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Abstract. We study how predator behavior influences community dynawii@redator-
prey systems. It turns out that predator behavior plays airtimh role in community
dynamics. The hybrid model studied in this paper reveals treiod-doubling
and period-doubling reversals can generate short-terowrnertt chaos (STRC), which
mimics chaotic dynamics observed in natural populationERS manifests itself when
deterministic changes in a system parameter interrupttichbehavior at unpredictable
intervals. Numerical results reinforce an earlier suggaghat period-doubling reversals
could control chaotic dynamics in ecological models. Inlegical terms, the prey and
intermediate predator populations may go to extinctionhi& évent of a catastrophe.
The top predator is always a survivor. In contrast to thiss i not the case when the
constituent populations are interacting through Holliyyget 11 functional response. Even
this top predator can go to extinction in the event of suchstadphes.

Keywords: dynamical complexity, hybrid model, Crowley—Martin fuimsial response,
short-term recurrent chaos, period-doubling bifurcation

1 Introduction

Understanding ecosystem’s dynamics is one of the mosteriwifig tasks. The biotic part
of the ecosystem comprises living entities known as speciégse species are spread
over space. The key to understanding of ecosystem dynasmicpiulation systems. The
populations are groups of individuals of different spesjg®ad over a given geographical
area. When population densities are high enough, one mayddhe interaction of
food chain species as “well-mixed”; at such densities, lafwshemical kinetics govern
population dynamics. In what follows, we discuss how sugbytation dynamic models
are designed.

The population dynamic models are assembled by combinimgfiftnal and nume-
rical responses of predators in a suitably chosen scheneesdeh schemes (formulations
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of predator-prey interaction) are in vogue; (i) Volterrdaeme (ii) Leslie scheme. The
former assumes that the predator population dies out expiafg in the absence of
its lone food; latter is based on the premise that the petaapowth of the predator
population is limited by the per capita availability of préye present a model, which is
designed using Volterra scheme. The model system emplolfm¢itype Il functional
response for the first predator. The top predator’s funetioesponse is modeled by
Crowley—Martin (CM) function.

The first predator-dependent model was given by Hassell anéw[1], who pro-
posed that the attack rate should decrease with increasdgior density. They proposed
the functional response in the form

p(X,Y) = P(x/y™) = X

= W, m € (0, ].]

Parametern can be interpreted as an interference coefficient. This idedso plausible
biologically [2]. Whenm = 0 orY = 1, the Hassell-Varley functional response reduces
to Holling type Il functional response. Holling type Il rempse function assumes that the
predator spends some time searching for prey and some timedicessing each captured
prey item. The instantaneous per capita feeding rate ofréndgpor is given by

alN

J1(N,P) = TN

whereN is the prey density. This response function assumes thiag éxésts no interfer-
ence among individuals of predators and that depletione&yf pauses competition among
predators for food [3]. Beddington—DeAngelis (BD) funci#d response assumes that
individual predator allocates time not only to searchinggfey, but also to engaging in
encounters with other predators. The instantaneous p&adapding rate is given by

alN
N,P) =
J2(N.P) 1+bN +¢(P—1)

whereP is the predator’s density ands a positive constant describing the magnitude of
interference among predators. The underlying assumpfi@Danodel is that handling
and interfering are exclusive activities. The CM model\Bdfor interference among
individuals of predators engaged in handling or searchirggiven instant of time. The
CM model adds an additional term in the denominator

aN
fs(N, P) = 1+bN +c(P —1) +beN(P — 1)’

(P — 1) is replaced byP when predator’s interference is modeled as continuoualvigri
or other mechanisms of predator dependence such as preyidrethet depends upon
predator’s density. The basic difference between thesefuwetional responses is that
the BD model predicts that the effects of predator interfeesbecome negligible at high
prey densities. While the CM model maintains that the itenfice effects on feeding
rate remain important at all densities.
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Predators behave differently in different situations tlaeg foraging. In space-
limited situations where predators can move freely but caypencounter prey in a region
of limited size, predator interference effects are produg spatial mechanisms [2].
Common examples of space-limited situations arise wheatgpoes could only encounter
prey at the edge of a prey refuge or if the prey were only exppéseredation in gaps
in protective cover. It is expected that natural food cha&iosld be better represented
by models, which incorporate both Holling type Il and CM ftinoal responses. The
latter assumes that the per capita feeding rate of the mmexdista function of predator
interference effects. In this paper, we explore dynamicahglexities (attractors and
their basins, bifurcations, etc.) of such a hybrid food nlmodel. Upadhyay and Naji [4]
studied the local and global stability of this hybrid modgdtem and also established the
persistence criteria.

Hybrid ecological models do not have pristine history. Upgl and Rai [5]
proposed and studied a hybrid food chain model to understéayddeterministic chaos
is rarely observed in natural populations. These model® wlesigned by combining
two formulations of predator-prey dynamics: Volterra areslie—Gower schemes. The
former describes the population dynamics of a specialetigior and the latter that of a
generalist predator. The authors have been successfudiirattempt to develop a theory
of ecological chaos based on these new classes of models [6h@ present study is
based on numerical computations. Stability analyses cgrelfermed for simple sys-
tems of differential equations describing trophic stroetu It is impossible to determine
analytically the nature of unstable dynamics (regular \aotic oscillations). Recently,
Gross et al. [8] proposed a method to investigate the patefoti chaotic dynamics in
general food chain models of variable length. It would bedfieral if this approach,
based on bifurcations of higher co-dimension as indicaitbchaos, could be extended to
food web architectures.

2 Model system

We consider the following system as a model representingrapghic food chain. The
model employs both Holling type Il and CM type of functionasponses. It is described
by following system of differential equation, whek&T) is the population density of the
lowest trophic level species (prey) at tifie Y (T') is the population density of the middle
trophic level species (intermediate predator) at tifrendZ (T") is the population density
of highest trophic level species (top predator) at tifme The intermediate predatdf
feeds on the prexX according to the Holling type Il functional response, hoamhe top
predator ¢) feeding rate ort” varies according to the CM type functional response [4].

dx X\ wXY

o X(1-=) - == 1
a " ( K) X+D’ (1a)
ay W XY WY Z

- _aY — 1
a2t XD 1Ay sz bdvZ (1b)
dz U}3YZ

- Bt Ty sz bavz (1c)
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The preyX grows with intrinsic per capita growth ratg and carrying capacity
K in the absence of predation) measures the extent to which the environment pro-
vides protection to preyX. w is the maximum value which per capita reduction rate
of X can attain,w; /w represents the conversion rate of an eaten prey. The ctsistan
wa, ws, b, andd are the saturating CM type functional response parameterghich
b measures the magnitude of interference among predatothdfur, is the death rate
of the intermediate predator amd is the death rate of the top predator. All the model
parameters are assuming only positive values. Obviousbgleinsystem (1) is a three
species simple food chain involving a hybrid type of prepeledent and a predator-
dependent functional response.

The model system is rendered dimensionless using the fioipwariables and
parameters:

; T X wY wwa Z
= Qa xr = — = z =
1 K YT K 2K’
D ag w1 w3
w4:E7 wsia—l, wﬁ:a_l’ w7:ma (2)
aib a%bdK w as
wg = —, Wy = Wi = 5>, Wi = —.
8 wo ) 9 wws ) 10 a%dK’ 11 a1
The model equations in dimensionless form are:
dz [

- 1—2)— = 3a
dt LL‘_( LL‘) m—i—wJ Zgl(xvyaz)a ( )
dy [ Wex z
— =y|—ws + - = Z,Y, 2), 3b
a YT T s y+(w8+w(3y)2+w1o} v42(= . 2) (30)
dz [ wry
— =z|—wi + = zg3(x,y,2). 3c
a T M Ty (w8+w9y)z+ww} 95(03:2) 59

Clearly, the non-dimensional system (3) has eight paramétell. Obviously the right
hand sides of system (3) are continuous smooth function®on= {(z,y,z) € R*:

z >0,y >0, z> 0}. Indeed, they are Lipschizian dd? and then the solution of the
system (3) exists and is unique.

3 Methodology

Computer simulations were performed on MATLAB 7.0. Moddteyn (3a)—(3c¢) is inte-

grated numerically using the fourth-order Runge—Kuttahoétwith time step size 0.001.
We explore dynamical complexities of the proposed modeiesysn two-dimensional

parameter spaces. Bifurcation diagrams are computed hyingecrucial parameters
of the model system as bifurcation parameters. Non-lingaanhical systems exhibit
dynamical complexities, which are either of deterministiof stochastic origin. 2D scans
help us to examine the former and the latter which are inyat#d by computing basin
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boundary diagrams. We also generate phase portraits aadgéries of the model system
for certain parameter sets.

We now mention briefly how basin boundary calculations aréopmed. First, we
define thebasin of infinity Let SD denote the diameter of the computer screen. It may
be possible that the point at infinity is an attractor. Sineecannot examine rigorously
whether the trajectory of a point goes to infinity, we conelilat a trajectory diverges
or is diverging if it leaves the computer screen area, that goes to left or to right of
the screen by more than o8& width of the screen, or goes above or below the screen
area by more than ongD screen height. The basin of infinity is the set of initial gsin
whose trajectories are divergingdaryland Chaos groughas done pioneering work in
this area and have developed a tool to calculate basin bopstiactures. We have used
the research version of the software which accompanied db& bntitled “Dynamics:
Numerical Explorations” authored by Nusse and Yorke [9].NW&fee used the BAS (basins
and attractors structure) method for all the computatidiss method divides the basin
into the following two groups: (i) The basin of attractignwhose points will be plotted,
(i) The basinB whose points will not be plotted. A generalized attractothis union
of finitely many attractors, and a generalized basin is tisinbaf a generalized attractor.
The BAS routine does not plot the bowl lying outside. Thetsgg is to test each grid
point which is the centre of the grid box. In the event thatdbetre of a grid box is in
basinA, then the same is plotted (colored). In the default casén bhis the set of points
whose trajectories are diverging, while baBiis empty. Therefore, BAS routine will plot
a grid box if the trajectory of its centre is diverging. Thepiantant aspects of the basin
boundary calculations are to specify the basihsB and to find the radiu®2A, where
RA stands for radius of attraction for storage vectors whidp tespecify the basingd
and B. The value ofR A will be different for different dynamical systems. It mus set
appropriately in order to avoid any misleading basin petur

4 Numerical simulations

In order to understand the dynamics of the model system (8)tusn to numerical
simulations. It is observed that the model system (3a)-{as)a chaotic solution for
the following set of parameter values:

wy = 0.25, ws =025 ws=08,  wr;=0.25,

wg = 0.01, W9 = 0.17 w10 = 0.287 w11 = 0.035. (4)
The parameter values are chosen on the basis of our previsdiss[4]. Time series
corresponding to the chaotic attractor after transientewiged out were recorded for
a typical set of parameter values and are presented in Figh#.chaotic attractor for
the model system (3a)—(3c) is presented in Fig. 1(a). The $emies representations for
chaotic dynamics in the model system are presented in Higs-1(d) which shows that
while populationse andy reach extinction-sized densities, the population dertdithe
top-predator; does not.
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Fig. 1. (a) Chaotic attractor for the system (3a)—(3c); émporal evolution(vs x)

for the chaotic attractor for the system (3a)—(3c); (c) terapevolution ¢ vsy) for the

chaotic attractor for the system (3a)—(3c); (d) temporalwion (¢ vs z) for the chaotic
attractor for the system (3a)—(3c).

Extensive numerical simulations are carried out for vasigalues of parameters
and for different sets of initial conditions. Two differestdntrol parameters are discussed,
the death rate of intermediate predator scaled to peraagitroduction rate of its prey,
ws and scaled death rate of top predaiqi. These values are selected after a thorough
study of the asymptotic dynamics of Kolmogorov subsystemparticular the system
parameters are chosen in such a way that subsystems peteinjornies on stable
limit cycles. The bifurcation diagram of system (3) for theesessive maxima of the top
predator population as a function ofw;; in the ranged < wy; < 0.1 with step size
0.01, is plotted in Fig. 2. According to this bifurcation diagrahe solution of system
(3) has different type of attracting sets in the rafge wi; < 0.055 including periodic
and chaotic ones. However, as; increases furthed.055 < wy; < 0.1 a stable limit
cycle is observed. Moreover, far;; > 0.1, the top predator populationdeclines and
reaches to extinction. It is evident from Fig. 2 that PD andrRfurcations take place
when parameten;; is decreased. Deterministic chaos shows uifi1, 0.02).
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Fig. 2. Bifurcation diagram of the system (3), the successiaxima ofz as a function
of w1 is plotted in the rangé < w11 < 0.1 for the parameters given in equation (4).

The magnified bifurcation diagrams of Fig. 2 are blown up ig.&(a) and 3(b).
A typical long-term attracting set of system (3) is drawn igg-4(a)—4(d). The blown up
bifurcation diagram Fig. 3, and the attracting sets giveRiq 4 show clearly the route
to chaos through the cascade of periodic-doubling bifiznat In fact for the range of
0 < wi; < 0.055, the solution of system (3) has rich dynamics generated bipghe
doubling and period-halving bifurcations. For the samepeaters given by equation (4),
if we fix ws = 0.25, the strange chaotic attractor given in Fig. 4(d), reveslad period-
doubling cascade the diagram of which is given by Fig. 3(a)s Phenomenon of period-
doubling can suddenly break down and reverse, giving ripetmd-halving bifurcations
(cf. Fig. 3(b)) leading to stable limit cycles.

Fig. 3. (a) Magnified bifurcation diagram of Fig. 2 in the rarg02 < wi; < 0.035;
(b) magnified bifurcation diagram of Fig. 2 in the rar@y@35 < w11 < 0.045.
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() (d)

Fig. 4. Phase portraits iNY Z plane for system (3) showing the transition from chaos
to limit cycle and to strange attractor via period halvingl geriod-doubling route:
(a) chaos atv1; = 0.01, (b) period-2 atwi; = 0.022, (c) period-4 atwi; = 0.025,

(d) chaos atvi; = 0.035.

Itis observed that fow;; = 0.01, 0.022, 0.025 and0.035 the solution of system (3)
approaches to chaotic attractor, period-2 attractorpdetiattractor and chaotic attractor
respectively.

Two bifurcation diagrams of system (3) for the successivgima of the interme-
diate predator populationas a function of scaled death rate of intermediate predafor
in the rangel.15 < ws < 0.5, keeping other parameters as given in equation (4) with
wi; = 0.03, are drawn in Fig. 5(a). The bifurcation diagram given in.FH¢g) shows
that the solution of system (3) is very sensitive to the deatth of intermediate predator
in the range).18 < ws < 0.44. This figure shows clearly the presence of the cascade of
periodic doubling bifurcations leading to chaos.

Similar bifurcation diagrams are drawn in Fig. 5(b), as thosFig. 5(a), for the
parameter values given in equation (4) witB5 < w; < 0.5 andw;; = 0.06. Although
the food chain system has rich dynamics including chaos)@ease in the death ratg,
from0.03 to 0.06, causes the reduction in the zones of chaos and extensioa petiodic
windows in the rang®.28 < ws < 0.44. Finally, from Figs. 5(a) and 5(b), it is easy to
check that forws = 0.375 with the rest of parameters given by equation (4), the smhuti
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of system (3) approach to chaotic attractowat = 0.03 while it approaches to a periodic
attractor forw;; = 0.06. Fig. 5(a) shows that PD bifurcations appear as parameter
is increased. The system displays chaotic dynamics wherptiameter takes a value
more than0.3. The system does not support either regular or chaotic digsaoeyond
0.35 and below0.4 (cf. Fig. 5(b)). Fig. 6(a) shows that the system dynamicgtksi
between regular and chaotic motion. This shuttling is cddisechanges in either of the
two parametersfs andw ;).

Maxi)
Max(y)

W Ws
(@) (b)
Fig. 5. Bifurcation diagram of the system (3). The successihaxima ofy as a

function of ws for the parameters given in equation (4) with ¢a); = 0.03 and
0.15 < ws < 0.5; (b) w11 = 0.06 and0.25 < ws < 0.5.

The size of the chaotic attractor increases with the deergagarameters; and
wi1. The basin boundary of this chaotic attractor with that efalttractor shown in blue
is complex. The other attractors have basins riddled witinsaof several co-existing
attractors. The complexity of the basin boundary structig@eases as one move to the
bottom-left point in the 2D parameter scan (Fig. 6(a)). Bi@p) suggests that a change in
parametetv; affects a transition in the dynamical behavior of the systBasin bound-
aries shown in Fig. 8 suggest that the system dynamics istiserts changes in initial
conditions. This implies that stochastic external infllesndictate the dynamical behavior
of this hybrid system. Since chaotic dynamics exists in aavasstrip (cf. Fig. 6(c)),
ws andwg are two sensitive parameters of this model system. The $ieeachaotic
attractor decreases when values of both the parametezgisiigh. Number of co-existing
attractors is diminished for the top-middle point (Fig. Y(brhe dynamical behavior of
this system under the influence of exogenous factors may jppedictable as intertwined
basin boundaries are common.

We also present 2D scan diagrams in various parameter sfsaeekigs. 6(a)—6(c))
and the basin boundary calculations for chaotic attraatbthe model system (3) with
respect to various parameter spaces (see Figs. 7-9). Inahdsé figures we have
presented thgz-view and in some figures the:-view of the basin boundary structure of
chaaotic attractor (shown in yellow color). The basin bougdalculations are performed
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using the basins and attractors structure (BAS) routineldged byMaryland Chaos
group. We have used the dynamics software package of Nusse and [@jrfor all the
basin boundary calculations. It is clear from these figuhes$ basin boundaries of the
chaotic attractor are fractal which show the dynamical dexifies of the hybrid model
system (3). Itis also seen that basin of attraction of difféattractors are intermixed. The
encroachment into the basin of chaotic attractor by basmttedctor at infinity (shown
in green color) can be observed in Figs. 7, 8 and 9. It appesdvecen the first attractor
(shown in green color) and its basin (shown in sky blue coldhe interesting feature in
the model system (3) is that the riddled basin with fractalrimtary lies in the basin of
repeller which has many rectangular and square holes dregtehaotic attractor. This
complicated basin boundary structure suggests that themydynamics may have loss
of even qualitative predictability in the case of externatarbances.
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Fig. 6. 2D scan diagram of the system (3) in (@}, w11), (b) (ws, w4), (€) (ws, we)
parameter space. The parameter values of the other paraanetgiven in equation (4)
except forwq1 = 0.07.

Distribution of points in the parameter space (c.f. Fig)pgaggests that for model
system (3) displays STRC. It is characterized by chaotistsuepeated at unpredictable
intervals. The reason for existence of chaos at discretate&xbparameter values is that
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chaotic dynamics is abruptly terminated by period-doublieversals. Figs. 7(a)-7(c)
show that attractors with different geometries coexishatdame set of parameter values.
This is known asnulti-stability in non-linear dynamics. Basin boundaries are riddled.
This suggests that the system loses qualitative prediityaibiit interacts with external
stochastic influences.

T s y 7 -5 y 5.63

-5 y 5.323

Fig. 7. Basin boundary structure for system (3) computedffarent points in Fig. 6(a)
for the chaotic attractor at (a) the top-right corner pdimt = 0.4,w:; = 0.1) in
the domain—5 < y,z < 7; (b) the middle-top poinfws = 0.3, w1 = 0.06) in
the domain—5 < y < 5.63, —5 < z < 7; (c) the bottom-left corner poinfws =
0.2, w11 = 0.004) in the domain-5 < y < 5.323, —6 < z < 7. The meanings of
the different colors are as follows: Green: color of firstattor, Sky Blue: basin of
first attractor, Red: color of second attractor, Maroonirbassecond attractor, Brown:
color of third attractor, White: basin of third attractoraf Blue: color of points that
diverges from the screen area, Yellow: color of the chadtraetor.
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Chaotic dynamics is confined to a wedge-shaped region in d@nangeter space
(cf. Fig. 6(c)). This is certainly not a manifestation of STRThe robust chaos is
localized to a narrow region of the parameter space. Themsyswitches to other kinds
of attractors (mainly periodic) once the parameter valuegeoutside the narrow region.
Figs. 9(a) and 9(c) present more complex basin boundargtates. The complexity of
the basin boundaries is reduced at the parameter valuehwhagin the middle of the
wedge shaped region. External stochastic perturbationgMnave reduced effect on the
system’s dynamics in this case.

) y 3

(©

Fig. 8. Basin boundary structure for system (3) computedffardnt points in Fig. 6(b)

for the chaotic attractor at (a) the bottom-right cornemp¢ivs = 0.4, ws = 0.3) in

the domain-5 < y < 6.2, =5 < z < 6.2; (b) the middle-top pointws = 0.25, w4 =

1.6) in the domain—2 < y < 3, =3 < z < 2; (c) the bottom-left corner point

(ws = 0.1, ws = 1.6) in the domain—3 < y,z < 3. The meanings of the different
colors are same as given in Fig. 7.
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Fig. 9. Basin boundary structure for system (3) computedffarent points in Fig. 6(c)

for the chaotic attractor at (a) top-right corner pofmts = 1,ws = 1.94) in the

domain—1 < y,z < 1; (b) the middle-top poinfws = 0.55,ws = 1.15) in the

domain—2 < y,z < 2; (c) the bottom-left corner pointws = 0.07, ws = 0.2) in

the domain-3 < y, z < 3. The meanings of the different colors are same as given in
Fig. 7.

5 Discussion and conclusion

In an attempt to understand difficulties in detecting chaasatural populations, present
authors have proposed a theory [6, 7]. These authors dismbteat deterministic chaos
manifests itself as short-term recurrent chaos. The oh&ethavior is interrupted by
non-chaotic dynamics at unpredictable intervals and weghbthat a special kind of
bifurcation process was responsible for STRC [10]. Pedodbling (PD) and period-
doubling reversing (PDR) bifurcations generate and teatairthaotic dynamics in this
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system (cf. Figs. 5(a) and 5(b)). Fig. 5(a) shows that sasthchaos exists in the range
ws € (0.31,0.39). Short-term recurrent chaos exists in the raftg225, 0.255). Fig. 5(b)
establishes that PD and PDR bifurcations are responsibISTRC. PD bifurcations
initiate chaos and period reversing bifurcations terng@niatin ecological time. It is
surprising that PD and PDR are capable of generating thiawetfor realistic parameter
values. The results reinforce an earlier suggestion thaogeloubling reversals could
control chaotic dynamics in ecological models. Stone [14% ktudied dynamics of
logistic map in the presence of immigration and found thaiggedoubling reversals are
responsible for suppression of chaotic dynamics. Fig. gesis that chaotic dynamics is
sensitive to value of the ratio of per capita death rate ofiitermediate predator to the
value of the per capita growth rate of the prey. Figs. 7(b) &)l present less complex
basin boundary structure. Figs. 7(a)—7(c) give an idea widexity of basin boundaries
of different attractors. Basin boundaries are riddled artdrivoven. This gives rise to
unpredictability in system’s dynamics. Basin Boundariesspnted in Figs. 7-9 confirm
that a dominant source of unpredictability in this modelsysis external influences.

In [7], we have studied the model system in which both thermgsliate and top
predators have Holling type Il functional response. Theotisadynamics is sensitive
to changes in both the parameters: per capita death rateedhtbrmediate predator
and the per capita intrinsic growth and death rate of the t@plgdor. In case of the
present model system in which the top predator has a CM fomatresponse, the chaotic
dynamics is distributed over larger regions of the paransgaces (Figs. 6(a)—6(c)). In
these figures the involved system parameters have the fojomeanings:ws is the
ratio of the specific death rate of the intermediate predttahe per capita rate of
the self-reproduction of the preyw, is the ratio of the half-saturation constant to the
carrying capacity of the environment for the prey. In ecatabterms, chaotic dynamics
for the present system means that prey and intermediatatorgobpulations may go to
extinction in the event of a catastrophe. The top predai®always a survivor (cf. Fig. 1).
In contrast to this, this is not the case when the constitpeptlations are interacting
through Holling type Il functional response. Even this @ can go to extinction in the
event of such catastrophes.

The present study suggests that deterministic changesstersyparameters can
cause transitions between ordered and chaotic systens $ktgs. 6(a)—6(c)). Ordered
states are represented by stable foci and stable limit @ftigctors. The ratio of the per
capita death rate of the intermediate predator to per cgpdath rate of its prey is a
crucial parameter of this model system. Another sensitarameter is the ratio of per
capita death rate of the top-predator to per capita grovtéhatthe prey. Another source
of dynamical complexity is abrupt changes in initial coratit of the system, which might
be brought in by ecological catastrophes (e.qg., forest filesd, drought, etc.).

Non-linear dynamics and disturbance ecology have unrdgeklite of behaviors
including multiple equilibria, basins of attraction andrsient dynamical behavior. An-
alyzing a data set accumulated over a period of twelve yedrsegjuent to catastrophic
disturbance of a rain forest located on the western sealwditaragua, Vandermeer
et al. [12] concluded the existence of multiple basins afatton and non- equilibrium
community structure in this forest system. The post-sigioaslynamics of a forest can
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be studied quantitatively. One measure which is partitpileseful in disturbance ecology
is resilience.Resilience of a system consists in the magnitude of a pextiorthe system
can receive without changing its structure and function.
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