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Abstract. We consider a family of particles with different initial s¢& and/or velocities
whose dynamics is described by a modified Duffing equatioh mwihdom perturbations.
Sufficient conditions ensuring almost identical samplénpaif the particles after a long
time are given.
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1 Introduction
We consider the Duffing equation with random perturbaticefséd by

dX, =V,dt, t>0,

AV = (X; — XP)dt — aVydt, t€ (1, 7i41), i=0,1,2,...,
Vo=V +&, 1=1,2,...,

Xo=uz, Vo =nv.

(1)

Herea > 0 (a demping parameter) ande [0, 1) are constants,

Voo = liTm Vi,
0=1 <7 <...isasequence of random times ands., ... is a sequence of random
perturbations. The system (1) represents the motion of &clgawith initial positionz
and velocityv, the velocityV; of which is perturbed by random perturbatignat random
timesr;.

The aim of the paper is to discuss the following problem. $gpp we have a
family of particles with different initial positions and/aelocities evolving according
to (1). What conditions ensure that the sample paths ofgbestare almost identical after
a long time?
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In this paper sufficient conditions are given under whichsample paths of mo-
dified system (1) are almost identical after a long time. Thualification of (1) attaches
to the rest states of the systém1,0), (0,0), (1,0) an additional attraction force which
compels a path close to the rest state to jump into the Ig&iech an attraction force is
always present in computer simulations of the system dycsthie to a rounding error.
Many aspects of the Duffing equations can be found in [8] (&seraferences therein).

This phenomenon observed in computer simulations of vasgatems was widely
discussed in physical literature. In the paper [1] particeixamples of one-dimensional
maps and the Lorenz system, both in the chaotic region wesepted, and numerical
evidence showing that the addition of a common noise to rdiffetrajectories, which
start from different initial positions, leads eventualty their perfect synchronization
was given. When the synchronization occurs, the largespluyav exponent becomes
negative. In the article [2] the mechanism behind the cotimrebetween the transition
to chaos of random dynamical systems and the synchronizatiohaotic maps driven
by an external common noise was studied. A two-dimensi@mom dynamical system
and two coupled logistic maps driven by external commonenwisre analyzed. In the
article [3] the noise-induced synchronization in Lorengteyns was investigated. It was
found that a common noise can induce the synchronizatiamiéite impact on the system
is confined to a small region in the Lorenz phase space. Intiwdeal4] in light of
the LaSalle-type invariance principle for stochasticetintial equations, chaos synchro-
nization was investigated for a class of chaotic systensat#fying a globally Lipschitz
condition with a noise perturbation. Sufficient criteria bmth complete synchronization
and generalized synchronization are rigorously estaddisind thus successfully applied
to realize chaos synchronization in the coupled unified ttbagstems. In the article [5]
the analysis of transition from chaotic to nhonchaotic bébraand synchronization in an
ensemble of systems driven by identical random forces wasepted. The synchro-
nization phenomenon was investigated in an ensemble dtlesrmoving with friction
in a time-dependent potential and driven by an identicat@oiThe threshold values
of the parameters for transition from chaotic to nonchabogibavior were obtained and
dependencies of the Lyapunov exponents and power speetrsity of the current of the
ensemble of particles on the nonlinearity of the systemsdratedsity of the driven force
were analyzed. In [6], the noise-induced synchronizati@blem was considered for a
system of particles perturbed by a Brownian motion.

2 Duffing equation

In this section, we discuss some properties of a solutiomefDuffing equation. The
Duffing equation

dl‘t = Ut dl‘,,
dv; = (¢ — 23) dt — avedt, ¢ >0, a >0, (2
To =T, Vg ="
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Tv T,

has a unique smooth soluti¢n;, v;) = (z;"",v;""), t > 0, for each initial stat¢x, v).
There are three stationary statds:1,0), (1,0) (stable) and0,0) (unstable) with the
following domains of attraction (see [8]):

A- = {(a,0) € R lim (2}, 07") = (=1,0)},
Ay ={(z,v) e R*: tlirgo (27", v7") = (0,0)},
Ay ={(z,v) €R*: lim (2", v{"") = (1,0)}.

t—oo

Letus

B (z,v) = {(y,u) € R?: (x —y)2 + (v —u)2 < TQ},
B, = B.(0,0),
T, = B,(~1,0)U B, U B,(1,0),

2V =inf {t > 0: (z7"",vy"") € I }.

T

The system (2) doesn't possess closed trajectories (ettoeftree fixed pointé—1, 0),
(1,0), (0,0)) and, as a consequence, every trajectory converges to atadst The
following assertion is a corollary of Theorem [9, p. 132].

Lemma 1. For anyr > 0 and R > 0 there is a constant’ depending only o, r, R
such that

' <T
forall (z,v) € Bg.

Let us fix (z,v) € R? and introduce an auxiliary function

~

T, v

wy =W, = (xf—l)Q—i—vf, t>0,

N =

where(zs, v) = (27", v;"") is a solution of (2). The functiom; represents an “energy”
of a particle whose dynamics is given by (2).
By the definition ofw; and (2),

d
T + 2007 =0 3)
or
d 2 2
ET + 20w, —a(zi —1)" =0. 4)
Therefore,
t
wy + 204/1)3 ds =wy,, Vito€0,t]. (5)
to
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Hence, foralld < s <t
Ws > We. (6)
Lemma 2. For anye > 0 there is a constant’. depending only oa and« such that
wy < (e*%at + s)wo + C..
Proof. Let us introduce an auxiliary function
Qr = (2 + axy).
Straightforward calculation shows that
d 2 2 2 2
EQt—i—Q(mt — ) :2[Ut — (Jct — 1) }
Using (3) and (4) we have
3%wt + dow; = %wt + 2a(:cf - 1)2 = 20[[(39? — 1)2 — vﬂ
Thereforew, satisfies the equation

d d
SEwt + dawy + 2a(act2 — 1) + aEQt = 0.

Hence

t
1 d
wy = Yrwg — ga/ [2(335 -1)+ EQS Py ds,

0

wherey, = e~ 3%, Integrating by parts we have

[V V]

wy = YPrwg —

t
a/ (xf - 1)¢t—s ds — %aQt
0

t
1 4o
+ gOé’(/)th + % /Qs"/}t—s ds. (7)
0

Let us estimate the right-hand side of (7). By Young's indigpiand (6), for every
0>0

1
Qu < 007 + (1/5+0)s} = 6( + §(x%—1)2) (@21 + (0 1/)3
< owy + C(6, ) < dwy + C(4, @), (8)
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where

C(6,a) = Sgp{(% +a)m2 — g(mQ - 1)2}

is a constant depending only éranda. Similarly, for anys > 0
—Q¢ < 2z < SvF + %xf < dwy + C(68) < dwo + C(9),

whereC'(9) is a constant depending only énUsing (8), we get

t

t
/Qsd)t_s ds < (6wo + C(6, ) /wt_s ds < % (bwo + C(6,)).
0 0

Obviously,

t t
3
/(1 — x2)th_sds < /wt_sds <
0 0

The equality (7), together with these estimates, impliesssertion of the lemma. O

3 Duffing equations with random perturbations
In this section, we consider the system (1). We denote
Ai(z) ={veR: (z,v) € AL},
A_(z)={veR: (z,v) € A_},
A()(QC) = {’U eR: (l‘,’U € A()},
Aj(z) ={veR: (zf"",v{"") € B, forsomet >0},

xr,v

where(z;"", v{"") is a solution of the system (2).
Let

A =[AL(-1)NAL0)NAL ()] U[A_(-1)NnA_(0) N A_(1)],
Ap = Ap(=1) U A5(0) U Ap(1).

We need the following assumptions on the sequeng€;), ¢ = 1,2,..., of random
perturbations defined on a probability spa€e 3, P).

Assumption 1. (i) The random variables; = 7, — 7.—1, k = 1,2,..., are mutually
independent and identically distributed

P{o; < o0} =1;
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(i) Thereish > 0 such that

P{oy > h} = 1;

(i) Foranyt >0

]P{O’l > t} > 0.
Assumption 2. (i) The random variableg,, £ = 1,2,..., are bounded, mutually
independent, identically distributed and do not depenchodom variablesy, k =

1,2,...;
(ii)y Thereisr > 0 such that
P{& € A\ A} > 0.
Remark 1. The setA \ Aj # 0 with somer > 0 if there is a number such that

{(z,v) e R?: —1 <z <1,v=a}N Ay = 0. This condition is satisfied if the number
|a| is sufficiently large (see. Fig. 1).

A(=1)NA_(0)n A_(1)
A (1) N AL(0) N A4 (1)

Fig. 1. The phase portrait of the separatrices.

Let (X, Vi) = (X", V,™") be a solution to (1). As in Section 2, let us introduce
an auxiliary function

1
Wt:Wf’“:E(Xf—l)QJthQ, t>0.

Lemma 3. Leta > 0,v € [0,1) and let Assumption$, 2 be satisfied. Then for every
R > 0 there is a constant’ such that for all(z, v) € Bgr

supW;”"" < C as.
>0
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Proof. Let us fix(z,v) € Bg. Due to (6),W; = W,”" is a decreasing function on
each time intervalr;, 7,41). Therefore, it can achieve maximal values only at timgs
i.e.

supWy = sup W,,.

t>0 i=0,1,...
Obviously,
Wri = Wn - Wﬁ* + W’Ti* - (’YVn— + 51)2 - Vé_ + W‘FL‘*vi = ]-a 27 cee (9)

According to Lemma 2 and Assumption 1, for any 0 there is a constardf. such that
W,o < (7397 4 )W, , +C. < (e 3" 4 )W, , +C. as, (10)

whereh > 0 is the number from Assumption 1(ii). Let us fix> 0 such that
k=e 3% 4 o<1

By Young's inequality

72

V. & < (1=~ V2 2,
’y 7€—( 7)77,_—’_17;)/251
Therefore,
1
4 &P -V < 2. 11
(’YVTq, +§¢) VTq,— -1 _72 fz ( )

According to Assumption 2 and (9)—(11), there is a constastich that
W, <kW, _,+C as.,i=12....

Therefore, foreach = 1,2, ...

n
, : 1
W, < Wor" +C E K <Wy+-—C as,
1—k

1=0
and the assertion follows.

Convention 1. We change the dynamics of the system (1) as follows. /Fix 0.

The statg( X, ,, V-, ,-), i =0,1,2,..., is replaced by the state-1,0) (respectively,
(0,0), (1,0))ifatatimet € [r;, 7:11) the statg X;”", V,""") belongs to the seB,.(—1,0)
(respectivelyB,., B.(1,0)). Otherwise, the dynamics of the system remains the same as
given by (1).

The convention attaches to the stated, 0), (0,0), (1,0) an additional attraction
force. Such an attraction force is always present in conmineulations of the system
dynamics due to a rounding error.
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Remark 2. As can be easily seen, Convention 1 does not change theiassdittemma 3.

Theorem 1. Leta > 0,7 € [0,1), R > 0 and let Assumptionk and 2 be satisfied. Let
(X", V"), t > 0 be a solution tq1) the dynamics of which is changed according to
Convention 1 with the numbersatisfying Assumptio®(ii). Then

lim P{ sup XU # inf Xf’v} =0.
=oe L(@w)eBr (2,0)€Br

Proof. According to Lemmas 1 and 3, Convention 1 and Remark 2, tseaeonstant’
such that

(X2, V) = (~1,0),(0,0) or (1,0)

Ti Y Ti—

for each(z,v) € Brifo; =7, — 11 > T.
Let us introduce the random variables

= {1, o; >T,

0, o <T, i=1,2,...,
and

Ef,=inf{k>1:ne=1m1=1,...,0k1m =1}, m=1,2,...
According to Assumption 2, there is a constant 0 such that

P{n =1} =P{oy >T}>p, i=12,....

Sincen;,i = 1,2, ..., are mutually independent and identically distributedian
variables, we have (see [7, Ch. XllI, Sect. 7]).

lim P{k" < N} =1 (12)
N—oc0

foreachm =1,2,....
According to our assumptions,

(Xzv V™) =(=1,0),(0,0) or (1,0)

Thiti? | Thii T

forany: = 0,1,...,m and(z,v) € Bg. In addition, if¢,,.
i=0,1,...,m—1,then "

.. € A\ A for some

sup XV = inf XIV =—1or 1.
(@v)eBr T (@w)eBr MR

Therefore,
m—1
{t=m: 1m0 { Y {&hs i€ A\ AS}}

- { sup )A(:tm’v = inf )?tx,v}. (13)
(z,v)€BR (z,v)€BR
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Obviously, foreachV =1,2,.. .,
P{t < Tz +m} <P{t <Tnim} +P{k;, > N} (14)

By Assumption 2 and (12),
m—1 r
P{ Z_QO {&he i ¢ A\ Ao}}

00
= Zp{fkfﬂ ¢ A \ Aga ce agk;‘”-i-m—l ¢ A \ Agv ::n = k}

b
—

NERTNgE

P{& ¢ A\AD, ... Eym 1 & A\ ALYP{KS, = k}

T B{es: ¢ A\ AT}P{RS, = I}

3

1
—p

(o)

m (15)

)

—_
=l

~

wherep = P{&; € A\ A} > 0.
Finally, using (13)—(15), we have

P{ sup )Z'f’v inf )Z'f’v}
(z,v)EBR (z,v)EBR
m—1 X
< P{t < g e} +B{ T {65 # 4\ 40}
SP{t < Tnim} +P{k% > N} + (1 - p)™ (16)
Due to (12), the last two terms in the right-hand side of (1&) be made arbitrarily
small choosing sufficiently large: and N. By Assumption 1()P{t < 7x+m} — 0 as

t — oo. Therefore, passing on to the limit in (16) @as-+ oo, we get the assertion of the
theorem. 0
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