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A semi-analytical solution of micro polar flow in a porous
channel with mass injection by using differential
transform method
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Abstract. In this letter, the differential transform method (DTM) wapplied to the
micro-polar flow in a porous channel with mass injection. Apgmate solutions of the
governing system of nonlinear ordinary differential eduiaé were calculated in the form
of DTM series with easily computable terms. The validity loé tseries solutions were
verified by comparison with numerical results obtained gisifiourth order Runge—Kutta
method. The computed DTM velocity profiles are shown andrnflaeénce of Reynolds
number on the velocity component:indirection is discussed.
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1 Introduction

Most phenomena in our world are essentially nonlinear ane wescribed by nonlinear
equations. Some of them were solved using numerical metliodsome were solved
using the analytic methods of perturbation [1,2]. The nuoa¢methods such as Runge—
Kutta method are based on discretization techniques, aycothly permit us to calculate
the approximate solutions for some values of time and spac@bles, which cause
us to overlook some important phenomena, in addition to kensive computer time
required to solve the problem. Thus it is often costly andetioonsuming to get a
complete curve of results and so in these methods, stabifity convergence should
be considered so as to avoid divergence or inappropriat¢tsedNumerical difficulties
additionally appear if a nonlinear problem contains siagties or has multiple solutions.
In the analytic perturbation methods, we should exert thellgmgarameter in the equation.
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Therefore, finding the small parameter and exerting it inebeéquation are deficiencies
of the perturbation methods. Recently, much attention tees lwlevoted to the newly
developed methods to construct approximate analytic isolsitof nonlinear equations
without mentioned deficiencies.

One of the semi-exact methods which do not require smalipeters is the DTM.
The concept of this method was first introduced by Zhou in 1f86vho solved li-
near and nonlinear problems in electrical circuit proble@een and Ho [4] developed
this method for partial differential equations and Ayaz gjplied it to the system of
differential equations, this method is very powerful [6hi§ method constructs a semi-
analytical solution in the form of a polynomial. It is diffemt from the traditional higher
order Taylor series method. The Taylor series method is coatipnally expensive for
large orders. The differential transform method is an a#ve procedure for obtaining
analytic Taylor series solution of the differential eqoas. In recent years, the DTM has
been successfully employed to solve many types of nonlipedirlems [7-10].

In this study, the DTM was applied to find an approximate sofutor the micro-
polar flow in a porous channel with mass injection. This peablwvas studied first by
Kelson et al. [11] and Desseaux and Kelson [12] using a geation approach. More
recently, Ziabakhsh and Domairry [13] also studied this flssing the homotopy ana-
lysis method (HAM). In this work, the flow analysis and matfairal formulation are
presented in Section 2, and the DTM is applied in Section ®tsttuct the approximate
solutions for the governing equations. Section 4 contdirg¢sults and discussion, and
conclusions are given in Section 5.

2 Flow analysis and mathematical formulation

We consider steady, incompressible, laminar flow of a mictapfluid along a two-
dimensional channel with porous walls through which fluidiisformly injected or re-
moved with speed. Using Cartesian coordinates, the channel walls are phtalithe
z-axis and located aj = +h, where2h is the channel width. The relevant equations
governing the flow are [11]
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Compared with Newtonian fluids, the governing equationkiohe the micro rota-
tion or angular velocityV whose direction of rotation is in they-plane, and the material
parameterg, « andv, [11]. For consistency with other micropolar studies, alltenial
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parameters are taken as independent and constant. Whencthrestants are zero, the
governing equations reduce to those given by Berman [14} &ppropriate physical
boundary conditions are

u(z,£h) =0, wv(x,th)==4q, N(z,L+h)= 75@ , (5)
ay (x,£h)
for symmetric flow about
ou
a_y(x7 0) - ’U(x7 0) - 07 (6)

whereg > 0 corresponds to suction,< 0 to injection, and is a boundary parameter that
is used to model the extent to which microelements are fregtéte in the vicinity of the
channelwalls. For example, the valsie- 0 corresponds to the case where microelements
close to a wall are unable to rotate, whereas the valae1/2 corresponds to the case
where the microrotation is equal to the fluid vorticity at thmundary (see Lukaszewicz
[15]).

To simplify the governing equations, Kelson et al. [11] aduced the following
similarity transforms

Y =—quf(n), N= Z—fg(n), (7)
where
) )
n:%, u:a—zj:f%f’(n)v v:fa—f:qf(n)- (8)

The Navier—Stokes equations (1)—(4) are reduced by usiran@ (8)

(1 + Nl)fIV o ng// . Re(ff/” o f/f//) _ 0, (9)
Nog” + Ni(f" = 29) — NsRe(fg' — f'9) =0, (10)

where primes denote differentiation with respecttdV,, No, N3 and Re are dimension-
less parameters and introduced as follow

j h
L N=—2 Ny=-L and Re=L (11)
pv v

N, = = 5
! pvh?’ h

WhereRe > 0 corresponds to suction, atitt < 0 to injection. The boundary conditions
are

fED) =1, fi(£1) =0, g(£1)=sf"(£1). (12)
For the symmetric flow

fO)=f"0)=f(1)=0, f(1)=1 g(1)=sf"(1). (13)
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In this work, following Kelson et al. [11] we s&t= 0, N; = N, = 1, N3 = 0.1,

2f" —g" — Re(f" = f'f") =0, (14)

9"+ f" =29 —0.1Re(fg' — f'9) =0, (15)
the boundary conditions are

F0)=f"(0)=f(1)=0, f1)=1, g(0)=0, g(1)=0, (16)

and investigate solution behavior of the symmetric flow withss injectior{¢q < 0) as
Re is varied.

3 The differential transform method

Differential transformation of the functiofi(n) is defined as follows

F(k) = - [di;; (n >L=m, (17)

in equation (17)f(n) is the original function and”'(k) is transformed function which
is called theT-function (it is also called the spectrum of tlfién) atn = no, in the K
domain). The differential inverse transformationfofk) is defined as

ZF (n—mo)", (18)
k=0
combining equation (17) and (18), we obtain
N d’“f(n)} (n —mno)* 19
f(n)—kzzo[ S0 G (19)

Equation (19) shows the concept of the differential trarmmafttion that is derived from
Taylor’s series expansion, but the method does not evalhatderivatives symbolically.
However, relative derivative are calculated by iterativeogdure that are described by the
transformed equations of the original functions.

From the definitions of equations (17) and (18), it is easiigven that the trans-
formed functions comply with the basic mathematical operstshown in below. In real
applications, the functiorfi(n) in equation (18) is expressed by a finite series and can be
written as

ZF (n —mo)*. (20)
Equation (20) implies that_ =~ ., F'(k)(n—m0)* is negligibly small, whereV is series
size.

Theorems to be used in the transformation procedure, wiaiclbe evaluated from
equations (17) and (18), are given below
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Theorem 1. If f(n) = g(n) £ h(n), thenF (k) = G(k) £ H(k).
Theorem 2. If f(n) = cg(n), thenF (k) = ¢G(k), wherec is a constant.
(n) =

Theorem 3. If f(n ddf’?y’), thenF (k) = BT Gk + n).

Theorem 4. If f(n) = g(n)h(n), thenF (k) = leo G()H(kE—1).
Taking differential transform of equations (14) and (1% de obtained
20k +4)(k +3)(k+2)(k+ 1)F(k+4) — (k+2)(k+ 1)G(k + 2)
k
—Re) [(k+3-r)(k+2-r)(k+1-r)F(r)F(k+3—r)

= (k+1-r)k+2—r)(r+1)F(r+1)F(k+2-7)] =0, (21)

(k+2)(k+1)G(k+2)+ (k+2)(k+ 1)F(k +2) — 2G(k)
k
—0.1ReY [(k+1—=7r)F(r)G(k+1-r)
N )Fe GG - ] =0, (22)

whereF'(k) andG(k) are the differential transforms ¢f(t) andg(¢). The transform of
the boundary conditions are

F(0)=0, F(1)=a, F(2)=0, F(3)=24
G(0)=0, G(1)=7,

wherea, 3 and~y are constants. For these constants, the problem was soltte@28)
and then the boundary conditions (16) were applied

f)y=1, f'(1)=0, g(1)=0. (24)
For Re = —10 and N = 20, we have

o = 1.5322204297572861, [ = —0.5553448285583471,
v = —0.3999429995789404,

(23)

(25)

and the solutions of above equations (using the DTM) arel&s\f®

f(n) = 1.53222n — 0.5553457% 4 0.01055087° + 0.0180515,"
— 0.008036371° + 0.00370628n*! — 0.00177786n*>
+0.0008466187® — 0.0003927257'7 + 0.000176144n"7, (26)
g(n) = —0.399943n + 0.422031> + 0.01080157° — 0.0173915n"
+0.009129277° — 0.004398047'1 4 0.002122837'3
—0.001005277'5 + 0.0004628991'" — 0.0002062227, (27)
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4 Results and discussion

Table 1 shows results obtained from the DTM for the functigfyg) andg(n) at Re =
—10andN = 20, compared with a numerical solution using a fourth-ordemg+Kutta
method. Excellent agreement can be seen. From this tablBigndl, it can also be seen
that the maximum error for the DTM occurs near the middle efittierval(n = 0.5).

Table 1. The results of DTM and Runge—Kutta numerical metiood'(r) andg(n)
whenRe = —10 and N = 20.

J(n) g(n)

n DTM Numerical Error DTM Numerical Error
0.0 0.00000000 0.00000000  0.00000000  0.00000000  0.00000000  0.00000000

0.1 0.15266681 0.15261477  0.00005203 —0.03957238 —0.03953400  0.00003838
0.2 0.30200493 0.30190458  0.00010035 —0.07661603 —0.07654220  0.00007383
0.3 0.44470125 0.44456001  0.00014124 —0.10861796 —0.10851455  0.00010340
0.4 0.57748176 0.57731069  0.00017107 —0.13310413 —0.13297987  0.00012425
0.5 0.69714877 0.69696245  0.00018632 —0.14767519 —0.14754153  0.00013366
0.6 0.80063401 0.80045027  0.00018374 —0.15005557 —0.14992643  0.00012914
0.7 0.88506598 0.88490551  0.00016047 —0.13815323 —0.13804462  0.00010861
0.8 0.94784823 0.94773361  0.00011462 —0.11012516 —0.11005419  0.00007097
0.9 0.98674644 0.98669724  0.00004920 —0.06444625 —0.06442561  0.00002064
1.0 1.00000000 1.00000001 —0.00000001  0.00000000 —0.00000001 —0.00000001

0.0002

0.00015

0.0001

Error

SE-05

Fig. 1. The errors of the DTM solutions fgf(n) and g(n), when Re = —10 and
N = 20.
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The rate of convergence fgf(n) and g(n) for middle point of interval at some
values ofRe is shown in Table 2. The tabulated data indicates that teeaeldomparible

accuracy, largetV values are needed for higher mass injection rates.

Fig. &isho

the profiles off(n), f’(n) andg(n) obtained using the DTM, along with the numerical
solution using the fourth-order Runge—Kutta method. A®d@arlier, we can see a very
good agreement between the DTM and Runge—Kutta numermaltse
The effect of Reynolds number on the dimensionless velocdgnponent in
x-directionf’(t) is considered in Figs. 3 and 4. These figures elucidate tbegasing the
magnitude of Reynolds number (i.e., increasing mass injecincreases the maximum

value of this component.

Table 2. The rate of convergence ff(m) andg(n) for middle point of interval.

N=5 N =10 N =15 N =20 Numerical
Re=—-0.1 f(n) 0.69018775 0.69051036  0.69051065 0.69051065  0.69051065
g(n) —0.15661506 —0.15740800 —0.15740851 —0.15740851 —0.15740851
Re=-1 f(n) 0.69019366 0.69132989  0.69134072 0.69134071  0.69134071
g(n) —0.15541294 —0.15668788 —0.156697633 —0.15669762 —0.15669762
Re=-5 f(n) 0.69022096 0.69379912 0.69438107 0.69435187  0.69434988
g(n) —0.14986365 —0.15257933 —0.15300702 —0.15298466 —0.15298314
Re=—10 f(n) 0.69025759 0.69363233 0.69768648 0.69714877  0.69696245
g(n) —0.14241398 —0.14531757 —0.14805139 —0.14767519 —0.14754153
1.6

1.4 s S

° f'm)

° -8

0.8

0.6

0.4

0.2

Numerical

0.2

0.4

0.6 0.8 1

Fig. 2. The profilesf(n), f'(n) andg(n) obtained by the DTM in comparison with the
numerical solution, wheiRe = —10.
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Fig. 3. The effect of Reynolds number on velocity component-direction.
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Fig. 4. The effect of Reynolds number on velocity componant-direction (zoomed).

5 Conclusions

In this paper, the DTM was applied successfully to find theissmalytical solution of

the micro-polar flow in a porous channel with mass injectiBncellent agreement was
noted between the DTM solutions and those obtained usingréhforder Runge—Kutta
method. The results also show that the differential tramsfmethod does not require
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small parameters in the mathematical formulation, so amédtion of the traditional
perturbation methods can be eliminated.
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