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Abstract. Two coupled systems of parabolic and nonlinear ordinaryedtfitial
equations arising in kinetics of heterogeneous reactionstadied numerically by using
computer calculations. Some numerical results are diseduss
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1 Introduction and formulation of the problem

We study two coupled systems of parabolic and nonlineanarglidifferential equations

which describe dynamics of the heterogeneous reactionsdir for the catalytic reac-

tion on a surface to occur, one or more of the reactants mffissdito the catalyst surface

(adsorbent) and adsorb onto it forming one or more interatedi(adsorbates). After

conversion (reaction) of the adsorbates the product mussirdeand diffuse away from

the adsorbent. In the present paper we consider two onecmiateeaction models given

in [1]. Both of them include the diffusion of reactastto the adsorbenk’, adsorption of

A onto surface of adsorbeht forming adsorbatel K, conversion ofAK into a product

B, and diffusion of B away from the adsorbent. In one of models, we include a slow

desorption of3, while in the other one the desorption®fs assumed to be instantaneous.
Let reactantd and productB of concentrations(t, ) andb(¢, «) occupy domain

Q with surfacedf2 = S; U S,. Heret is time,x € () is a position,Ss is a surface of the

adsorbent, and; = 99 \ S,. Let the constant be the surface density of the active sites

of Sy andus be the density of active sites occupied by molecules of &ddéer K. Here

u < 1is the surface coverage by adsorbed molecules. Then angdodiangmuir [2], in

the case of instantaneous desorptiomothe adsorption and desorption rates of reactant

A and conversion rate of adsorbaté&” into productB can be described by the functions

kr(1 —u)sals,, krsu, andksu. Hencesu' = ky(1 — u)sals, — krsu — ksu, wherew’

is the partial derivative of with respect ta. Setu(0, z) = ug(x). Then

u =kl —u)als, — (kr + k)u, u(0,z) = up(z). (1)
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The diffusion ofA to Sy and diffusion ofB from S; can be described by the systems
given in [1],

Ora = KkqAa, t>0, x €,
Onals, =0, t >0, )
KaOnals, = —krs(1 —u)alg, + krsu, t>0,
a(0,z) = ap(x), LAY
and
9:b = Ry Ab, t>0, zeQ,
nb =Y, t )
Onbls, =0 >0 3)

KpOnbls, = ksu, t >0,
b(0,z) = bo(x), =z €.

Herek, andk, are the diffusion coefficients of and B, A is the Laplace operator, and
Onals, ando, b|s, are the outward normal derivatives.

Now we describe the other model given in [1]. kats andusys be the densities of
the active sites o, occupied by molecules of adsorbaté&” and produciB, respectively.
Obviously,uy < 1,k = 1,2, andu; + us < 1. Then

uh = k(1 —ur —ug)als, — (kr + k)ur, u1(0,2) = u1o(x), @
U/Q = kuy — kyquo, u2(0a l‘) = U’?O(m)'
Herek, is a desorption rate constant Bf
Diffusion of A and B can be described by systems
Ora = kqAa, t>0,ze€,
Onals, =0, t>0, (5)
KaOnals, = —kgs(l —uy — u2)als, + kpsur, ¢ >0,
a(0,z) = ap(x), ASEY
and
Oib = KpAb, t>0,ze€,
Onbls, =0, t>0, (6)
KpOnbls, = kr1sua, ¢ >0,
b(0,z) = bo(x), x € .

Systems (1)—(3) and (4)—(6) possess the mass conseneation |

/(a—l—b)dx—i—/sudm:/(ao—i—bo)dm—i—/suodm,

Q Sa Q Sa
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/(a+b)dx+/s(u1+u2)dx:/(ao+b0)d:c+/s(u10+u20)d:c,

Q Sa Q Sa

respectively.
Usually physicists and chemists [3-5] use the steady-apgieoximation of; which
follows from (1),
U= kfa’|52
k:fa|52 + k. + k’
and conditions (2)and (3} written in the form

(7)

skfka|52 sk:fka|52
k?fa|s2+ki7-+/€, kfa|s2+kﬂr+k?.

The steady-state approximation of, u» and conditions (%) and (6} can be
written in the form

K‘/(La’na’|s2 = Kba’nb|52 =

u2 = iul ul = kfa|s2
kel k(1 +k/kr)als, + ke + k7
KaOnals, = —ksu1, KpOpbls, = ksuy.

A lot of papers (see [3—-5] and literature there) is devotedadification of isotherm
(7) to more accurately describe the experimental obsensti Paper [6] is devoted to
study of solvability of system (1)—(3).

The aim of this paper is to study systems (1)—(3) and (4)—(@)erically by using
computer calculations.

This paper is organized as follows. In Section 1, we give trenfilation of the
problem. In Sections 2 and 3, we give the numerical algomtlamd discuss numerical
results. Some remarks in Section 4 conclude the paper.

2 Numerical algorithms

Using the dimensionless variables- t /T, 71 = x1/l, T2 = x2/l,a@ = a/a., b = b/as,
do = aop/ax, by = bo/a. and constants = s/a.l, ky = kiTa., k, = kT, k1 =
kT, k = kT, ko = k,T/12, Ky = rpT/1%, whereT, [, anda, are the characteristic
dimensional units, we rewrite equations (1)—(3) and (4)+#(@he same form witht, =1,
T, a, b, ag, by, kf, kry ki1, Ky 8, Ka, andry replaced b)t_, T, T2, a, l_), aop, E(), :I_Cf, ET,
kr1, k, 3, Rq, andk,. For simplicity in what follows, we omit the bar and treat atjans
(1)—(3) and (4)—(6) as dimensionless.

To get the numerical solution of systems (1)—(3) and (4)w®é)use the finite-
difference schemes and consider two-dimensional dofdain[0, 1] x [0, 1] with Sy =
{(z1,22): 1 € ]0,1], 22 = O}.

Assume that

1 T
tk:kT, ﬁk+1/2:(l€+§)7', 0§k§M7 ’T'ZM7
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. . 1 . 1
r1; =ihy, 0<1< Ny, hlim; Ty = jha, 0<j < Nz, he= N
SEtG = a(ty, 14, T25), sz = b(t, T1i, T2;), ub; = ua(te, 15), ub; = ua(te, 1)
kt1/2 kt1/2
anda,; ' = altpy1/2, ¥10, T25), by 17 = bty /2, T1i, Tog).

Let the difference operators; andAs be defined by\1v;; = (vi—1; — 2v;; +
vit1,5)/h3, Aovij = (vij—1 — 2v;; + vi j+1)/h3 and let] be the identity operator.

To approximate the differential problems (1)—(3) and (8)-tfie alternating direc-
tions implicit method [7] is used. We write the following fiifence scheme to prob-
lem (5):

(I— T—;a/\l)af;rl/g = (I-i- T%Ag)a (8)
i=1,2,... Ny —1;j=1,2,...,No— 1

)

k+1/2 k+1/2 k+1/2 k+1/2 .
ao;_/ :aJ/, ath/ :aNT—/uv j=1,2,..., Ny — 1, 9
TKa k+1/2
(1= 52aa)at = (1 2 ) (10)
i=1,2,...,Ny— 1, j=1,2,... Ny — 1,
Ka hosk,uf ,
0= it — (12)

a; +
Ka + hasky(1 — U’fz - Ulgct) " Ka + hasky(1 — Ulft - UIQCZY
i=1,2,...,N;1 — 1,

alft=aflt =12, N -1, (12)

a’ocjrl —a’fjrl, a?vtjl a’ﬁ:llj, j=1,2,...,No— 1, (13)
forallk =0,1,..., M — 1, with the discrete initial condition

ag; =aos, i=1,2,...,N1—1;j=1,2... Ny— 1. (14)

The sweeping method [7] is used for solving problem (8), @Y¥ikedk and;, and
(10)—(12) for fixedk ands.

To write the difference scheme to problem (6) we have to mptanctiona by b,
the parametek, by x; in equations (8)—(14) and use the following boundary caoolit
for functionb atz, = 0 instead of approximation (11):

bk+1 _ bk+1 hask,1 k — 1.9

20 Kb U’Q,i )

2, Ny — 1. (15)

The values of:; andu, at each time step are calculated explicitly by the scheme
“]ﬁl “]fz + 0-57{ [kf (1 - “]fz - Uéz‘)ai'c(;rl — (kr + k)u]fz]

[y (1= i3t — s t)aly — (ke + R)ui; '], (16)
ustt = b, 4+ 0.57[(kuf; — kpub ) + (kuf ;' — keub )]

fork=1,...,M —1and
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U% i “?i +0.57 [k?f(l - U?z‘ - Ug z) azo — (kr + k)“1 J U?,z‘ = U10,i, 17
_ 0 0o _ (17)
uy; =uy,; + 057 (kul ; — kpiuy,),  ud,; = ugo,

foreachi = 1,2,..., Ny — 1.
For problem (1) we use the approximation
b = b 05 {[hy (1= ) el — (ke + byl
Hlkp (1= ) aly — (ke + k)uf ']} (18)
fork=1,...,M —1and
ul = uf +0.57[ks(1—uf)ajy — (ke + k)uf], uf =uo; (19)

for eachi = 1,2,..., N; — 1. The boundary conditions at, = 0 (11) and (15) are
written as follows:

kel Ka bl hgskruf
0 ky il kN’ (20)
Kq + hosky(1 —uy) Kq + hosky(1 —uy)
haskr
phtl — phil 4 2270k (21)

Kb

The local approximation error for inner points(©f ') x Q is O(72 + h2 + h?) [7].
The boundary conditions are changed with the accu@@y ) atz; = 0, z; = 1 and
O(h2) atze = 0, zo = 1. The approximation of (1) and (4) is of the first order with
respect to time variable.

In the cas&,, ao()|s,=0:1 = 92,b0()|z,=0,1 = 0 the difference solutions satisfy
the discrete analogues of the mass conservation laws:

Ni—1N>—1 Ni—1
hlhg Z Z k+1 bicjrl) +Sh1 Z ’ll,;chl
=1 j=1 =1
Ni—1Ns—1 Ni—1
=Iahy Y D (af +b5) +shy > ul, (22)
i=1 j=1 i=1
Ni—1Nz—1 Ni—1
hihs Z Z k+1 + bk+1) + shy Z (u]ffl + ’U,k+1)
=1 j=1 =1
N;i—1Ny—1 Ni—1

=hihy > > (af +05) sy Y (uf, b)) (23)
i=1 j=1

=1

The numerical experiments for different valuesiaf h, andr show the stable
behavior of the numerical solution. We also solved problg&jr(@) by using the implicit
difference scheme. Calculations show that this schemalesforr < 0.25h%/k, h =
min{hi, ha}, k = max{kq, K }. The difference between results of explicit and implicit
schemes is small.
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From the physical point of view(t, ) — 0, u(t,z1) — 0, b(t, ) — [, ao(z)dz
ast — oo in the case of instantaneous adsorption af\dx) — 0, uy(t,z1) — 0,
ug(t, 1) — 0, b(t,z) — [, ao(x)dx ast — oo for the slow adsorption. Calculations
show that numerical solutions possess this property.

3 Numerical results

Results are illustrated in Figs. 1-6 f@r= [0,1] x [0, 1], S = {(x1,z2): 71 € [0,1],
X9 :O},ma:ﬁbzo.l,s: 10,UQ ZU10:UQ0:b0:0,

ap = 20(exp(—2z1) — exp(—2))/(1 — exp(—2)).

The results presented in this section are computedwithh; = ho = 0.01.

Usually surfaces are not homogeneous and constark,, k, andk,; depend on
many factors including processing of surfaces. Therefgpeemental observations of
their values may be different. Values of constants that veeaws given in captions.

Fig. 1 demonstrates the behavior of functias, 0, z2) from models (1)—(3) and
(4)—(6) versus;, for five values ot andky = 0.2, k, = 1, k.1 = 0.1,k = 0.1. Thefigure
shows a difference between curvesfos 1 which for larget tends to zero. Calculations
also shows that for large.; (k.1 > 1) this difference practically is zero and it increases
ask,1 < 1 decreases. For largg (k; > 1), this difference also is small.

Fig. 1. Graphs of functior(¢,0, z2) from systems (1)—(3) (solid line) and (4)—(6)
(dash) fork; = 0.2, k. = 1, k.1 = 0.1, K = 0.1: 0.5 —curves 1, 1 — curves 2,
3 —curves 3,5 —curves 4, 10 — curves 5.

Figs. 2(a) and 2(b) illustrate the behaviorigt, 0, z2) from models (1)—(3) and
(4)—(6) versus:, for five values oft andky = 0.2, k, = 1, k.1 = 1, k = 0.1 (Fig. 2(a))
andky = 0.2, k. = 1, k,p = 0.1, £ = 0.1 (Fig. 2(b)). We observe a decrease of the
difference between curves As, increases.
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(@) (b)

Fig. 2. Graphs of functiorb(t, 0, z2) from systems (1)—(3) (solid line) and (4)—(6)
(dash) forky = 0.2, k» = 1, k = 0.1, (&) k-1 = 1, (b) k.1 = 0.1: 0.5 —curves 1,
1-curves 2, 3 —curves 3, 5—curves 4, 10 — curves 5.

In Fig. 3 we exhibit the graph of functioh(¢, 0, z2) from system (1)—(3) for

ky =1,k =0.1, k = 1. The graph shows thaft, 0, z2) possesses maximum values for
smallz,.
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Fig. 3. Graph of functiom(¢, 0, z2) from system (1)—(3) foks = 1, k, = 0.1, k = 1.

In Fig. 4 we exhibit the behavior af(t, 0, x2) from model (4)—(6) for five values
of t andk, = 0.1, k.1 = 1, k = 1, andky = 0.2 (solid line), ky = 1 (dash line).
For smallt, the difference increases ag decreases (see curves 1 and 2). Curves 3 and

4 demonstrate a difference practically independent,ofFor larget (see curves 5) this
difference increases as grows.
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Fig. 4. Graphs of functiom(t,0, z2) from system (4)—(6) fok, = 0.1, k1 = 1,
k =1, ky = 0.2 (solid line) andky = 1 (dash), and: 0.5 — curves 1, 1 — curves 2,
3 —curves 3,5 —curves 4, 10 — curves 5.

Figs. 5(a) and 5(b) exhibit the behaviorg(f, 1) (bullets) from model (1)—(3) and
w1 (t, x1) (solid line) andus (¢, 1) (dash line) from model (4)—(6) fde; = 0.2, k, = 1,
kr1 = 0.1,k =1 (Fig. 5(a)) andcy = 0.2, k, = 0.01, k.1 = 1, k = 1 (Fig. 5(b)). Figures
show, that difference between function@, x1) andu, (¢, z1) is small fork,, € [0.1; 1].
The dependance af(t, z1) on k1 is strong, andi (¢, x1) grows ask,; decreases. We
also see, that; (¢, x1), ua(t, 1), andu(t, 1) possess maximal values at moments: )
andts (z1), respectively, depending an . Calculations also show that(z1) > to(21).

04477

0.3 1 0,15 |

0,05

(@) (b)
Fig. 5. Graphs of functions(t,0, 1) (bullets) from system (1)—(3) and (¢,0, z1)
(solid line), uz(¢, 0, z1) (dash) from system (4)—(6) fdry = 0.2, k.1 = 0.1, k = 1,
(@) k- =1, (b) k. = 0.01,andt: 0.5—-1,1-2,3-3,5—4,10—5.

Figs. 6(a) and 6(b) demonstrate graphsueft,z;) and uz(t, 1), respectively.
Timest; (1) andta(z1) of maximal values ofi; anduy depend on datay, k., k.1,
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k, Ka, kb, @ands. If differencets(x1) — t1(x1) is small, thenus influences the behavior of
a more significantly. In the other cases this influence is snigdicause of the boundary
condition (6% the dependance &ft, 0, 22) onux(t, 1) is very strong.
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Fig. 6. Graph of functions (a): (¢, z1), (b) u2 (¢, 1) from system (4)—(6) fok; = 0.2,
kr=1,kri=1,k=1.

4 Concluding remarks

We examined numerically two models of unimolecular heteregpus reactions. In one
model, desorption of the product is instantaneous whildnédther one the desorption
rate of the product is bounded. Boundary conditions of m¢te}(3) demonstrate the
qualitative behavior of its solutions:

o the increase of; decreases, but increases,
e the increase of, increases, but decreasds
e the increase of decreases, but increases.

Boundary conditions of model (4)—(6) show that:

e the increase (decrease)igf, decreases (increases) the difference of models (1)—(3)
and (4)—(6),

e the increase of increase$,

e the increase of, decreases,; and, hence, it decreasks

Numerical calculations show that in general functiardefined by models (1)—(3)
and (4)—(6) differs a little, but the difference fofs significant.
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