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Abstract. The effects of magnetic force, acting vertically downwand watural
convection within a porous trapezoidal enclosure satdratéth an electrically
conducting fluid have been investigated numerically. Thitolo wall of the enclosure
is subjected to a constant hot temperature and the top wadlriences a constant cold
temperature whereas the remaining sidewalls are keptattiafhe physical problems
are represented mathematically by different sets of gavgrequations along with the
corresponding boundary conditions. By using Galerkin Wwe&id residual method of
finite element formulation, the non-dimensional governawguations are discritized.
For natural convection in a porous medium the influentiahpeeters are the modified
Rayleigh numberRa,,, the fluid Rayleigh numbeRay, the inclination angle of the
sidewalls of the cavityy, the rotational angle of the enclosude and the Hartmann
numberHa, through which different thermo-fluid characteristicsdiesthe enclosure are
obtained. In the present study, the obtained results asepted in terms of streamlines,
isotherms and average Nusselt number along the hot wall. r&hdt shows that with
increasingHa, the diffusive heat transfer become prominent even thohghmtodified
Rayleigh number increases. Optimum heat transfer ratet@nsal at higher values of
Ra.n, in the absence of magnetic force.

Keywords: magneto-hydrodynamics, optimization, permeability, theann number,
fluid Rayleigh number, modified Rayleigh number.

Nomenclature

B, downward component of the magnetic ), specific heat at constant pressure
force [Wh/m?] [J/kgK]
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Da Darcy number T  temperature of the fluid’[]
g gravitational acceleration [fis?] u  velocity component at-direction
h convective heat transfer (8]

coefficient [W/m? K] U dimensionless velocity component
Ha  Hartmann number aX -direction
K; thermal conductivity of the fluid v velocity vector

[W/mK] v velocity component ag-direction
K,, thermal conductivity of the [ms]

porous media [Wm K]
Nu  Nusselt number
Pr  Prandtl number
R length of the inclined sidewalls [m]
R, ratio of thermal conductivity of
solid and fluid [Ky /K] z-coordinate
Ray fluid Rayleigh number distance along the non-dimensional
Ra,, modified Rayleigh number y-coordinate

dimensionless velocity component
at’-direction

length of the cavity [m]

distance along the-coordinate

distance along the non-dimensional

< ke SE S

Greek symbols

ay  thermal diffusivity of the fluid i effective viscosity [Pas]
[m?/s] vy kinematic viscosity of the fluid [i#s]
B¢  volumetric coefficient of thermal ps density of the fluid [kgm?]
expansion [K'] o. fluid electrical conductivity
v inclination angle of the sidewalls O tm—1
of the cavity electrical potential

¥

0 dimensionless temperature ® rotational angle of the cavity
permeability of porous medium [fh ¥  dimensionless stream function

wy  dynamic viscosity of the fluid [Pas] ©  dimensionless vorticity function

Subscripts

av  average value H value of hot temperature

c value of cold temperature

Superscripts

t cavity mounted on the top surface s  cavity mounted on the side surface
of the container of the container

1 Introduction

Heat transfer through saturated porous media is an impaituelopment and an area
of very rapid growth in contemporary trend of heat transésearch. A porous medium
consists of a solid matrix with an interconnected void. ™ukd matrix is either rigid or

deformable [1]. Porous materials such as sand and crusk&diralerground saturated
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with water, which, under the influence of local pressure ignatd, migrates and transports
energy through the material. Natural convection heat fesins a cavity saturated with
porous media in the presence of magnetic field is a new brarhbkiono-fluid mechanics.
The heat transport phenomenon can be described by means bjdnodynamics, the
convective heat transfer mechanism and the electromadiedti as they have a symbiotic
relationship [2—6].

The flow within an enclosure consisting of two horizontal laaét different tem-
peratures, is an important circumstance encountered fyageently in practice. In all
the applications having this kind of situation, heat trensfccurs due to the temperature
difference across the fluid layer, one horizontal solidatefoeing at a temperature higher
than the other. If the upper plate is the hot surface, thetother surface has heavier fluid
and by virtue of buoyancy the fluid would not come to the lowlatg Because in this
case the heat transfer mode is restricted to only conducBaon if the fluid is enclosed
between two horizontal surfaces of which the upper surfaeg lower temperature, there
will be the existence of cellular natural convective cutsemvhich are called as Benard
cells. For fluids whose density decreases with increasimpégature, this leads to an
unstable situation. Benard [7] mentioned this instabgitya “top heavy” situation. In
that case fluid is completely stationary and heat is traredfieacross the layer by the
conduction mechanism only. Rayleigh [8] recognized tha timstable situation must
break down at a certain value of Rayleigh number above whicivective motion must
be generated. Jeffreys [9] calculated this limiting valfida to be1708, when air layer
is bounded on both sides by solid walls. Magneto-hydrodyosiMHD) is the science
of the motion of electrically conducting fluids under the urgfhce of applied magnetic
forces. The symbiotic interaction between the fluid velpfigld and the electromagnetic
forces give rise to a flow scenarios; the magnetic field agfdat motion.

Natural convection in an enclosure saturated with porowditmeplays a significant
role in many practical applications. Among those, geoptatsystems: heat exchange
between soil and atmosphere, dynamics of terrestrial heattfirough aquifer; com-
pacted beds for the chemical industry, high performanagatisns for cryogenic con-
tainers, sensible heat storage beds, food processing,sicaage, solar power collectors,
flows over heat exchanger pipes, cooling of electronic systecooling of radioactive
waste containers and the post-accidental heat removaldleaureactors have become
increasingly important to the engineers and scientists.

In this analysis, The effects of permeability and differér@rmal boundary condi-
tions on the natural convection in a square porous cavitydiyguDarcy—Forchheimer
model [10] and Darcy—Brinkman-Forchheimer model [11, 1&}énbeen studied nume-
rically. The tilted position of the enclosure [13-15] hasign&icant influence on the
natural convection. Mahmud and Fraser [16] examined the flEawperature and entropy
generation fields inside a square porous cavity under theeinfe of magnetic field
using Darcy model. The momentum equation including NaB&rkes inertia term and
Brinkman viscous diffusion term derived for the porous nagdithe presence of magnetic
field makes the present works discernible. The main at&ifartchoosing the trapezoidal
shape cavity is to enhance the heat transfer rate as it cewddit intuitionally due to its
extended cold top surface. Contextually the present stuliijosus on the computational
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analysis of the influence of magnetic field on the natural ectign in a trapezoidal
enclosure saturated with porous medium of constant pgrosit

2 Selection of the base model

Brinkman’s extension of Darcy’s law was checked by LunddtEef] by measuring the
flows through cubic arrays of spherical beads on wires. Tpemxental results matched
with the Brinkman formula for permeability as a function adrpsity. Levy [18] re-
ported that the fluid filtration is governed by the Brinkmagtgiation for smaller particles
whereas the Darcy model is valid for coarse particles. Tiseseme uncertainty about the
validity of the Forchheimer model for fine particles. Corteatly, the Darcy—Brinkman
model has been taken in the present study.

2.1 Darcy—Brinkmann model

An alternative to Darcy’s equation is Brinkmann'’s equatidrich accounts for the tran-
sition from Darcy flow to highly viscous flow, in the limit of é&eemely high permeability.

Vp:f%®+ﬁv%. 1)

The first term is the usual Darcy term and the second is anafopothe Laplacian term
that appears in the Navier-Stokes equation. The coeffigiemtan effective viscosity. In
generalu andj: are approximately equal.

2.2 Electromagnetic field in hydrodynamics

Electromagnetic field has an important influence on the hggtiamics. One of the main
purposes of the electromagnetic control is to stabilizefldwe and suppress oscillatory
instabilities, which degrades the resulting crystal. Toomporate the electromagnetic
force with the fluid flow model, the Lorentz force for movingemxhas been taken in
consideration.

F=qE+jxB, (2)
j =0c(E+7vxB), (3)

wherej is the current densityy, is the electrical conductivity of the fluid and = —V
is the electric field and is the electric potential and is the field velocity. Electrical
insulation is present in the practical applications. \&p becomes zero (i.eVy = 0)
indicating the absence of the electric field. Now the modifieckntz force becomes

Fo =o0c(vx B) x B. (4)
Therefore the magnetohydrodynamic (MHD) flow model has Beenulated as:
pf(l_)V)~1_):7Vp+,ufv2’l_)f%l_)+0'e(l_)XB) x B+ Fg, (5)

whereF} is body forcey ; andp; are dynamic viscosity and density of fluid respectively.
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3 Physical model

The physical model considered here is shown in Fig. 1, aloitly the important ge-
ometric parameters. It consists of a trapezoidal cavityh it electrically conducting
fluid saturated porous medium, whose bottom wall and top avallsubjected to hdty
and cold7 temperatures respectively while the side walls are kep@tedic. Natural
convection flow of a thermal viscous fluid assumed to be Neiatois considered under
the Oberbeck—Boussineq approximation in the presence oéwtational field. The
Oberbeck—Boussineq approximation is based on the assamsptiat the temperature
variations are small enough in order to consider the densig a constant except in
the buoyancy ternpg, whereg is the gravitational force ang is given linearly by
p = poll — B(T — Ty)] whereT is the temperature angy and7, denote reference
density and temperature respectively. The density changdalchanges in pressure is
neglected. Fluid properties such as viscosgitythe permeability<, thermal expansion
8 = —plo(g—;)p, the thermal diffusivityn and the specific hedt, are assumed to be
constants. Porous inertia effect is neglected while visaftect is considered. Applied
magnetic force is acting along the direction of the graviidere the Prandtl number is
assumed to be unity.

Bo

[7777] adishatic

Fig. 1. Schematic diagram of the physical system.

4 Mathematical model

Buoyancy driven flow of an electrically conducting fluid idsia trapezoidal enclosure
packed with a porous media is analogue to Rayleigh—Benatt-caliular convective

transport phenomenon. Natural convection heat transfdrirwsuch an enclosure is a
function of the temperature difference between the hot aid walls, the boundary
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conditions, the inclination angle of the side walls of theitya the rotational angle of
the cavity, the permeability of the porous medium, magratadd direction of the applied
magnetic fields and the properties of the electrically catidg fluid flow.

The generalized governing equations are used based on tisergation laws of
mass, momentum and energy. As the heat transfer dependsaupamber of factors,
a dimensional analysis is presented to show the importamitmensional parameters,
which will influence the dimensionless heat transfer patemee. Nusselt number.

4.1 Governing equations

Non-dimensional parameters used for making the goverrmjogtéions dimensionless are
stated as follows:

T Y uW oW T—1T¢
X=":V="2L.UJU=":V="""_1%0= .

W7 W7 Oéf7 Oéf’ TH—Tc’
Ra :gﬂf(THiTC)W; Pr:v—f; Da:i; Ha = By Telt

f W2
afof of I
Continuity equation
0% 0%

oxoy ~ oxoy ©

Momentum equation
ov oL 0w 00
oY 0X 90X oY

2 2 .
Pr<a—Q + 8_Q> — PTQ+RaPr<ﬁcos<I> ﬁsinCID)
a

X2 9Y2) Da X oY
Ha?Pr (0?0 *v ?v
Ta{aXQ sin <I>+mcos ¢+2mbln¢cos@}. (7)

Energy equation

L i) @
Y 0X 0X09Y 0X2 oY?

4.2 Boundary conditions
Bottomwall: ¥=0; =1 at0< X <1 andY =0.
R R R
Top wall: U=0; =0 at W cosy<X < (1+W cos*y) andY= Wsinv.

Sidewall: ¥ =0; 9 o at0 <|S|

here S = Xi + Y.
35 wi S 1+Y)

<_a
- W
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Non-dimensional heat transfer parameter Nusselt numiséatsd as:

h(z)x
Nug, = dz, 9
/55
/ 00
Nuav/<a—y>Y:0dX. (20)

4.3 Finite element formulations

The quadratic interpolation function has been consideoedHe stream function, the
vorticity function and the non-dimensional temperature.

U(X,Y) = N{us, (11)
QX,Y) = N£QS, (12)
0(X,Y) = N;b5, (13)

wherej = 1,2,3,...,6,V;, are the element interpolation functions.

The considered triangular element has six nodes. Ther#feraterpolation func-
tions are six noded trigular shape functions. All six nodesassociated with the stream
function, the vorticity function and the non-dimensioreatiperature.

To derive the finite element equations, the method of wedyhésiduals [19] is
applied to the equations to the equations (6)—(8) and thes&atheorem is applied to
generate the boundary integral terms associated with tifeeceuractions.

Continuity equation

P v
aXaY ~ 0XaYy
22U 92 .
é/<axay aan>NidA =0
A(:’

o (00N 0 (0U .
:’/{a_x<a_Y)_a_Y<a_X)N"dA =0

Ae

/ _ ONpONj  ONg ONS
0X 0Y oY 0X

Ae

ov o\ .. ..
+/<a_ya_X)Ni dre =o, (15)

Te

0 (14)

) Ve A

where A€ is the element area anitf is the element boundary condition.
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The elements of the local matrices are as follow:

ONf ON;  ONf ONy

11 o 7 J e

AU’/( X oy oy ax)dA
Ae

12 413 __
Aij - Aij - Oa

. ov OV . ..
e /(aY 8X>N are.

Te

Similarly, for momentum equation the elements of the locatrioes are:

421 Ha?Pr ONfON; ONf ON;
ij —

2
Da ox ox ™ v oy % ¢
AE

e ON¢ e ON¢
+ (a(‘j)];[(l‘ ayf +aa];[/f aXf)sin(I)cos(I)}dAe,
Pr ONfON;  ONf ONy
22 __ 20 3 e ) J e
Aii’Da/NldA +Pr/(ax ox oy ay>dA
Ae

: ONE ON¢

23 _ — cdA€

A% RaPr/<aY Sin® — — cos@)NZdA,
Ae

e [0 00 ov oV
io _/NZ{(a_X+a_Y) — (8X+8Y) SlnCI)COS@
FE:

ov o .
— a—Xsm o — a_YCOS CID}dI‘

0X oY

. ON¢ 6 ON¢
(S S o
I'e

Similarly, for energy equation the elements of the localrines are:

31 _ 432 __
A = A2 =0,

ONEONE  ONE ONE
33 _ i J e
A /(ax ox oy ay>dA

Ae

e 20 00 .
is _/Nz (a—X+a—Y)dF

Te

S ONF &L N s ONS NN e
_/<qu8_ykz Z\l/] al Zek >dA
Ae J= =1
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11 12 13 e e

Aij A,L-j A,L-j W .

e __ 21 22 231 . e __ el . e __ e
K5 = Aij Aij Aij ;oag = Q8 i =1
31 32 33 e e

AT A AT 05 A

Then the local matrices are assembled in order to form tHeafjloatrices.

n

> (K] [af] =

i=1

[£:].

wheren is the number of elements in the domain.

To solve the sets of the global nonlinear algebraic equaiiothe form of matrix,
the Newton-Raphson iteration technique has been adaptadjtnPDE solver with MAT-
LAB interface. The convergence criterion has been sgbtot! — ™| < 104, where
m is number of iteration.

4.4 Grid independency test

Preliminary results are obtained to inspect the field véembrid independency solutions.
Test for the accuracy of grid fineness has been carried oudoofit the optimum grid
number. It is found in Fig. 2 that 41499 non-regular nodessaifficient to provide
accurate results.

Nu,,

(RN N N [N TN NN SO N N SN T NS N S S R
10000 20000 30000 40000 50000
Number of Nodes

Fig. 2. Grid sensitivity test aRa,, = 1000, Da = 10~% and® = 0°.

4.5 Code validation

For the validation of the code, a square porous cavity witfleintial isothermal vertical
walls and adiabatic horizontal walls in the absence of thgliegp magnetic force is
considered. Average Nusselt number is calculated for ttifferent Rayleigh numbers
(Ra,, = 10,100 and1000) while the Darcy number is fixed a0~% and compared with
the available published works by Baytas and Pop [20], Grosd.421], Manole and
Lage [22], Moya et al. [23] and Mahmud and Fraser [16]. Thisiparison is shown in
Table 1.
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Table 1. Comparison of the presented prediction with thstieg one.

Nay
Ram =10 Ra, =100  Ra, = 1000

Baytas and Pop [16] 1.079 3.16 14.06
Gross et al. [17] - 3.14 13.45
Manole and Lage [18] - 3.12 13.64
Moya et al. [19] 1.065 2.80 -
Mahmud and Fraser [12]  1.079 3.14 13.82
Present work 1.079 3.115 13.924

Again another comparison between the present predictidiMahmud and Fraser
[16] is carried out aRa,,, = 1000 andHa = 5. The streamlines and isotherms, depicted
in Fig. 3, are similar and the average Nusselt number olddigygoresent work i8.323
which is very close to thatNu,, = 3.3) presented by Mahmud and Fraser. It is seen
from Table 1 and Fig. 3 that the agreement between the prasenprevious results is
very good. Therefore, the numerical results presentedsrptper are very accurate.

Streamlines

Phnax =4.59179 max = 4.59285

[sotherms

Mahmud and Fraser [12] Present work

Fig. 3. Code validation aRa,,, = 1000, Ra; = 10° andHa = 5.
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5 Results and discussion

Numerical results are presented in order to determine tleetefof the presence of a
magnetic field, the modified Rayleigh number, the inclimatmgles of the sidewalls and
the rotational angles of the cavity on natural convection fbd an electrically conducting
fluid in a trapezoidal enclosure. The values of the magnetld fparamete{a range
between0 to 100 and the modified Rayleigh numbé&u,,, varies from1 to 1000. The
inclination angles of the sidewaltg, are ranged fron30° to 90° while the rotational
angles of the cavityp are from0° to 90°.

5.1 Effect of inclination angles

Fig. 4 reveals the impact of varying inclination angles & #lidewalls of the trapezoidal
cavity on buoyancy driven convection for a representatdsefRa,, = 1000, Ra; =
10° and® = 0°. For~y = 30°, the top cold surface comes closer to the hot wall which
squeezes the two counter rotating vortices formed withenclvity. Thereby the core of
the circulating cells moves downwards ensuing the devetopirof hydraulic boundary
layer on the warm surface. This well-established hydraudiendary layer ensures the
rapid generation of the convective currents. The densehbohihe isotherms adjacent to
the heated wall produces thermal boundary layer, whiclairgytsteps up the convection
heat transfer. With increasing the inclination angle of #idewalls, the core of the
circulating rolls moves upward due to the enlargement ofciheulation zones, which
flattens the hydraulic boundary layer as well as the thermahHary layer adjoining the

30°

y=

45°

y=60°

Streamlines Isotherms

Fig. 4. Streamlines and isotherms at different inclinagogles of the sidewalls of the
cavity (Ra, = 1000, Ra; = 10° and® = 0°).
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heated bottom wall. Consequently the diffusive flow govehesfluid flow and the heat
transportation.

Under the above context, it can be mentioned that amply &serén the convec-
tive heat transfer occurs when the inclination angle of idevgalls of the trapezoidal
enclosurey, is set low.

5.1.1 Optimization test

A theoretical concept can be built for finding out the optimunciination angle. When
two surfaces subjected to differential temperatures avedirt closer to each other, the
heat transfer rate increases. Under this circumstance i€dhd surface extends while it
is come closer to the heated surface, the heat transfen@atsaises drastically. In case of
the heat removal from the nuclear container, the porousatatli trapezoidal enclosure
surrounds the container. Thereby the trapezoidal cavitjoerd the container from the
top and side should be optimized in context of their inclmatngle. It is clear that as
the inclination angle of the sidewalls of the trapezoidallesure becomes down-sloped,
the top surface extends and comes closer to the bottom surféereby the trapezoidal
cavities enclosed the container from the top and the sidesldtbe of equal distance
between the top and the bottom surfaces of the cavity packédyarous media. Hence
the optimum heat transfer performance will be obtained.

Based on this hypothesis, numerical computations have pedormed to find
out the optimum inclination angle of the sidewalls of theptraoidal enclosure. The
optimization of~y requires to analyze fluid flow and heat transfer charactesigh the
cavity at® = 90° as shown in Fig. 5.

y=30°

y =45°

Streamlines Isotherms

Fig. 5. Streamlines and isotherms at different inclinatiogle of the sidewalls of the
cavity (Ra,, = 1000, Ra; = 10° and® = 90°).
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At lower value of~, a single vortex is formed inside the cavity. The laterabdefation
of the circulating cell leads to the growth of the hydraulaubdary layer along the hot
surface. The isotherms are also adjusted according to tegels in the flow field and
pushed towards the lower part of the right sidewall inditgitihe presence of a large
temperature gradient there. As the inclination angle oktlewalls increases, the core of
the vortex switches towards the left. As a result, the hylitdwoundary layer disappears.
Also the vertical stratification of the isotherms at the masition of the cavity implies
that the diffusion is the dominating heat transfer mecharisthe cavity.

Fig. 6 shows the comparison of the average Nusselt numbé¢aineld from the
different combinations of the inclination angles of theesidlls,~! and~* mounted on
the top and the side of the container. It is found that bothettapezoidal cavities located
at the top and the sides of the container give optimum thepedibrmance ay = 45°.

34
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Fig. 6. Selection of optimum inclination angl&®¢.,, = 1000, Ra; = 10°, Ha = 0
and® = 0°).

5.2 Field analysis at optimum inclination angle
5.2.1 Effect of modified Rayleigh number

The evolution of the flow and thermal fields with varying thedified Rayleigh number
for different values of Hartmann number and the rotationgle of the trapezoidal cavity
is depicted in Figs. 7-18. For the horizontal cavily £ 0°), where the buoyancy force
and the applied magnetic force are acting only in gkdirection, the flow domain and
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boundary conditions are symmetrical and two counter mugatirculating cells are formed
in the cavity. ForRa,, = 1 and100, the flow rises along the vertical symmetry axis and
gets blocked at the top isothermal cold wall. Then the flovecdeds downwards along the
inclined adiabatic sidewalls and turns back horizontallyhte central region after hitting
the bottom wall. The presence of the stagnation point iscedtalong the symmetric
vertical axis. This type of flow scenario is visualized foe thll values ofHa. In the
absence of magnetic force, the strength of the recircgatitls is relatively higher. But
when the magnetic field is imposed on it, the fluid flow due toylauney experiences a
retarding force. Therefore the diffusive flow becomes premt. With an increase in
Ra,, up to the moderate valud?@,,, = 100), the intensity of the convection increases
slightly, the core of the rolls slightly moves towards thensgetric vertical axis. It is
noticeable that the strength of the counter clockwise irajatells is relatively higher than
that at lowRa,,,. Since the buoyancy forces are more dominant than the \dsitwoes
ensuing due to the magnetic force, the overall convectieg transfer at the moderate
Ra,, increases as compared to the |&w,,,. The stratification of the isotherms are found
for all values of Ha at Ra,, = 1-100, which represents the influence of the viscous
diffusion over the convection.

The distinctive hydrodynamic and thermal fields in the gaeit higherRa,,, for
different values of Hartmann number are shown in Figs. 154h&he absence of any
magnetic force Hla = 0), the symmetry may still prevail due to the buoyancy force
acting along the direction of the vertical axis. Two cirdirlg cells of higher strength
are formed. The isotherms are clustered at the vicinity eftikated wall indicating
the existence of thermal boundary layer. At = 5, these vortices reduce in strength.
As a result, the thermal gradients decrease indicating ttediffusive heat transfer
initiates. But multiple primary and secondary vorticesatiotg in opposite directions to
each other are formed within the trapezoidal cavity. Th@sdary vortices are trapped
by the primary circulating cells resulting contraction bé&tminor cells. The fluid comes
from the cold to the hot wall through three channels. Thetébydiffusive currents are
still overwhelmed by the convective currents resulting dytieermal performance. The
isotherms are distorted due to the strong magnetic forcerefbre oscillating thermal
boundary layer appears near the heated wall. Higher vafuBg oetard the fluid motion
which in turns decelerates the convective heat flow andfsttae isotherms which results
the reduction in heat transfer rate from the heated surface.

5.2.2 Effect of rotational angles of the cavity

For the fair discussion on the variation of the tilted pasitof the trapezoidal enclosure,

a moderate magnetic forcél¢ = 5) is considered. Figs. 7—18 show the metamorphosis
of the thermo-fluid fields under the influence of the rotatlarales of the trapezoidal
cavity. At lower Ra,,, and zero rotational angle, two weaker recirculating cdlspposite
directions of motion are developed. The induced buoyanosefds suppressed by the
moderate applied magnetic force. As a result, the diffuseat flow is dominant which
reduces the heat transfer performance. Also the stratificaf the isotherms reveals the
dominancy of diffusive heat flux throughout the cavity.
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Ha=0

Ha=10

Ha =50

Streamlines Isotherms

Fig. 7. Streamlines and isotherms for different Hartmanmioers at® = 0°,
Ra; = 10° andRa,, = 1.

Streamlines Isotherms

Fig. 8. Streamlines and isotherms for different Hartmanmioers at® = 30°,
Raj = 10° and Ra,, = 1.
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T
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T (/// =) 5
P\ (@Y

T

2

Streamlines Isotherms

Fig. 9. Streamlines and isotherms for different Hartmanmipers at® = 45°,
Ray = 10° andRa., = 1.

=50

Ha

Streamlines Isotherms

Fig. 10. Streamlines and isotherms for different Hartmaomipers atd = 60°,
Raj = 10° and Ra,, = 1.
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Streamlines Isotherms

Fig. 11. Streamlines and isotherms for different Hartmaomlers atd = 0°,
Ra; = 10® and Ra., = 100.
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Streamlines Isotherms

Fig. 12. Streamlines and isotherms for different Hartmaomioers atd = 30°,
Ra; = 10® andRa,,, = 100.

175



M.A.H. Mamun, Md.T. Islam, Md.M. Rahman

Ha=

10

Ha=

=50

Ha

Streamlines Isotherms

Fig. 13. Streamlines and isotherms for different Hartmaomioers atd = 45°,
Ra; = 10% andRa,,, = 100.

Ha=0

Ha=5

Ha=10

Ha=50

Streamlines Isotherms

Fig. 14. Streamlines and isotherms for different Hartmaomioers atd = 60°,
Ra; = 10® andRa,,, = 100.
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Fig. 15. Streamlines and isotherms for different Hartmaomlpers atd = 0°,
Ra; = 10° and Ra,,, = 1000.
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Fig. 16. Streamlines and isotherms for different Hartmaomipers at® = 30°,
Ra; = 10° and Ra,, = 1000.
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Fig. 17. Streamlines and isotherms for different Hartmaomipers atd = 45°,
Ra; = 10° and Ra,,, = 1000.
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Fig. 18. Streamlines and isotherms for different Hartmaomipers atb = 600°,
Ra; = 10° and Ra,, = 1000.
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An increase in the rotational angle leads the left circatatiell expands and the
right circulating cell squeeze. Here the symmetry is comebfedestroyed due to the
counterbalancing action of the buoyancy force and the igasagnetic force. The
weak magnetic force along thedirection accelerates the fluid flow even at |@.,, .
Consequently the buoyancy driven convective flow becomkedively stronger. The
isotherms for the lower value dRa,, still show the thermal stratification. Therefore
the convective flow is slightly amplified. For the moderdte,,, slight temperature
gradients develop when the cavity is tilted &t = 45°. After that, as the cavity is
tilted at a greater angle, the thermal boundary layer teodsitiate and the flow field
tends to stretch diagonally. Thus the convection becontebleshed. Higher values of
Ra,, (Ra,, = 1000) give idiosyncratic thermo-fluid attributions. At = 0°, multiple
circulating cells are formed and a disturbance is obsermetthé thermal field. Two
maxima and three minima are generated which means that tde@imes from the cold
wall to the hot wall through the minima indicating the supesyof the convective flow.

Tilting the cavity to an extend yields the left side shipmehthe cores of the
vortices and the rigorous development of the plumage insidecavity. As the cavity
tilts more, the primary vortex located at the left side geaie other vortices. Finally a
diagonally stretched primary vortex grows within the esale, which invokes that the
convection is the only means of heat transfer. The isothatmis= 45° show that the
area of the minima increases although its number is deated$wse large temperature
gradients establish the oscillating thermal boundaryrlatethe vicinity of the heated
wall. Further increase i@ concentrates the isotherms towards the hot surface imnacat
better thermal performance.

5.2.3 Effect of Hartmann number

Figs. 9, 13 and 17 illustrate the changes in the flow and thidietds due to the variation
of the magnetic force for differen®a,,, within the cavity while the rotational angle is
fixed at45°. In the absence of magnetic force, a single circulating cklelatively
higher strength and counter clockwise direction of mot®formed at the lower value of
Ra., (Fig. 9). As the intensity of the applied magnetic force @ases, the recirculating
cell experiences retardation in the motion. The diffusiverents start to dominate the
convective currents. When the magnetic force triumphs theebuoyancy force, the core
of the vortex shifts the left downward. This stretched wortannot flow smooth loosing
its strength. Viscous diffusion plays an important roleréheThe isothermal lines are
merely symmetrical. The layered isotherms indicate thenstinfluence of the viscous
diffusion.

For the moderate value &fa,,,, when the magnetic force is absent, a strong primary
vortex is formed as compared to that at |&.,,. The intensity of the circulation is due
to the influence of buoyancy effect only. The isotherms austered near the heated
surface-giving rise to a thermal buoyancy layer. Viscotusiion is outweighed by the
convective flow. As the magnetic force is applied sequdwgtial large portion of fluid
in the mid position of the cavity becomes also motionless.is T& supported by the
elongated-stagnant core of the vortex with increadifig Also the thermal boundary
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layer disappears and the stratification of the isothermstpddowards the deceleration of
the convective heat flux.

For the higheRa,,, where the buoyancy effects are strong, a comparativelpgtro
vortex of counter clockwise direction is formed in the alzs=of the magnetic field.
The isotherms are extensively nonlinear which indicatestgher temperature gradients.
Near the heated wall, the isotherms are bunched to devetom#i boundary layer. This
type of thermo-fluid behavior reveals the strong influendbefonvective currents. With
increasingHa in a small amount causes the core of the circulation shifitisgle resulting
stagnation point at the left upper corner of the cavity. T$@hermal lines also switch
towards the right side, decelerating the thermal boundayrgriformation. AtHa = 5,
multicellular formation appears in the cavity. The weakene is shifted towards the
mid position. This minor vortex is entrapped by the two majortices. Therefore the
diffusive flow becomes prominent. The oscillating thermalbdary layer represents
the dominancy of the diffusive heat flux. Over-estimated nedig force hinders the
circulating flow and may cause the mitigation of the conwechieat transfer mechanism.
The temperature gradients are also straightened whicleatesi the ostracism of the
convective heat flow.

5.3 Heat transfer characteristics

The corresponding effects of the increase of the modifiedéRgtynumber on the surface
heat transfer from the heated surface of the cavity at diffevalues of Hartmann number,
Ha, and rotational angle of the cavit®, are presented in Fig. 19. Two distinct zones
are identified depending on the value Bfi,,,. In the diffusion-dominated zone, the
average Nusselt number is invariant®#,,, and the magnitude aVu,, is equal to2.

In the convection-dominated zon&u,, increases almost linearly in logarithmic plot
with increasingRa,,,. The diffusion-dominated zone is extended with increadifagas
well as decreasing. In the convection-dominated zone, lower valuefaf and higher
value of® show a higher value aWVu,,.

Variation of the average Nusselt number with Hartmann nurab® = 0° and~y =
45° as shown in Fig. 20 indicates that the higher convectivethaasfer is obtained in the
absence of magnetic force. Once the magnetic force is edtatd| theNVu,,, decreases
rapidly and approaches its asymptotic valge2). For smallerRa,,, the average Nusselt
number approaches the asymptotic value even for the lovieesaf Hartmann number.

Fig. 21 shows an analogous heat transfer behavior withasarg Hartmann num-
ber at® = 30°. A slight increase inNu,, with Ha can be found. In Fig. 22, the
convection-dominated zone is extended with increagédnThe bifurcation point along
the asymptotic line switches towards the right with dedrepéia, indicating that the
lower values offfa extends the diffusion prominent zone. An identidal,,—Ha profiles
are obtained fo = 90° as shown in Fig. 23. The only exception is that the convection
is overwhelmed by the diffusion as the applied magneticdoeduces to zero.

Fig. 24 shows the influence of the tilted position of the gawih the convective
heat transfer attributes for different valuesi®d,,, and Ha. In general,Nu,, remains
unchanged up t@ = 15° indicating that the diffusion is the only principal mode @fdt
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transfer. Further increase i yields that the buoyancy dominated heat transfer initiates
and becomes profound up ¥0= 60°. After that, the convective heat transfer decelerates
along with®. The optimum convective flux is establishediat= 60° and higher values

of Ra,, over a wide range offa.
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Fig. 19. \Variation of average Nusselt Fig. 20. Variation of average Nusselt
number at the heated wall with modified number at the heated wall with Hartmann
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Fig. 21. \Variation of average Nusselt Fig. 22. Variation of average Nusselt
number at the heated wall with Hartmann number at the heated wall with Hartmann
number for® = 30°, v = 45°. number for® = 60°, v = 45°.
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Fig. 23. \Variation of average Nusselt Fig. 24. Variation of average Nusselt
number at the heated wall with Hartmann number at the heated wall with rotation
number for® = 90°, v = 45°. angle of the cauvity.

6 Conclusion

Two dimensional, steady natural convection flow in a tramdocavity, packed with

porous medium and subjected to isothermal boundary conditit the horizontal walls
and adiabatic conditions at the inclined sidewalls, hasylstedied numerically for a
wide range of the modified Rayleigh number, the inclinatioglas of the sidewalls of
the cavity, the rotational angles of the cavity and the Hartmnumbers. A numbers of
conclusions can be drawn from the investigation:

At moderate value ofRa,,,, when the inclination angles of the sidewalls of the
enclosure are small, a well-established thermal boundassr lis found near the heated
wall which indicates that the convective flow is profoundréhe With increasingy,
the thermal boundary layer is broken and finally it disappeausing strong diffusive
currents. An optimization test has been performed by cenisig a physical problem of
the nuclear waste removal. It is notice worthy that the optimthermal performance is
achieved aty = 45°.

At lower value of Ra,,, the thermal stratification inside the cavity indicates tha
the convection is overwhelmed by the conduction mechanisrereas the convection-
dominated zone is established at higher valueB®f,.

In the absence of the magnetic force, the convection-daetnzone is extended
resulting better convective heat transfer performancerebsing Hartmann number re-
tards the fluid circulation causing the lower temperatusslgmts throughout the cavity.
Therefore, major portion of the heat is transferred maigigdnduction.

With an increase in the tilted position of the cavity upst&y, the average Nusselt
number increases pointing towards the supremacy of theectime currents over the
diffusive flows. Further increase in the rotational angleaifity causes slight decrease in
average Nusselt number.
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