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A note on “Taylor—Couette flow of a generalized second
grade fluid due to a constant couple”
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Abstract. In this brief note, we show that the unsteady flow of a gerezdlisecond
grade fluid due to a constant couple, as well as the similar §bwWewtonian and
ordinary second grade fluids, ultimately becomes steady. ttt®, a new form of the
exact solution for velocity is established. This solutisnpresented as a sum of the
steady and transient components. The required time to teactteady-state is obtained
by graphical illustrations.
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1 Introduction

In a recent paper [1], the exact solutions correspondingagdlow of a generalized second
grade fluid (GSGF) between two infinite coaxial cylinders,itiner one being subjectto a
constant couple, have been established using Laplace atedfamkel transforms. These
solutions, presented under integral and series form indefithe generalized, ;. (-, )
functions, have been easy specialized to give the similartisns for Newtonian and
ordinary second grade fluids performing the same motion. |a$tesolutions, presented
as a sum between the steady and transient solutions, detogimotion of the fluid some
time after its initiation. After that time, when the transie disappear, they tend to the
steady solutions which are independent of the initial cthows.

The aim of this note is to show that the unsteady flow of a GS@Gnately
becomes steady. In order to prove that, the exact solutimegonding to the velocity
field is also presented as a sum between the steady and triassiations. Finally, the
required time to reach the steady-state for generalizedsflisi determined by graphical
illustration: This time, as it results from Fig. 1, is incsér@g with respect t@.
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Fig. 1. The time after which the diagrams ©fr,t) are almost identical to those of
ws(r), for f = =2, Ry = 0.3, R2 = 0.5, v = 0.001188, p = 1.05, a = 0.002,
8 = 0.5and0.9.

2 Statement and solution of the problem

According to equations (8a), (9) and (10) from [1], we mustsdhe problem

ow(r,t 0 10 1
’LUéZ ) — (1/+OLDE) (WJF;ET_?)U}(T’U’ re (Rl,RQ), t>07 (1a)
w(r,0) =0; 7€ (R, Ral, (1b)

(9 1 f
(v+aDy) o r w(r,t)|r=r, = s w(Ra,t) =0; ¢t >0, (1c)

wherew(r, t) is the velocity of the fluidy is the kinematic viscosityp the constant
density,a a material constant anB’ (0 < 3 < 1) is the Riemann-Liouville operator.
Applying the Laplace and finite Hankel transforms to equeatigla)—(1c) and using
equation (16) from [1] we find that

2f 1 1

Wy (rp,q) = ——— , 2
H( ] q) T qpq+ (M+a1q,@)7ﬂ% ( )
where r,, (n = 1,2,3,...) are the positive roots of the transcendental equation
B(Rar) =0, W (ry,q) is the mixed transform ab(r, ¢) and
B(rry) = Ji(rr)Ya(Riry) — Ja(Riry) Y1 (rry). 3)
Writing @y (1, ¢) under the equivalent forms
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and applying the inverse transforms, we find the velocitydfiehder the simple and
suitable form

R\’ R2
ot =(5) (-7)
_ ﬂ J12 (RQT”)B(T’I"”)
1 r”[‘]22 (ern) - J12 (RQTH)]

00
X Z ( — V’ri)k [Gl—ﬁ,—ﬁk—ﬁ,k-H( — 057“72“ t)
k=o

+ariGip,—pr—1k+1( — arl, t)], 5)

where the generalized, ; (-, t) functions are defined by [1, Eq. (22)] or [2, Eq. (101)].
Making 5 — 1 into the last relation and using equation (A3) from [1], weaeer
the solution (cf. [1, Eq. (36)])

wen=5 () (=)

Tf — J1 (Rory)B(rry) vrt
z:: J2(Ryry) — J3(Rary)] P 1+ar2 )’ 6)

corresponding to a second grade fluid. Of course, by lettmg @ — 0 into above
relation, the velocity field for a Newtonian fluid is recoveré&urthermore making— oo
into equation (6), the last term which represents the teamisiolution tends to zero and

R\ R2
sa (T‘, t) - wSG(r,oo) - wS(T) - % <R_;> (T o T2> (7

3 Numerical results and conclusions

The exact solutionw(r, t), as well asw,, (r,t), is presented as a sum of two terms. Its
first term, which is independent of is just the steady solutiom_(r). In order to prove
that the unsteady motion of a GSGF, as well as that of an andfhad becomes steady,
it is sufficient to show that the diagramswfr, t) tend to superpose over thosewf(r)

if ¢ increases. Furthermore, by graphical illustrations, weaiao determine the required
time after which the fluid is flowing according to the steadjuson. This time, as it
results from Fig. 1, decreases if the fractional parameteicreases. Consequently, the
required time to reach the steady-state for a generalizel] #s it was to be expected, is
greater in comparison with an ordinary fluith(s for the Newtonian fluid andl5 s for a
second grade fluid with the same values of common parameters)
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