (tyZ7 tc; tch thyZ) ty7 tqcy; tZ7 tX7 AqX7 tqu; thZ7 tqu7 N7 tqc)

—(4)
COVme (y Z)
1

- N 1 . 1 . 1
:—(—Btc—I—tyz—l—Btc——tzty——tt 2ttN)

N -1 N N N
1
= m (Btc + Z dkykzk + B Z dkck — Ntz Z dkyk
kEs kes kes
1 1
kEs kEs
1
= ——| —Bt, d .
N1 ( + kze:s kek)
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The approximate variance of the estimata s (y, ) is equal to

A\/aur(Covmw(y7 z)) =Var(6<7‘ffj2@(y7 2))
1
— mVar<BtC + kZESdkek> = ( (deek>

___The final expression of the approximate variance of the it#d estimator
CovﬁﬁL(y,z) is obtained using the expression of the variance (see, fampie [10])
for the Horvitz—Thompson estimator of the total of the valéayz + Bc — p.y — pyz
Tty fhz- u

Expressions (14), (15) of the Welghié1 wk ,w,c (%) for the estimator

COVrnzu(ya ) = ﬁ Zwl(cl)< Z’w(Q) > < Zw(?’) )

kes les l€s

are also explicit. Thus, the Taylor linearization methodynb@ employed to derive
an approximate variance for this estimator. The solutiopresented by the following
proposition.

Proposition 3. The TaZonr linearization approach gives the same approx@wariance
for the estimator€ov i, (y, z) andCovin (, 2).

The proof is similar to that of Proposition 2.
Remark 1. We propose the estimator
TR ék él
Var Cov,w ,2)) = 11— )22

for estimating the variances of the estimataksy'2), (y, z) and Covmw(y, z), because
the approximate variances of these estimators are equal.

The values’;, are defined by replacing unknown parametgrs., tocc, tgey, tqcz:
tqc, Iy anduz in the expressmn ofi., given in Proposition 2, with their esUmatengz,
tgeer taeys taezs tges fly = N™H, andfi, = N~1,.

Remark 2. Replication methods, such as the jackknife, bootstrap atanbed half-
samples, may be used for the estimation of variances of ulneeﬁsrsCovm)w(y, z),

i = 1,3,5,6. All these methods are described, for example, in [10]. Sbowmstrap
methods for survey sampling are considered in [12].

4 Simulation study

4.1 Influence of different weighting systems on the accuraayf estimation

The simulation study is performed to observe the efficiericabbrated estimators of the
covariance. The calibrated estimators that use one waighgistem and are derived using
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the same calibration equation, are very similar despitéas®function used. This is the
reason, why only three estimata@sv.""™ (y, z), Cov{"? (y, z), Cov{"™ (y, z) that use
one system of weights are included into the simulation.

The subset of a real population of si2e0 from the Lithuanian Enterprise Sur-
vey is used for the simulation. Two variablesgndb) are the numbers of employees
for a different time period, and the other two variablgsagd =) are the profit of the
enterprise at the same periods. The population is straiifiedtwo strata by the size
of the survey variable. The stratified simple random sample is used as a sample de-
sign. The sample size = 100 is allocated to strata, using Neyman’s optimal alloca-
ti/()g.(n%) = 1000 samples were drawn and for each of them the calibrated estisna
Covyy  (y,2), Covi®(y, ), Cov{'™ (y, z) that use one weighting system, the estima-
tors 6&%‘,@, z),1 = 1,2,3,4,5,6, that use two or three weighting systems, and the
design based estimat@lov(y, z) were computed. As it has been shown, the calibrated
estimators contain free additional constants. In the dagiseassumed;, = 1 for all
k € U. The empirical relative biasiB), variance Yar), relative root mean square error
(RRM SE), and the coefficient of variatior¢) for each estimator and for some different
sets of auxiliaries, having different correlatipmvith the study variables, are presented in
Tablel. For any estimato# of the finite population parametéy all these characteristics
of accuracy are defined by the following equations:

1 0, — 0 PO R
RB@:M; > Var(d =3 - <9"'_M29i>’

i=1 j=1

Mo _\/Var(f
RRMSE(D) = +\| = 3" (6:—0)>, ev(d) = %AZ()A
0 g i=1 7 iz b

whered; is the estimate of computed from théth simulated sample.

Table 1. The main estimated characteristics of accuracthfoestimators of the finite
population covariance (sample size:= 100).

Estimator RB Var x 1072 RRMSE cv
p(y,a) =0.81 p(z,b) =0.90 p(y,b) =0.63 p(z,a)=0.60
Covi™(y,2)  —0.0495 2.7493 0.0935  0.0835
Covie(y,2)  —0.0796 5.3133 0.1360  0.1198
Covi(y,2)  —0.0065 2.2129 0.0715  0.0716
Covd (y,2)  —0.0019 2.1657 0.0704  0.0705
Covd (y,2)  —0.0049 2.1194 0.0698  0.0700
Covid (y,2)  —0.0510 2.8040 0.0950  0.0844
Covi) (y,2)  —0.0046 2.1211 0.0698  0.0700
Covid(y,2)  —0.0505 2.7920 0.0946  0.0842
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Cover(.2)  —0.0050 21078 0.0696  0.0608
Cov(y, 2) 00735  10.3861 0.1708  0.1665
p(y,a) = 0.21 p(z,b) = 0.90 p(y,b) =0.63 p(z,a) =0.15
CAwﬁ"") (y,2)  —0.0635 67417 0.1395  0.1327
CoviP(y,2) 00743 52115 0.1321  0.1180
Covir(y,2)  —0.0858 94940 0.1706  0.1613
Covil(y,2)  —00792  9.8254 0.1696  0.1629
Covi) (y,2)  —0.0814 93788 0.1676  0.1595
Covih(y,2)  —0.0643  6.7424 0.1399  0.1328
Covid (y,2)  —00784  9.2041 01650  0.1575
Covid(y.z)  —0.0619  6.6470 0.1380  0.1315
Covgu(,2)  —0.0805  90.4446  0.1677  0.1500
Cov(y, 2) _0.0738 97766 0.1668  0.1615
p(y,a) =0.23 p(z,b) = 0.31 p(y,b) =0.19 p(z,a) =0.16
covl’;”") (y,z)  —0.0627  12.1333  0.1781 0.1778
Covi?(y,2)  —0.0703  10.2911 0.1688  0.1651
Covir(y,2)  —0.0767 102016 0.1716  0.1663
Covl (y.z)  —0.0764  10.2927 01715  0.1662
Cov'2 (y, 2) —0.0763  10.2829  0.1714 0.1661
Covi)(y,2)  —0.0666 114251 0.1749  0.1733
Covir(y,2)  —0.0757 103007 0.1712  0.1662
Covi)(y,2)  —0.0660 114427 01748  0.1733
Covg(y.2)  —0.0722 103695 01702 0.1661
Cov(y, ) 00730 10.2602 0.1698  0.1654

In the case of a highly correlated auxiliary variableg(if, ) = 0.81 andp(z, b) =
0.90), the combination of linear and nonlinear calibration gNzlee best results, i.e., the
most accurate estimator @ov'0),. The first system of Welghts( of this estimator is
defined by the linear equation (9), while the second sy ?‘?1 satisfies the nonlinear
equation (3).

If the first system of weights is defined by the nonlinear eigmaand the two
additional systems satisfy the traditional equations&)get the est|mat0|@ovm2“ and
Covmzu, a relative root mean square error of which is larger thahdhaome calibrated
estlmators which use one weighting system. The reasonﬂMestlmator@ovgn)w and
Cov'?), have higher relative bias. The accuracy of estlma@n&nw, CovaU, Cov'd,
is similar to that ofCovn?w The esUmatoCovmw has the lowest relative bias.

In the case of one well correlated auxiliary variable(i§, a) = 0.21 andp(z, b) =
0.90) the estlmatorﬁovmzu and Covmzu are most accurate among those that use several
systems of Welghts The accuracy characteristics of tregpators are close to that of the

estimatorCov\"™. This may be explained by the fact that the same nonlineaatexu
1w
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is u used for the definition of the first weighting systayﬁ) of the estlmatorgov,m“ and
Covmw The accuracy of other estimators that use several systEmwsights is similar

to that of the estlmatoﬂovllj}” which uses one welghtln%; system deflned by a linear
calibration equation. In the case of estimators2),, Cov'n, andCov S, this may be
explained by the linear calibration equation (9) that |sdmadef|ne the first weighting
systemuw!".

In the case of low correlated auxiliary variables, all thérated estimators and
the standard estimator (1) are of a similar quality. Thedzad estimator has a simple
analytical form and all its characteristics of accuracy @ose to that of the calibrated
estimators. We can suggest to use it for estimating the fimipailation covariance, when

no correlated auxiliary variables are available.

4.2 The performance of the variance estimator proposed

The empirical study of the quality of the variance estimagimposed in Remark 1 is
presented in Table 2. The same data and the same sample desggu for simulation.
Note that this variance estimator is applicable only to tsmmatorsCome(y, z) and
CovEnL(y, z). The mean value of the variance estimatord @0 samples is given in
the fourth column of Table 2. It seems that the proposed neeig@stimators slightly
underestimate the empirical variandén{pVar). The approximate variancé\Var) is
given in the second column.

Table 2. The main estimated characteristics of accuradyeofdriance estimators of the
finite population covariance (true value of covarianCev (y, z) = 66083066, sample
size:n = 100).

Estimator AVar x 107! EmpVar x 107'®  Var x 1073
p(y,a) =0.81 p(z,0) =0.90 p(y,b) =0.63 p(z,a)=0.60

— (2

Covon(y, 2) 1.9112 2.1194 1.9394
Cov) (4, 2) 1.9112 2.1211 1.9394
p(y,a) =0.21 p(z,0) =0.90 p(y,b) =0.63 p(z,a) =0.15
éo\vfzu (y,2) 10.1780 9.3788 7.4862
Covi) (y, 2) 10.1780 9.2041 7.4862
ply,a) =0.23 p(z,0) =031 p(y,b) =0.19 p(z,a)=0.16
Covf,ffu (y,2)  10.4471 10.2829 7.5708
Covi) (y,2) 104471 10.3007 7.5708

5 New regression estimators of the population total

An important question is “how the calibrated estimatorsmfaziance may be applied in
survey sampling?” In this section, we present how they caafpdied to estimate the
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finite population total.

Consider a finite populatiadd = {uy,us, ..., uy} of N elements. Assume, in this
section,y to be a study variable and variables:, b to be known auxiliary variables. Let
a population total

N
DT
k=1

be a parameter of interest. In the presence of a multivaaiatdiary variable, the ge-
neralized regression estimator (GREG) (see, for examp@s,d. 219-244],) is mainly
used for the estimation of the finite population total. In case, we denote the auxiliary
vector, attributed to the elemeht by x;, £k = 1,..., N, and putxy = (1, zx, ag, br)’.
The GREG estimator is expressed as follows:

tyarEG = deyk + <Zxk - dexk> B,

kes kes

where

-1
é - (Z dkxkx;c) dexkyk.

kes kes

In the case of one auxiliary variable, saythe regression estimator of the totgalis

deyk+<22kzdkz>covs )7

kEs kEs

where @(y,z) is standard estimator (1) of the covarian&® = @(z,z) is an
estimator of the variance of the variabl®f the same type. Note that actually we know
the true varianc&? = Cov(z, z). Despite this fact, the estimat@lov(y, z)/S? of the
regression coefficienfov(y, z)/S? is used in statistical theory and practice. In most
cases, it is more stable and has lower variance.

Now we shall modify the estimatdy,,., using calibrated estimators of the covari-
ance considered in the paper, and introduce three new éstvd the total,,:

—(lin)
Covy,, (y,2
E0 = dryr + <Z "=y dkzk> W)()v (23)

kes kes OViw (272)
N 6(;7(6) (4, 2)

(2, = diy + ( w—y dkzk> e (T (24)
kes k=1 kes OV (25 2)
N 6(;7(2) (4, 2)

(5, = diyr + <sz -y dkzk> ——me (25)
kes k=1 kEs Cov,,. (%, 2)
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Estimation of the finite population covariance using calftom

These estimators are obtained using the estimators’”™”, Cov'S),, Covir), of the
covariance that employ one, two, and three weighting systeaspectively.

A short simulation study is performed to compare these edtins of total. We
employ the same data of Section 4 from the Lithuanian EntSurvey.

The variablez is used to define the initial regression estimator, the btet: and
b serve as the auxiliaries for the variablgsand z, respectively, when estimating the
covarianceCov(y, z) and variances? in (23), (24) and (25). The population is stratified
into two strata by the size of the survey variapleThe stratified simple random sample
is used as a sample design. The samplersize30 is allocated to strata, using Neyman’s
optimal allocation.1000 samples were drawn and the average of the estimates is taken.

In Tables 3 and 4, the relative empirical bias, variancetingd root mean square
error and coefficient of variation for the regression estoremare presented. The results
of Table 4 are obtained from a modified data set which was meddrom the initial
data set by replacing the values of the variapleith the values of the variable. The
regression estimators that are obtained using the caditbesttimators of covariance are at
least of the same accuracy (Table 3) or more accurate (Tahkeebmpared to the GREG.
A simple regression estimator that uses one auxiliary ls&iean also be more effective
in comparison with GREG, which uses three auxiliaries.

Consequently, more accurate estimators of the covariamageba useful for esti-
mating the finite population total or mean.

Table 3. The main estimated characteristics of accurachéoregression estimators of
the population total (sample size:= 30).

Estimator  RB Var x 100 RRMSE cv
p(y,z) =0.70 p(y,a) =0.81 p(z,b) =0.90

fyorec  0.0446  0.4031 0.0655  0.0460
tyr ~0.0126  1.6011 0.0965  0.0969
in, 0.0061  0.6894 0.0631  0.0624
i, 0.0028  0.7490 0.0655  0.0653
i, 0.0027 0.7536 0.0657  0.0655

Table 4. The main estimated characteristics of accurachéoregression estimators of
the population total (sample size:= 30).

Estimator RB Var RRMSE v
pla,z) =054 p(y,a) =0.81 p(z,b) =0.90
fyarme  —0.0234 70151 0.1096  0.1096
fyr —0.0156 54841 0.0959  0.0962
o 0.0038 37226 0.0781  0.0777
2, —0.0010 36293 0.0770 0.0771
i, —0.0002 35796 0.0765  0.0765
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