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Abstract. A numerical solution is presented for unsteady coupled heatand mass transfer
by natural convection from a non-Newtonian power-law fluid flow past a vertical plate
embedded in a non-Darcian porous medium in the presence of viscous dissipation and
chemical reaction effects. The governing equations are formulated and a numerical
solution is obtained by using an explicit finite-differencescheme. The solutions at each
time step have been found to reach the steady state solution properly. The numerical
results are presented in tabular and graphical form to show the effects of material
parameters of the problem on the solution.
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1 Introduction

Natural convection in a fluid-saturated porous medium is of fundamental importance in
many industrial and environmental problems. Moreover, heat and mass transfer from a
vertical flat plate is encountered in various applications such as heat exchangers, cooling
systems and electronic equipment. In addition, Non-Newtonian fluids such as molten
plastics, polymers, glues, ink, pulps, foodstuffs or slurries are increasingly used in var-
ious manufacturing, industrial and engineering applications especially in the chemical
engineering processes.

In general, chemical reactions in mass transfer problems include two types. A ho-
mogeneous chemical reaction is one that occurs uniformly throughout a given phase. The
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species generation in a homogeneous reaction is analogous to internal source of heat
generation. In contrast, a heterogeneous reaction takes place in a restricted region or
within the boundary of a phase. It can therefore be treated asa boundary condition similar
to the constant heat flux condition in heat transfer.

The study of heat and mass transfer with a chemical reaction is of great practical
importance to engineers and scientists because of its almost universal occurrence in many
branches of science and engineering [1]. Kandasamy et al. [1] have studies the effects
of chemical reaction and heat and mass transfer on MHD flow over a vertical stretching
surface with heat source and thermal stratification. In the past decades, the penetration
theory of Highie 1935 had been widely applied to unsteady state diffusion problems
with and without chemical reaction. As far as one can ascertain, all the solutions with
chemical reaction were obtained for the case of a semi-infinite body of liquid, although
physical absorption into a finite film was considered. Among some of the interesting
problems which were studied is the analysis of laminar forced convection mass transfer
with homogeneous chemical reaction [2]. The effect of different values of Prandtl number
of the fluid along the surface has been analyzed and reported by Gebhart [3]. The effects
of mass transfer on flow past an impulsively started infinite vertical plate with constant
heat flux and chemical reaction have been studied by Das et al.[4]. Andersson et al. [5]
have studied the flow and mass diffusion of a chemical specieswith first-order and higher-
order reactions over a linearly stretching surface.

All the above referenced studies have dealt with flows of Newtonian fluids. In
recent years, non-Newtonian liquids have been appearing inincreasing numbers. In spite
of the extensive research over the past few decades which dealt with the flow of non-
Newtonian fluids, there has been little work done on the unsteady flow for non-Newtonian
fluids. Abd El-Naby et al. [6] have analyzed the effect of radiation on MHD unsteady
free-convection flow past a semi-infinite vertical porous plate. Ganesan and Palani [7]
have studied unsteady natural convection MHD flow past an inclined plate with variable
surface heat and mass flux. El-Kabeir et al. [8] have considered unsteady MHD combined
convection over a moving vertical sheet in a fluid saturated porous medium with uniform
surface heat flux. Mbeledogu and Ogulu [9] have considered heat and mass transfer of
an unsteady MHD natural convection flow of a rotating fluid past a vertical porous flat
plate in the presence of radiative heat transfer. Usha and Sridharan [10] have reported on
the motion of a liquid film on an unsteady stretching surface.Andersson et al. [11] have
studied heat transfer in a liquid film on an unsteady stretching surface. Also, Andersson
et al. [12] have analyzed flow of a power-law fluid film on an unsteady stretching surface.
Chen [13] has considered heat transfer in a power-law fluid film over a unsteady stretching
sheet.

Very recently, Amir and Kayvan [14] have used the homotopy analysis method for
solving unsteady MHD flow of Maxwellian fluids above impulsively stretching sheets.
Bég et al. [15] have employed Network numerical simulator for time-dependent nonli-
near buoyancy-driven double-diffusive radiative convection flow in non-Darcy geological
porous media. In the present work, a numerical solution is presented for unsteady coupled
heat and mass transfer by natural convection from a non-Newtonian power-law fluid flow
past a vertical plate embedded in a porous medium in the presence of viscous dissipation
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and chemical reaction effects.

2 Mathematical analysis

Many different types of non-Newtonian fluids exist but the simplest and most common
type is the power-law fluid for which the theological equation of state between stress
components and strain rate components defined by Vujanovic et al. [16] is

τi,j = −Pδi,j + K
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whereP is the pressure,δi,j is the Kronecker delta, andK andn are the consistency and
flow behavior indices of the fluid. Whenn > 1 the fluid is described as dilatant,n < 1 as
pseudo-plastic and whenn = 1 it is known as the Newtonian fluid.

Consider unsteady, laminar, boundary-layer, two-dimensional free convective flow
of a non-Newtonian power-law fluid over a vertical flat plate embedded in a non-Darcian
porous medium in the presence of viscous dissipation effects. The fluid properties are
assumed to be constant and a first-order homogeneous chemical reaction is assumed to
take place in the flow. Under these assumptions with the usualBoussinesq approximation,
the governing boundary-layer equations that are based on the balance laws of mass, linear
momentum, energy and concentration species for this investigation can be written as:
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∂ȳ
= 0, (2)

∂ū

∂t̄
+ ū
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wherex̄ andȳ are the Cartesian coordinates andt̄ represents time.̄u andv̄ are the velocity
components alonḡx andȳ axis.ρ is the fluid density,k is the thermal conductivity,Cp is
the specific heat at constant pressure andν = µ/ρ is the kinematic viscosity, whereµ is
the constant viscosity of the fluid in the boundary layer region,kc is the rate of chemical
reaction,g is the acceleration due to gravity,βT is the volumetric coefficient of thermal
expansion,βC is the volumetric coefficient of concentration expansion.k1, ε andF are
the permeability of porous media, porosity and the empirical constant, respectively,Dm

is the coefficient of mass diffusivitȳT∞ and C̄∞ are the free stream temperature and
concentration, respectively.
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The initial and boundary conditions are:

t̄ = 0: ū = v̄ = 0, T̄ = T̄∞, C̄ = C̄∞ for all x̄ and ȳ,

t̄ > 0: ū = v̄ = 0, T̄ = T̄∞, C̄ = C̄∞ at x̄ = 0,
(6)

ū = v̄ = 0, T̄ = T̄w, C̄ = C̄w at ȳ = 0, x̄ > 0,

ū = 0, T̄ = T̄∞, C̄ = C̄∞ at ȳ → ∞, x̄ > 0,

whereT̄w andC̄w are the wall temperature and concentration, respectively.
The dimensionless variables are defined as follows:
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, y=

ȳ
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l
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whereU = (ρLn/k)1/n−2 andl is a suitable length scale. Substituting the expressions
in equation (7) into equations (2)–(5) yields the followingdimensionless equations:
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mensionless first and second-order resistance due to the presence of the solid matrix,
Ec = U2

Cp(T̄w−T̄∞)
is the Eckert number.Gr = gβT (T̄w−T̄∞)l

U2 , Gc = gβC(C̄w−C̄∞)l
U2 are

the Grashof number and the modified Grashof number, respectively, Pr =
ρνCp

k is the
Prandtl number,Sc = ν

D is the Schmidt number andγ = kcl
U is the chemical reaction

parameter.
The dimensionless initial and boundary conditions become

t = 0: u = v = 0, T = C = 0, for all x and y,

t > 0: u = v = 0, T = C = 0, at x = 0,
(12)

u = v = 0, T = C = 1 at y = 0, x > 0,

u = 0, T = C = 0 at y → ∞, x > 0,

Of special significance for this type of flow and heat and mass transfer situation are
the skin-friction coefficientCf , the Nusselt numberNu and the Sherwood numberSh.
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These physical quantities are defined in dimensionless form, respectively, as follows:

Cf Re1/2 =
∣

∣u′(t, x, 0)
∣

∣

n
, (13)

Nu Re−1/2 = −T ′(t, x, 0), (14)

Sh Re−1/2 = −C′(t, x, 0). (15)

3 Solution technique

The unsteady non-linear coupled equations (8)–(11) subject to the initial and boundary
conditions (12) are solved by using an explicit finite-difference scheme. The steady-
state condition is assumed to exist when∂u/∂t, ∂T/∂t and∂C/∂t approach zero in the
unsteady-state problem. We assumed that the length of the plate isXmax = 10 units and
the boundary-layer thickness isYmax = 30 units. Letu′, v′, T ′ andC′ denote the values
of u, v, T andC at the end of time step. The approximate set of the finite-difference
equations corresponding to equations (8)–(11) are:
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where(i, j) represents the grid points. The coefficientsui,j andvi,j are treated as con-
stants, during any one time-step. Then, at the end of any timestep∆t, the new velocity
componentsu′ andv′, the new temperatureT ′ and the new concentrationC′ at all interior
grid points may be obtained by successive applications of equations (16)–(19). The
velocity, temperature and concentration profiles were calculated at various dimensionless
times. The region of integration is considered as a rectangle with sidesx, xmax = 10
andy, ymax = 30 whereymax corresponds toy = ∞ which lies very well outside the
momentum, thermal and concentration boundary layers. After performing few tests on
sets of mesh sizes to access grid independence, the time and spatial step sizes∆t = 0.001,
∆x = 1 and∆y = 1 were found to give accurate results. The results are presented in the
next section with a view to isolate the effect of each individual parameter. The complete
results fort > 20 show no changes inu, v, T andC. Therefore, the valuet = 20 is used
in most of the figures and is considered as representing the steady-state condition.

4 Results and discussion

In this section, a representative set of graphical steady-state results atx = 10 is presented
in Figs. 1–20. These figures illustrate the influence of the chemical reaction parameter
γ, the modified Grashof numberGc, the Eckert numberEc the Prandtl numberPr, the
Schmidt numberSc, the permeability parameterK and the flow process dimensionless
time on the steady-state velocity, temperature and the concentration profiles. Some tem-
poral or time-dependent results are shown in Figs. 21–23.

Figs. 1–3 show the influence of the chemical reaction parameterγ on the velocity,
temperature and concentration profiles in the boundary layer, respectively. Increasing the
chemical reaction parameter produces a decrease in the species concentration. In turn, this
causes the concentration buoyancy effects to decrease asγ increases. Consequently, less
flow is induced along the plate resulting in decreases in the fluid velocity in the boundary
layer. In addition, the concentration boundary layer thickness decreases asγ increases.
On the other hand, increasing the chemical reaction parameter produces an increase on
the temperature profiles. It should be noted here that for generative chemical reactions
(γ < 0), distinctive peaks in the concentration profiles and change in the sign of their
wall slopes occur. This enhances the distinctive peak appearing in the velocity profiles
due to the solutal buoyancy effects. These behaviors are clearly evident in Figs. 1–3.

Figs. 4–6 display the effects the modified Grashof numberGc on the velocity,
temperature and concentration profiles in the boundary layer for two values ofk2 = 0, 0.1,
respectively. Increasing the Modified Grashof numberGc leads to an increase in the
velocity profiles while it substantially reduces the concentration profile values so that
increasing buoyancy body force has an inhibiting effect on the value of contaminant
concentration throughout the boundary layer regime normalto the barrier. Also, the
temperature profile values are decreased due increases inGc. In addition, the effects
of the local Forchheimer number of porous mediak2 = 0, 0.1 are shown clearly shown in
Figs. 4–6. Ask2 increases, the flow resistance increases causing the velocity to decrease
and the temperature to increase with slight changes in the concentration profiles.
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Fig. 1. Effects of the chemical reaction
parameter on the velocity profiles.

Fig. 2. Effects of the chemical reaction
parameter on the temperature profiles.

Fig. 3. Effects of the chemical reaction
parameter on the concentration profiles.

Fig. 4. Effects of the modified Grashof
number on the velocity profiles.

Fig. 5. Effects of the modified Grashof
number on the temperature profiles.

Fig. 6. Effects of the modified Grashof
number on the concentration profiles.
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Figs. 7 and 8 display the effects of the Eckert number on the velocity and tem-
perature profiles. For the parametric values used to obtain these figures, it is seen that
increasing the Eckert numberEc leads to decreases in both the velocity and temperature
profiles with no changes in the momentum and thermal boundarylayer thicknesses.

Figs. 9 and 10 present the velocity and temperature profiles in the boundary layer
for different values of the Prandtl numberPr with two values ofn = 0.5, 1.5. It is
known that the Prandtl number characterizes the ratio of thicknesses of the viscous and
thermal boundary layers. Increases in the values ofPr cause the velocity, fluid tem-
perature and the thermal boundary layer thickness to decrease significantly as seen from
Figs. 9 and 10.

Fig. 7. Effects of the Eckert number on
the velocity profiles.

Fig. 8. Effects of the Eckert number on
the temperature profiles.

Fig. 9. Effects of the Prandtl number on
the velocity profiles.

Fig. 10. Effects of the Prandtl number on
the temperature profiles.

The effects of increasing the Schmidt numberSc on the velocity, temperature and
concentration profiles in the boundary layer are shown in Figs. 11–13. The Schmidt
number is an important parameter in heat and mass transfer processes as it characterizes
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the ratio of thicknesses of the viscous and concentration boundary layers. Its effect on
the species concentration has similarities to the Prandtl number effect on the temperature.
That is, increases in the values ofSc cause the velocity and species concentration and its
boundary layer thickness to decrease significantly as seen from Figs. 11 and 13. Also,
as the Schmidt number increases, the value of fluid temperature increases as seen from
Fig. 12.

Fig. 11. Effects of the Schmidt number
on the velocity profiles.

Fig. 12. Effects of the Schmidt number
on the temperature profiles.

Fig. 13. Effects of the Schmidt number
on the concentration profiles.

Figs. 14 and 15 present typical velocity and temperature profiles in the boundary
layer for various values of the permeability parameterK, respectively. Increasing the
value of K has the tendency to increase the resistance to the flow causing the fluid
velocity to decrease and its temperature to increase. This occurs with slight changes
in the thicknesses of the momentum and thermal boundary layers.

Figs. 16 and 17 show the velocity and temperature profiles forvarious values of
the power-law fluid indexn, respectively. It is clear from these figures that as the power-
law fluid indexn increases, the fluid velocityu increases significantly while the fluid
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temperatureT decreases slightly. In addition, while the momentum boundary layer thick-
ness increases asn increases, then thermal boundary layer thickness remains almost
unchanged.

Fig. 14. Effects of the permeability
parameter on the velocity profiles.

Fig. 15. Effects of the permeability
parameter on the temperature profiles.

Fig. 16. Velocity profiles for various
values ofn.

Fig. 17. Temperature profiles for various
values ofn.

Figs. 18–20 present typical velocity, temperature and concentration profiles in the
boundary layer for various values of the axial distancex, respectively. As expected, it is
observed that all of the velocity, temperature and concentration increase asx increases.

Figs. 21–23 illustrate the development of the velocity, temperature and concentra-
tion profiles in the boundary layer as they develop from the transient state conditions
to the steady-state conditions for two values of power-law fluid indexn, respectively.
It is clearly observed from these figures that that all of the velocity, temperature and
concentration increase as time progresses from the transient to the steady-state conditions.
For the parametric values used to produce the figures, it is also seen that while it takes
longer for the temperature profiles to reach the steady-state conditions, the velocity and
the concentration profiles reach these conditions faster.
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Fig. 18. Velocity profiles for various
values ofx.

Fig. 19. Temperature profiles for various
values ofx.

Fig. 20. Concentration profiles for
various values ofx.

Fig. 21. Development of velocity profiles
with time.

Fig. 22. Development of temperature
profiles with time.

Fig. 23. Development of concentration
profiles with time.
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Table 1 depicts the effects of power low indexn and dimensionless timet on the
skin-friction coefficient(u′(t, x, 0))n, and the rate of heat and mass transfer−T ′(t, x, 0)
and−C′(t, x, 0). It is clearly observed from this table that while the skin-friction coef-
ficient increases as the dimensionless time increases, the rates of heat and mass transfer
decrease until they reach the steady state conditions att = 20. It is also seen that the rate
of mass transfer reaches steady state at a faster pace than the skin friction and the rate
of heat transfer. In addition, it is observed that as the power-law fluid index increases,
the rate of heat transfer increases. Also, the rate of mass transfer appears to increase
insignificantly as n increases. On the other hand, the skin-friction coefficient is observed
to decrease as n increases fort ≤ 1 while it increases as n is increased from0.5 to 1 and
then decreases as n is increased from1 to 1.5 for t = 10 andt = 20.

Table 1. Transient values of(u′(t, x, 0))n, −T ′(t, x, 0) and−C′(t, x, 0) for various
values of power-law fluid indexn andGr = 0.5, Gc = 1, γ = 1, k2 = 0.05, K = 1,

Pr = 0.71, Sc = 0.62, Ec = 0.02, Re = 1 andx = 10.

n t (u′(t, x, 0))n

−T ′(t, x, 0) −C′(t, x, 0)

0.5 0.12 0.0604345 0.85580 0.84724
1 0.2523674 0.44449 0.56948

10 0.4166372 0.15052 0.53623
20 0.4455831 0.10726 0.53623

1 0.12 0.0129732 0.85580 0.84724
1 0.2187688 0.44465 0.56948

10 0.4419633 0.15228 0.53628
20 0.4605191 0.11449 0.53651

1.5 0.12 0.0017325 0.85580 0.84724
1 0.1815046 0.44468 0.56948

10 0.4385045 0.15419 0.53635
20 0.4489330 0.12426 0.53660

Table 2 illustrates the influence of the dimensionless first and second-order resis-
tance parameters (permeability and Forchheimer parameters) due to the presence of the
solid matrix,(K, k2) and the values ofx on the skin-friction coefficient(u′(t, x, 0))n, the
rate of heat transfer−T ′(t, x, 0) and the rate of mass transfer−C′(t, x, 0). It is observed
that the local skin friction and heat and mass transfer ratesdecrease due to increases in
either of the permeability parameterK or the Forchheimer number of porous mediak2. In
addition, as the axial distancex is increased, the skin friction coefficient increased while
both rates of heat and mass transfer decreased.

Table 3 illustrates the influence of the solutal buoyancy (modified Grashof number)
Gc, the Eckert numberEc and the chemical reaction parameterγ and dimensionless time
t on the skin-friction coefficient(u′(t, x, 0))n, the rate of heat transfer−T ′(t, x, 0) and the
rate of mass transfer−C′(t, x, 0). It is predicted that both the skin-friction coefficient and
the Nusselt number increase due to increases in the solutal buoyancy parameter while the
skin-friction coefficient decreases as the chemical reaction parameter increases. Also, the
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Sherwood number is predicted to increase as either of the solutal buoyancy parameter or
the chemical reaction parameter increases. In addition, increasing the Eckert numberEc
leads to decreases in both of the local skin-friction coefficient and the Sherwood number
while the Nusselt number increases.

Table 2. Transient values of(u′(t, x, 0))n, −T ′(t, x, 0) and−C′(t, x, 0) for various
values atGr = 0.5, Gc = 1, γ = 1, n = 1.5, Ec = 0.02, Pr = 0.71, Sc = 0.62 and

Re = 1.

k2 K x (u′(t, x, 0))n

−T ′(t, x, 0) −C′(t, x, 0)

0.0 1 1 0.2251381 0.4574103 0.6178843
5 0.4344240 0.1812706 0.5387990

10 0.4582770 0.1252812 0.5366324
0.1 1 0.2214940 0.4554741 0.6171651

5 0.4192027 0.1781743 0.5385851
10 0.4401636 0.1232985 0.5365802

1 1 0.1944212 0.4400935 0.6115872
5 0.3267412 0.1588219 0.5375974

10 0.3362875 0.1138784 0.5363652
0.05 0.0 1.0764600 0.1999931 0.5400455

0.1 0.9299890 0.1846139 0.5389129
0.5 0.6170719 0.1456740 0.5371360
1 0.4489330 0.1242600 0.5366038

Table 3. Transient values of(u′(t, x, 0))n, −T ′(t, x, 0) and−C′(t, x, 0) for various
values atGr = 0.5, k2 = 0.05, K = 1, n = 1.5, Pr = 0.71, Sc = 0.62, Re = 1 and

x = 10.

Gc Ec γ t (u′(t, x, 0))n

−T ′(t, x, 0) −C′(t, x, 0)

1 0.02 −0.5 0.12 0.0018378 0.8558020 0.8337253
20 18.618.683 0.2766084 −19.418.221

0.0 0.12 0.0018014 0.855802 0.8384073
20 0.6638802 0.1559451 0.1392612

1 0.12 0.0017325 0.855802 0.8472365
20 0.448933 0.124260 0.5366038

5 0.12 0.0015005 0.855802 0.8764781
20 0.3232785 0.117435 0.7957801

0.0 1 20 0.5366068 0.1211106 0.4497317
0.04 0.5366008 0.1273919 0.4481385
0.1 0.536592 0.1366847 0.4457806
0.5 0.5365391 0.194976 0.4309714
1 0.5364855 0.2600405 0.4144020

0 0.02 0.5365051 0.1150117 0.2337292
0.5 0.536559 0.1194581 0.3411185
1 0.5366038 0.1242600 0.448933
4 0.5369158 0.1578797 1.101.666
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Table 4 depicts the effects of the Reynolds numberRe, Prandtl numberPr and the
Schmidt numberSc on the skin-friction coefficient((u′(t, x, 0))n, and the rates of heat
and mass transfer−T ′(t, x, 0) and−C′(t, x, 0). It is clearly observed from this table that
the skin-friction coefficient decreases as either of the Prandtl number, Reynolds number
or the Schmidt number increases. Also, the rate of heat transfer or Nusselt number is
predicted to increase due to increases in the Prandtl numberwhile it decreases as either
of the Schmidt number and the Reynolds number increases. In addition, the Sherwood
number is predicted to increase as a result of increasing either of the Schmidt number,
Reynolds number and the Prandtl number.

Table 4. Transient values of(u′(t, x, 0))n, −T ′(t, x, 0) and−C′(t, x, 0) for various
values atGr = 0.5, Gc = 1, γ = 1, k2 = 0.05, K = 1, Ec = 0.02, n = 1.5,

Sc = 0.62, Pr = 0.71 andx = 10.

Re Sc Pr (u′(t, x, 0))n

−T ′(t, x, 0) −C′(t, x, 0)

1 0.62 0.3 0.4641619 0.0796328 0.5364884
0.71 0.4492361 0.1233548 0.5366017
1 0.4410405 0.1481507 0.5366537

10 0.3552927 0.4437785 0.5367959
0.22 0.71 0.5352618 0.1327810 0.3722014
0.60 0.4517598 0.1244743 0.5310420
0.94 0.4132675 0.1218395 0.6077896

0.1 0.62 0.5317547 0.4384755 0.2201933
1 0.4489330 0.1242600 0.5366038
2 0.4021735 0.0849398 0.6547549
4 0.3578234 0.0592856 0.7645361

5 Conclusions

The problem of unsteady, laminar, heat and mass transfer by natural convection boundary-
layer flow of a viscous fluid over a vertical plate to non-Newtonian fluids embedded in
a uniform porous medium in the presence of viscous dissipation and first-order chemical
reaction effects was considered. Both the wall temperatureand wall concentration were
assumed to be constant. The governing equations for this problem were developed and
non-dimensionalized and the resulting equations were thensolved numerically by an
explicit finite-difference scheme. It was found that, in general, the skin-friction coefficient
increased as the solutal buoyancy, increased and it decreased as a result of increasing
either of the local Forchheimer number, permeability parameter, Eckert number, Reynolds
number, Prandtl number, Schmidt number or the chemical reaction parameter. In ad-
dition, the Nusselt number was predicted to increase due to increases in either of the
Prandtl number, solutal buoyancy or the Eckert number whileit decreased as either of
the local Forchheimer number, permeability parameter, chemical reaction parameter or
the Schmidt number increased. Furthermore, the Sherwood number was predicted to

152



Unsteady natural convective power-law fluid flow past a vertical plate

increase as a result of increasing either of solutal buoyancy, Prandtl number, Reynolds
number, chemical reaction parameter or the Schmidt number while it decreased as a result
of increasing either of the Eckert number, the local Forchheimer number, permeability
parameter increased. The skin-friction coefficient increased while the Nusselt number
and the Sherwood number decreased as either of the axial distance along the plate or
the dimensionless time increased. Finally, it was observedthat as the power-law fluid
index increased, both rates of heat and mass transfer increased. On the other hand, the
skin-friction coefficient was observed to decrease as n increased at small times while it
increases as n was increased from pseudo-plastic to Newtonian fluids conditions and then
decreased as n was increased from Newtonian to dilitant fluidconditions at large times.

References

1. R. Kandasamy, K. Periasamy, K.K. Sivagnana Prabhu, Chemical reaction, heat and mass
transfer on MHD flow over a vertical stretching surface with heat source and thermal
stratification effects,Int. J. Heat Mass Tran., 48, pp. 4557–4561, 2005.

2. J.D. Goddard, A. Acrivos, An analysis of laminar forced-convection mass transfer with
homogeneous chemical reaction,Q. J. Mech. Appl. Math., 20, pp. 473–496, 1967.

3. B. Gebhart,Heat Transfer, 2nd ed., McGraw Hill Inc., New York, 1971.

4. U.N. Das, R. Deka, V.M. Soundalgekar, Effects of mass transfer on flow past an impul-
sively started infinite vertical plate with constant heat flux and chemical reaction,Forsch.
Ingenieurwes., 60, pp. 284–287, 1994.

5. K.I. Andersson, O.R. Hansen, and B. Holmedal, Diffusion of a chemically reactive species
from a stretching sheet,Int. J. Heat Mass Tran., 37, pp. 659–664, 1994.

6. M.A. Abd El-Naby, E.M.E. Elbarbary, N.Y. Abed Elazem, Finite difference solution of
radiation effects on MHD unsteady free-convection flow oververtical porous plate,Appl. Math.
Comput., 151, pp. 327–346, 2004.

7. P. Ganesan, G. Palani, Finite difference analysis of unsteady natural convection MHD flow
past an inclined plate with variable surface heat and mass flux, Int. J. Heat Mass Tran., 47,
pp. 4449–4457, 2004.

8. S.M.M. EL-Kabeir, A.M. Rashad, R.S.R. Gorla, Unsteady MHD combined convection over a
moving vertical sheet in a fluid saturated porous medium withuniform surface heat flux,Math.
Comput. Model. 46, pp. 384–397, 2007.

9. I.U. Mbeledogu, A. Ogulu, Heat and mass transfer of an unsteady MHD natural convection
flow of a rotating fluid past a vertical porous flat plate in the presence of radiative heat transfer,
Int. J. Heat Mass Tran., 50, pp. 1902–1908, 2007.

10. R. Usha, R. Sridharan, On the motion of a liquid film on an unsteady stretching surface,J. Fluid.
Eng.-T. ASME, 150, pp. 43–48, 1993.

11. H.I. Andersson, J.B. Aareth, B.S. Dandapat, Heat transfer in a liquid film on an unsteady
stretching surface,Int. J. Heat Mass Tran., 43, pp. 69–74, 2000.

153



A.J. Chamkha, A.M. Aly, M.A. Mansour

12. H.I. Andersson, J.B. Aareth, N. Braud, B.S. Dandapat, Flow of a power-law fluid film on an
unsteady stretching surface,J. Non-Newton. Fluid, 62, pp. 1–8, 1996.

13. C.-H. Chen, Heat transfer in a power-law fluid film over a unsteady stretching sheet,Heat Mass
Transfer, 39, pp. 791–796, 2003.

14. A. Alizadeh-Pahlavan, K. Sadeghy, On the use of homotopyanalysis method for solving
unsteady MHD flow of Maxwellian fluids above impulsively stretching sheets,Commun.
Nonlinear Sci., 14, pp. 1355–1365, 2009.

15. O.A. Bég, J. Zueco, T.A. Bég, H.S. Takhar, E. Kahya, NSManalysis of time-dependent
nonlinear buoyancy-driven double-diffusive radiative convection flow in non-Darcy geological
porous media,Acta Mech., 202, pp. 181–204, 2009.

16. B. Vujanovic, A.M. Stauss, Dj. Djukic, A variational solution of the Rayleigh problem for a
power law non-Newtonian conducting fluid,Ing. Arch., 41, pp. 381–386, 1972.

154


