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Abstract. The effects of magnetic force, acting vertically downward on natural
convection within a porous trapezoidal enclosure saturated with an electrically
conducting fluid have been investigated numerically. The bottom wall of the enclosure
is subjected to a constant hot temperature and the top wall experiences a constant cold
temperature whereas the remaining sidewalls are kept adiabatic. The physical problems
are represented mathematically by different sets of governing equations along with the
corresponding boundary conditions. By using Galerkin weighted residual method of
finite element formulation, the non-dimensional governingequations are discritized.
For natural convection in a porous medium the influential parameters are the modified
Rayleigh numberRam, the fluid Rayleigh numberRaf , the inclination angle of the
sidewalls of the cavityγ, the rotational angle of the enclosureΦ and the Hartmann
numberHa, through which different thermo-fluid characteristics inside the enclosure are
obtained. In the present study, the obtained results are presented in terms of streamlines,
isotherms and average Nusselt number along the hot wall. Theresult shows that with
increasingHa, the diffusive heat transfer become prominent even though the modified
Rayleigh number increases. Optimum heat transfer rate is obtained at higher values of
Ram in the absence of magnetic force.

Keywords: magneto-hydrodynamics, optimization, permeability, Hartmann number,
fluid Rayleigh number, modified Rayleigh number.

Nomenclature

B0 downward component of the magnetic Cp specific heat at constant pressure
force [Wb/m2] [J/kg K]
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Da Darcy number T temperature of the fluid [◦C]
g gravitational acceleration [m/s2] u velocity component atx-direction
h convective heat transfer [m/s]

coefficient [W/m2 K] U dimensionless velocity component
Ha Hartmann number atX-direction
Kf thermal conductivity of the fluid v̄ velocity vector

[W/m K] v velocity component aty-direction
Km thermal conductivity of the [m/s]

porous media [W/m K] V dimensionless velocity component
Nu Nusselt number atY -direction
Pr Prandtl number W length of the cavity [m]
R length of the inclined sidewalls [m] x distance along thex-coordinate
Rk ratio of thermal conductivity of X distance along the non-dimensional

solid and fluid [Km/Kf] x-coordinate
Raf fluid Rayleigh number Y distance along the non-dimensional
Ram modified Rayleigh number y-coordinate

Greek symbols

αf thermal diffusivity of the fluid µ̄ effective viscosity [Pa s]
[m2/s] νf kinematic viscosity of the fluid [m2/s]

βf volumetric coefficient of thermal ρf density of the fluid [kg/m3]
expansion [K−1] σe fluid electrical conductivity

γ inclination angle of the sidewalls [Ω−1m−1]
of the cavity ϕ electrical potential

θ dimensionless temperature Φ rotational angle of the cavity
κ permeability of porous medium [m2] Ψ dimensionless stream function
µf dynamic viscosity of the fluid [Pa s] Ω dimensionless vorticity function

Subscripts

av average value H value of hot temperature
c value of cold temperature

Superscripts

t cavity mounted on the top surface s cavity mounted on the side surface
of the container of the container

1 Introduction

Heat transfer through saturated porous media is an important development and an area
of very rapid growth in contemporary trend of heat transfer research. A porous medium
consists of a solid matrix with an interconnected void. Thissolid matrix is either rigid or
deformable [1]. Porous materials such as sand and crushed rock underground saturated
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with water, which, under the influence of local pressure gradients, migrates and transports
energy through the material. Natural convection heat transfer in a cavity saturated with
porous media in the presence of magnetic field is a new branch of thermo-fluid mechanics.
The heat transport phenomenon can be described by means of the hydrodynamics, the
convective heat transfer mechanism and the electromagnetic field as they have a symbiotic
relationship [2–6].

The flow within an enclosure consisting of two horizontal walls, at different tem-
peratures, is an important circumstance encountered quitefrequently in practice. In all
the applications having this kind of situation, heat transfer occurs due to the temperature
difference across the fluid layer, one horizontal solid surface being at a temperature higher
than the other. If the upper plate is the hot surface, then thelower surface has heavier fluid
and by virtue of buoyancy the fluid would not come to the lower plate. Because in this
case the heat transfer mode is restricted to only conduction. But if the fluid is enclosed
between two horizontal surfaces of which the upper surface is at lower temperature, there
will be the existence of cellular natural convective currents, which are called as Benard
cells. For fluids whose density decreases with increasing temperature, this leads to an
unstable situation. Benard [7] mentioned this instabilityas a “top heavy” situation. In
that case fluid is completely stationary and heat is transferred across the layer by the
conduction mechanism only. Rayleigh [8] recognized that this unstable situation must
break down at a certain value of Rayleigh number above which convective motion must
be generated. Jeffreys [9] calculated this limiting value of Ra to be1708, when air layer
is bounded on both sides by solid walls. Magneto-hydrodynamics (MHD) is the science
of the motion of electrically conducting fluids under the influence of applied magnetic
forces. The symbiotic interaction between the fluid velocity field and the electromagnetic
forces give rise to a flow scenarios; the magnetic field affects the motion.

Natural convection in an enclosure saturated with porous medium plays a significant
role in many practical applications. Among those, geophysical systems: heat exchange
between soil and atmosphere, dynamics of terrestrial heat flow through aquifer; com-
pacted beds for the chemical industry, high performance insulations for cryogenic con-
tainers, sensible heat storage beds, food processing, grain storage, solar power collectors,
flows over heat exchanger pipes, cooling of electronic systems, cooling of radioactive
waste containers and the post-accidental heat removal in nuclear reactors have become
increasingly important to the engineers and scientists.

In this analysis, The effects of permeability and differentthermal boundary condi-
tions on the natural convection in a square porous cavity by using Darcy–Forchheimer
model [10] and Darcy–Brinkman-Forchheimer model [11, 12] have been studied nume-
rically. The tilted position of the enclosure [13–15] has a significant influence on the
natural convection. Mahmud and Fraser [16] examined the flow, temperature and entropy
generation fields inside a square porous cavity under the influence of magnetic field
using Darcy model. The momentum equation including Navier–Stokes inertia term and
Brinkman viscous diffusion term derived for the porous media in the presence of magnetic
field makes the present works discernible. The main attribute for choosing the trapezoidal
shape cavity is to enhance the heat transfer rate as it could be said intuitionally due to its
extended cold top surface. Contextually the present study will focus on the computational
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analysis of the influence of magnetic field on the natural convection in a trapezoidal
enclosure saturated with porous medium of constant porosity.

2 Selection of the base model

Brinkman’s extension of Darcy’s law was checked by Lundgren[17] by measuring the
flows through cubic arrays of spherical beads on wires. The experimental results matched
with the Brinkman formula for permeability as a function of porosity. Levy [18] re-
ported that the fluid filtration is governed by the Brinkman’sequation for smaller particles
whereas the Darcy model is valid for coarse particles. Thereis some uncertainty about the
validity of the Forchheimer model for fine particles. Contextually, the Darcy–Brinkman
model has been taken in the present study.

2.1 Darcy–Brinkmann model

An alternative to Darcy’s equation is Brinkmann’s equationwhich accounts for the tran-
sition from Darcy flow to highly viscous flow, in the limit of extremely high permeability.

∇p = −
µ

κ
v̄ + µ̄∇2v̄. (1)

The first term is the usual Darcy term and the second is analogous to the Laplacian term
that appears in the Navier-Stokes equation. The coefficientµ̄ is an effective viscosity. In
generalµ andµ̄ are approximately equal.

2.2 Electromagnetic field in hydrodynamics

Electromagnetic field has an important influence on the hydrodynamics. One of the main
purposes of the electromagnetic control is to stabilize theflow and suppress oscillatory
instabilities, which degrades the resulting crystal. To incorporate the electromagnetic
force with the fluid flow model, the Lorentz force for moving axes has been taken in
consideration.

F̄ = qĒ + j̄ × B̄, (2)

j̄ = σe

(

Ē + v̄ × B̄
)

, (3)

wherej̄ is the current density,σe is the electrical conductivity of the fluid and̄E = −∇ϕ
is the electric field andϕ is the electric potential and̄v is the field velocity. Electrical
insulation is present in the practical applications. So∇ϕ becomes zero (i.e.∇ϕ = 0)
indicating the absence of the electric field. Now the modifiedLorentz force becomes

F̄m = σe

(

v̄ × B̄
)

× B̄. (4)

Therefore the magnetohydrodynamic (MHD) flow model has beenformulated as:

ρf (v̄∇) · v̄ = −∇p + µf∇
2v̄ −

µf

κ
v̄ + σe

(

v̄ × B̄
)

× B̄ + F̄B , (5)

whereF̄B is body force,µf andρf are dynamic viscosity and density of fluid respectively.
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3 Physical model

The physical model considered here is shown in Fig. 1, along with the important ge-
ometric parameters. It consists of a trapezoidal cavity with an electrically conducting
fluid saturated porous medium, whose bottom wall and top wallare subjected to hotTH

and coldTC temperatures respectively while the side walls are kept adiabatic. Natural
convection flow of a thermal viscous fluid assumed to be Newtonian is considered under
the Oberbeck–Boussineq approximation in the presence of a gravitational field. The
Oberbeck–Boussineq approximation is based on the assumptions that the temperature
variations are small enough in order to consider the densityρ as a constant except in
the buoyancy termρḡ, where ḡ is the gravitational force andρ is given linearly by
ρ = ρ0[1 − β(T − T0)] whereT is the temperature andρ0 andT0 denote reference
density and temperature respectively. The density change due to changes in pressure is
neglected. Fluid properties such as viscosityµ, the permeabilityκ, thermal expansion
β = − 1

ρ0

( ∂ρ
∂T

)p, the thermal diffusivityη and the specific heatCp are assumed to be
constants. Porous inertia effect is neglected while viscous effect is considered. Applied
magnetic force is acting along the direction of the gravity.Here the Prandtl number is
assumed to be unity.

Fig. 1. Schematic diagram of the physical system.

4 Mathematical model

Buoyancy driven flow of an electrically conducting fluid inside a trapezoidal enclosure
packed with a porous media is analogue to Rayleigh–Benard multi-cellular convective
transport phenomenon. Natural convection heat transfer within such an enclosure is a
function of the temperature difference between the hot and cold walls, the boundary
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conditions, the inclination angle of the side walls of the cavity, the rotational angle of
the cavity, the permeability of the porous medium, magnitude and direction of the applied
magnetic fields and the properties of the electrically conducting fluid flow.

The generalized governing equations are used based on the conservation laws of
mass, momentum and energy. As the heat transfer depends upona number of factors,
a dimensional analysis is presented to show the important non-dimensional parameters,
which will influence the dimensionless heat transfer parameter, i.e. Nusselt number.

4.1 Governing equations

Non-dimensional parameters used for making the governing equations dimensionless are
stated as follows:

X =
x

W
; Y =

y

W
; U =

uW

αf

; V =
vW

αf

; θ =
T − TC

TH − TC

;

Raf =
gβf(TH − TC)W

αfvf

; Pr =
vf

αf

; Da =
κ

W 2
; Ha = B0

√

σeκ

µf

.

Continuity equation

∂2Ψ

∂X∂Y
−

∂2Ψ

∂X∂Y
= 0. (6)

Momentum equation
(

∂Ψ

∂Y

∂Ω

∂X
−

∂Ψ

∂X

∂Ω

∂Y

)

= Pr

(

∂2Ω

∂X2
+

∂2Ω

∂Y 2

)

−
Pr

Da
Ω + Ra Pr

(

∂θ

∂X
cosΦ −

∂θ

∂Y
sin Φ

)

−
Ha2Pr

Da

{

∂2Ψ

∂X2
sin2 Φ +

∂2Ψ

∂Y 2
cos2 Φ + 2

∂2Ψ

∂X∂Y
sin Φ cosΦ

}

. (7)

Energy equation

∂Ψ

∂Y

∂θ

∂X
−

∂Ψ

∂X

∂θ

∂Y
=

∂2θ

∂X2
+

∂2θ

∂Y 2
. (8)

4.2 Boundary conditions

Bottom wall: Ψ=0; θ=1 at 0 ≤ X ≤ 1 and Y = 0.

Top wall: Ψ=0; θ=0 at −
R

W
cos γ≤X ≤

(

1+
R

W
cos γ

)

andY=
R

W
sin γ.

Side wall: Ψ=0;
∂θ

∂S̄
=0 at 0 ≤

∣

∣S̄
∣

∣ ≤
R

W
, where S̄ = Xî + Y ĵ.
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Non-dimensional heat transfer parameter Nusselt number isstated as:

Nuav =

W
∫

0

h(x)x

k
dx, (9)

Nuav =

1
∫

0

(

∂θ

∂Y

)

Y =0

dX. (10)

4.3 Finite element formulations

The quadratic interpolation function has been considered for the stream function, the
vorticity function and the non-dimensional temperature.

Ψ(X, Y ) = Ne
j Ψe

j , (11)

Ω(X, Y ) = Ne
j Ωe

j , (12)

θ(X, Y ) = Ne
j θe

j , (13)

wherej = 1, 2, 3, . . . , 6, Nj, are the element interpolation functions.
The considered triangular element has six nodes. Thereforethe interpolation func-

tions are six noded trigular shape functions. All six nodes are associated with the stream
function, the vorticity function and the non-dimensional temperature.

To derive the finite element equations, the method of weighted residuals [19] is
applied to the equations to the equations (6)–(8) and the Gauss’s theorem is applied to
generate the boundary integral terms associated with the surface tractions.

Continuity equation

∂2Ψ

∂X∂Y
−

∂2Ψ

∂X∂Y
= 0 (14)

⇒

∫

Λe

(

∂2Ψ

∂X∂Y
−

∂2Ψ

∂X∂Y

)

Ni dΛe = 0

⇒

∫

Λe

[

∂

∂X

(

∂Ψ

∂Y

)

−
∂

∂Y

(

∂Ψ

∂X

)

Ni dΛe = 0

⇒

∫

Λe

(

−
∂Ne

i

∂X

∂Ne
j

∂Y
−

∂Ne
i

∂Y

∂Ne
j

∂X

)

Ψe
j dΛe

+

∫

Γe

(

∂Ψ̄

∂Y
−

∂Ψ̄

∂X

)

Ne
i dΓe = 0, (15)

whereAe is the element area andΓe is the element boundary condition.
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The elements of the local matrices are as follow:

A11
ij =

∫

Λe

(

−
∂Ne

i

∂X

∂Ne
j

∂Y
+

∂Ne
i

∂Y

∂Ne
j

∂X

)

dΛe,

A12
ij = A13

ij = 0,

fe
i1

= −

∫

Γe

(

∂Ψ̄

∂Y
−

∂Ψ̄

∂X

)

Ne
i dΓe.

Similarly, for momentum equation the elements of the local matrices are:

A21
ij = −

Ha2Pr

Da

∫

Λe

{

∂Ne
i

∂X

∂Ne
j

∂X
sin2 Φ +

∂Ne
i

∂Y

∂Ne
j

∂Y
cos2 Φ

+

(

∂Ne
i

∂X

∂Ne
j

∂Y
+

∂Ne
i

∂Y

∂Ne
j

∂X

)

sin Φ cosΦ

}

dΛe,

A22
ij =

Pr

Da

∫

Λe

Ne
i dΛe + Pr

∫

Λe

(

∂Ne
i

∂X

∂Ne
j

∂X
+

∂Ne
i

∂Y

∂Ne
j

∂Y

)

dΛe,

A23
ij = Ra Pr

∫

Λe

(

∂Ne
i

∂Y
sin Φ −

∂Ne
j

∂X
cosΦ

)

Ne
i dΛe,

fe
i2

=

∫

Γe

Ne
i

{(

∂Ω̄

∂X
+

∂Ω̄

∂Y

)

−

(

∂Ψ̄

∂X
+

∂Ψ̄

∂Y

)

sin Φ cosΦ

−
∂Ψ̄

∂X
sin2 Φ −

∂Ψ̄

∂Y
cos2 Φ

}

dΓe

−

∫

Γe

(

6
∑

j=1

Ψe
j

∂Ne
j

∂Y

6
∑

k=1

Ωe
k

∂Ne
k

∂X
−

6
∑

j=1

Ψe
j

∂Ne
j

∂X

6
∑

k=1

Ωe
k

∂Ne
k

∂Y

)

Ne
i dΛe.

Similarly, for energy equation the elements of the local matrices are:

A31
ij = A32

ij = 0,

A33
ij =

∫

Λe

(

∂Ne
i

∂X

∂Ne
j

∂X
+

∂Ne
i

∂Y

∂Ne
j

∂Y

)

dΛe,

fe
i3

=

∫

Γe

Ne
i

(

∂θ̄

∂X
+

∂θ̄

∂Y

)

dΓe

−

∫

Λe

(

6
∑

j=1

Ψe
j

∂Ne
j

∂Y

6
∑

k=1

θe
k

∂Ne
k

∂X
−

6
∑

j=1

Ψe
j

∂Ne
j

∂X

6
∑

k=1

θe
k

∂Ne
k

∂Y

)

dΛe.
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Ke
ij =







A11
ij A12

ij A13
ij

A21
ij A22

ij A23
ij

A31
ij A32

ij A33
ij






; ae

i =







Ψe
i

Ωe
i

θe
i






; fe

i =







fe
i1

fe
i2

fe
i3






.

Then the local matrices are assembled in order to form the global matrices.

n
∑

i=1

[

Ke
ij

][

ae
ij

]

=
[

fe
i

]

,

wheren is the number of elements in the domain.
To solve the sets of the global nonlinear algebraic equations in the form of matrix,

the Newton-Raphson iteration technique has been adapted through PDE solver with MAT-
LAB interface. The convergence criterion has been set to|Ψm+1 − Ψm| ≤ 10−4, where
m is number of iteration.

4.4 Grid independency test

Preliminary results are obtained to inspect the field variables grid independency solutions.
Test for the accuracy of grid fineness has been carried out to find out the optimum grid
number. It is found in Fig. 2 that 41499 non-regular nodes aresufficient to provide
accurate results.

Fig. 2. Grid sensitivity test atRam = 1000, Da = 10
−6 andΦ = 0

◦.

4.5 Code validation

For the validation of the code, a square porous cavity with differential isothermal vertical
walls and adiabatic horizontal walls in the absence of the applied magnetic force is
considered. Average Nusselt number is calculated for threedifferent Rayleigh numbers
(Ram = 10, 100 and1000) while the Darcy number is fixed at10−6 and compared with
the available published works by Baytas and Pop [20], Gross et al. [21], Manole and
Lage [22], Moya et al. [23] and Mahmud and Fraser [16]. This comparison is shown in
Table 1.
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Table 1. Comparison of the presented prediction with the existing one.

Nuav

Ram = 10 Ram = 100 Ram = 1000

Baytas and Pop [16] 1.079 3.16 14.06

Gross et al. [17] – 3.14 13.45

Manole and Lage [18] – 3.12 13.64

Moya et al. [19] 1.065 2.80 –
Mahmud and Fraser [12] 1.079 3.14 13.82

Present work 1.079 3.115 13.924

Again another comparison between the present prediction and Mahmud and Fraser
[16] is carried out atRam = 1000 andHa = 5. The streamlines and isotherms, depicted
in Fig. 3, are similar and the average Nusselt number obtained by present work is3.323
which is very close to that (Nuav = 3.3) presented by Mahmud and Fraser. It is seen
from Table 1 and Fig. 3 that the agreement between the presentand previous results is
very good. Therefore, the numerical results presented in this paper are very accurate.

Fig. 3. Code validation atRam = 1000, Raf = 10
9 andHa = 5.
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5 Results and discussion

Numerical results are presented in order to determine the effects of the presence of a
magnetic field, the modified Rayleigh number, the inclination angles of the sidewalls and
the rotational angles of the cavity on natural convection flow of an electrically conducting
fluid in a trapezoidal enclosure. The values of the magnetic field parameterHa range
between0 to 100 and the modified Rayleigh numberRam varies from1 to 1000. The
inclination angles of the sidewallsγ, are ranged from30◦ to 90◦ while the rotational
angles of the cavityΦ are from0◦ to 90◦.

5.1 Effect of inclination angles

Fig. 4 reveals the impact of varying inclination angles of the sidewalls of the trapezoidal
cavity on buoyancy driven convection for a representative case ofRam = 1000, Raf =
109 andΦ = 0◦. Forγ = 30◦, the top cold surface comes closer to the hot wall which
squeezes the two counter rotating vortices formed within the cavity. Thereby the core of
the circulating cells moves downwards ensuing the development of hydraulic boundary
layer on the warm surface. This well-established hydraulicboundary layer ensures the
rapid generation of the convective currents. The dense bunch of the isotherms adjacent to
the heated wall produces thermal boundary layer, which certainly steps up the convection
heat transfer. With increasing the inclination angle of thesidewalls, the core of the
circulating rolls moves upward due to the enlargement of thecirculation zones, which
flattens the hydraulic boundary layer as well as the thermal boundary layer adjoining the

Fig. 4. Streamlines and isotherms at different inclinationangles of the sidewalls of the
cavity (Ram = 1000, Raf = 10

9 andΦ = 0
◦).
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heated bottom wall. Consequently the diffusive flow governsthe fluid flow and the heat
transportation.

Under the above context, it can be mentioned that amply increase in the convec-
tive heat transfer occurs when the inclination angle of the sidewalls of the trapezoidal
enclosureγ, is set low.

5.1.1 Optimization test

A theoretical concept can be built for finding out the optimuminclination angle. When
two surfaces subjected to differential temperatures are brought closer to each other, the
heat transfer rate increases. Under this circumstance if the cold surface extends while it
is come closer to the heated surface, the heat transfer rate increases drastically. In case of
the heat removal from the nuclear container, the porous saturated trapezoidal enclosure
surrounds the container. Thereby the trapezoidal cavity enclosed the container from the
top and side should be optimized in context of their inclination angle. It is clear that as
the inclination angle of the sidewalls of the trapezoidal enclosure becomes down-sloped,
the top surface extends and comes closer to the bottom surface. Thereby the trapezoidal
cavities enclosed the container from the top and the sides should be of equal distance
between the top and the bottom surfaces of the cavity packed with porous media. Hence
the optimum heat transfer performance will be obtained.

Based on this hypothesis, numerical computations have beenperformed to find
out the optimum inclination angle of the sidewalls of the trapezoidal enclosure. The
optimization ofγ requires to analyze fluid flow and heat transfer characteristics in the
cavity atΦ = 90◦ as shown in Fig. 5.

Fig. 5. Streamlines and isotherms at different inclinationangle of the sidewalls of the
cavity (Ram = 1000, Raf = 10

9 andΦ = 90
◦).
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At lower value ofγ, a single vortex is formed inside the cavity. The lateral deformation
of the circulating cell leads to the growth of the hydraulic boundary layer along the hot
surface. The isotherms are also adjusted according to the changes in the flow field and
pushed towards the lower part of the right sidewall indicating the presence of a large
temperature gradient there. As the inclination angle of thesidewalls increases, the core of
the vortex switches towards the left. As a result, the hydraulic boundary layer disappears.
Also the vertical stratification of the isotherms at the mid position of the cavity implies
that the diffusion is the dominating heat transfer mechanism in the cavity.

Fig. 6 shows the comparison of the average Nusselt numbers obtained from the
different combinations of the inclination angles of the sidewalls,γt andγs mounted on
the top and the side of the container. It is found that both of the trapezoidal cavities located
at the top and the sides of the container give optimum thermalperformance atγ = 45◦.

Fig. 6. Selection of optimum inclination angle (Ram = 1000, Raf = 10
9, Ha = 0

andΦ = 0
◦).

5.2 Field analysis at optimum inclination angle

5.2.1 Effect of modified Rayleigh number

The evolution of the flow and thermal fields with varying the modified Rayleigh number
for different values of Hartmann number and the rotational angle of the trapezoidal cavity
is depicted in Figs. 7–18. For the horizontal cavity (Φ = 0◦), where the buoyancy force
and the applied magnetic force are acting only in they-direction, the flow domain and
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boundary conditions are symmetrical and two counter rotating circulating cells are formed
in the cavity. ForRam = 1 and100, the flow rises along the vertical symmetry axis and
gets blocked at the top isothermal cold wall. Then the flow descends downwards along the
inclined adiabatic sidewalls and turns back horizontally to the central region after hitting
the bottom wall. The presence of the stagnation point is noticed along the symmetric
vertical axis. This type of flow scenario is visualized for the all values ofHa. In the
absence of magnetic force, the strength of the recirculating cells is relatively higher. But
when the magnetic field is imposed on it, the fluid flow due to buoyancy experiences a
retarding force. Therefore the diffusive flow becomes prominent. With an increase in
Ram up to the moderate value (Ram = 100), the intensity of the convection increases
slightly, the core of the rolls slightly moves towards the symmetric vertical axis. It is
noticeable that the strength of the counter clockwise rotating cells is relatively higher than
that at lowRam. Since the buoyancy forces are more dominant than the viscous forces
ensuing due to the magnetic force, the overall convective heat transfer at the moderate
Ram increases as compared to the lowRam. The stratification of the isotherms are found
for all values ofHa at Ram = 1–100, which represents the influence of the viscous
diffusion over the convection.

The distinctive hydrodynamic and thermal fields in the cavity at higherRam for
different values of Hartmann number are shown in Figs. 15–18. In the absence of any
magnetic force (Ha = 0), the symmetry may still prevail due to the buoyancy force
acting along the direction of the vertical axis. Two circulating cells of higher strength
are formed. The isotherms are clustered at the vicinity of the heated wall indicating
the existence of thermal boundary layer. AtHa = 5, these vortices reduce in strength.
As a result, the thermal gradients decrease indicating thatthe diffusive heat transfer
initiates. But multiple primary and secondary vortices rotating in opposite directions to
each other are formed within the trapezoidal cavity. The secondary vortices are trapped
by the primary circulating cells resulting contraction of the minor cells. The fluid comes
from the cold to the hot wall through three channels. Therebythe diffusive currents are
still overwhelmed by the convective currents resulting good thermal performance. The
isotherms are distorted due to the strong magnetic force. Therefore oscillating thermal
boundary layer appears near the heated wall. Higher values of Ha retard the fluid motion
which in turns decelerates the convective heat flow and stratify the isotherms which results
the reduction in heat transfer rate from the heated surface.

5.2.2 Effect of rotational angles of the cavity

For the fair discussion on the variation of the tilted position of the trapezoidal enclosure,
a moderate magnetic force (Ha = 5) is considered. Figs. 7–18 show the metamorphosis
of the thermo-fluid fields under the influence of the rotational angles of the trapezoidal
cavity. At lowerRam and zero rotational angle, two weaker recirculating cells of opposite
directions of motion are developed. The induced buoyancy force is suppressed by the
moderate applied magnetic force. As a result, the diffusiveheat flow is dominant which
reduces the heat transfer performance. Also the stratification of the isotherms reveals the
dominancy of diffusive heat flux throughout the cavity.
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Fig. 7. Streamlines and isotherms for different Hartmann numbers atΦ = 0
◦,

Raf = 10
6 andRam = 1.

Fig. 8. Streamlines and isotherms for different Hartmann numbers atΦ = 30
◦,

Raf = 10
6 andRam = 1.
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Fig. 9. Streamlines and isotherms for different Hartmann numbers atΦ = 45
◦,

Raf = 10
6 andRam = 1.

Fig. 10. Streamlines and isotherms for different Hartmann numbers atΦ = 60
◦,

Raf = 10
6 andRam = 1.
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Fig. 11. Streamlines and isotherms for different Hartmann numbers atΦ = 0
◦,

Raf = 10
8 andRam = 100.

Fig. 12. Streamlines and isotherms for different Hartmann numbers atΦ = 30
◦,

Raf = 10
8 andRam = 100.
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Fig. 13. Streamlines and isotherms for different Hartmann numbers atΦ = 45
◦,

Raf = 10
8 andRam = 100.

Fig. 14. Streamlines and isotherms for different Hartmann numbers atΦ = 60
◦,

Raf = 10
8 andRam = 100.
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Fig. 15. Streamlines and isotherms for different Hartmann numbers atΦ = 0
◦,

Raf = 10
9 andRam = 1000.

Fig. 16. Streamlines and isotherms for different Hartmann numbers atΦ = 30
◦,

Raf = 10
9 andRam = 1000.
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Fig. 17. Streamlines and isotherms for different Hartmann numbers atΦ = 45
◦,

Raf = 10
9 andRam = 1000.

Fig. 18. Streamlines and isotherms for different Hartmann numbers atΦ = 600
◦,

Raf = 10
9 andRam = 1000.
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An increase in the rotational angle leads the left circulating cell expands and the
right circulating cell squeeze. Here the symmetry is completely destroyed due to the
counterbalancing action of the buoyancy force and the imposed magnetic force. The
weak magnetic force along they-direction accelerates the fluid flow even at lowRam.
Consequently the buoyancy driven convective flow becomes relatively stronger. The
isotherms for the lower value ofRam still show the thermal stratification. Therefore
the convective flow is slightly amplified. For the moderateRam, slight temperature
gradients develop when the cavity is tilted atΦ = 45◦. After that, as the cavity is
tilted at a greater angle, the thermal boundary layer tends to initiate and the flow field
tends to stretch diagonally. Thus the convection becomes established. Higher values of
Ram (Ram = 1000) give idiosyncratic thermo-fluid attributions. AtΦ = 0◦, multiple
circulating cells are formed and a disturbance is observed in the thermal field. Two
maxima and three minima are generated which means that the fluid comes from the cold
wall to the hot wall through the minima indicating the supremacy of the convective flow.

Tilting the cavity to an extend yields the left side shipmentof the cores of the
vortices and the rigorous development of the plumage insidethe cavity. As the cavity
tilts more, the primary vortex located at the left side grasps the other vortices. Finally a
diagonally stretched primary vortex grows within the enclosure, which invokes that the
convection is the only means of heat transfer. The isothermsat Φ = 45◦ show that the
area of the minima increases although its number is decreased. These large temperature
gradients establish the oscillating thermal boundary layer at the vicinity of the heated
wall. Further increase inΦ concentrates the isotherms towards the hot surface indicating
better thermal performance.

5.2.3 Effect of Hartmann number

Figs. 9, 13 and 17 illustrate the changes in the flow and thermal fields due to the variation
of the magnetic force for differentRam within the cavity while the rotational angle is
fixed at 45◦. In the absence of magnetic force, a single circulating cellof relatively
higher strength and counter clockwise direction of motion is formed at the lower value of
Ram (Fig. 9). As the intensity of the applied magnetic force increases, the recirculating
cell experiences retardation in the motion. The diffusive currents start to dominate the
convective currents. When the magnetic force triumphs overthe buoyancy force, the core
of the vortex shifts the left downward. This stretched vortex cannot flow smooth loosing
its strength. Viscous diffusion plays an important role there. The isothermal lines are
merely symmetrical. The layered isotherms indicate the strong influence of the viscous
diffusion.

For the moderate value ofRam, when the magnetic force is absent, a strong primary
vortex is formed as compared to that at lowRam. The intensity of the circulation is due
to the influence of buoyancy effect only. The isotherms are clustered near the heated
surface-giving rise to a thermal buoyancy layer. Viscous diffusion is outweighed by the
convective flow. As the magnetic force is applied sequentially, a large portion of fluid
in the mid position of the cavity becomes also motionless. This is supported by the
elongated-stagnant core of the vortex with increasingHa. Also the thermal boundary
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layer disappears and the stratification of the isotherms points towards the deceleration of
the convective heat flux.

For the higherRam where the buoyancy effects are strong, a comparatively strong
vortex of counter clockwise direction is formed in the absence of the magnetic field.
The isotherms are extensively nonlinear which indicates the higher temperature gradients.
Near the heated wall, the isotherms are bunched to develop thermal boundary layer. This
type of thermo-fluid behavior reveals the strong influence ofthe convective currents. With
increasingHa in a small amount causes the core of the circulation shift right side resulting
stagnation point at the left upper corner of the cavity. The isothermal lines also switch
towards the right side, decelerating the thermal boundary layer formation. AtHa = 5,
multicellular formation appears in the cavity. The weaker zone is shifted towards the
mid position. This minor vortex is entrapped by the two majorvortices. Therefore the
diffusive flow becomes prominent. The oscillating thermal boundary layer represents
the dominancy of the diffusive heat flux. Over-estimated magnetic force hinders the
circulating flow and may cause the mitigation of the convective heat transfer mechanism.
The temperature gradients are also straightened which indicates the ostracism of the
convective heat flow.

5.3 Heat transfer characteristics

The corresponding effects of the increase of the modified Rayleigh number on the surface
heat transfer from the heated surface of the cavity at different values of Hartmann number,
Ha, and rotational angle of the cavity,Φ, are presented in Fig. 19. Two distinct zones
are identified depending on the value ofRam. In the diffusion-dominated zone, the
average Nusselt number is invariant ofRam and the magnitude ofNuav is equal to2.
In the convection-dominated zone,Nuav increases almost linearly in logarithmic plot
with increasingRam. The diffusion-dominated zone is extended with increasingHa as
well as decreasingΦ. In the convection-dominated zone, lower value ofHa and higher
value ofΦ show a higher value ofNuav.

Variation of the average Nusselt number with Hartmann number atΦ = 0◦ andγ =
45◦ as shown in Fig. 20 indicates that the higher convective heattransfer is obtained in the
absence of magnetic force. Once the magnetic force is established, theNuav decreases
rapidly and approaches its asymptotic value (= 2). For smallerRam, the average Nusselt
number approaches the asymptotic value even for the lower values of Hartmann number.

Fig. 21 shows an analogous heat transfer behavior with increasing Hartmann num-
ber atΦ = 30◦. A slight increase inNuav with Ha can be found. In Fig. 22, the
convection-dominated zone is extended with increase inHa. The bifurcation point along
the asymptotic line switches towards the right with decreasing Ha, indicating that the
lower values ofHa extends the diffusion prominent zone. An identicalNuav–Ha profiles
are obtained forΦ = 90◦ as shown in Fig. 23. The only exception is that the convection
is overwhelmed by the diffusion as the applied magnetic force reduces to zero.

Fig. 24 shows the influence of the tilted position of the cavity on the convective
heat transfer attributes for different values ofRam andHa. In general,Nuav remains
unchanged up toΦ = 15◦ indicating that the diffusion is the only principal mode of heat
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transfer. Further increase inΦ yields that the buoyancy dominated heat transfer initiates
and becomes profound up toΦ = 60◦. After that, the convective heat transfer decelerates
along withΦ. The optimum convective flux is established atΦ = 60◦ and higher values
of Ram over a wide range ofHa.

Fig. 19. Variation of average Nusselt
number at the heated wall with modified

Rayleigh number forΦ = 0
◦, γ = 45

◦.

Fig. 20. Variation of average Nusselt
number at the heated wall with Hartmann

number forΦ = 0
◦, γ = 45

◦.

Fig. 21. Variation of average Nusselt
number at the heated wall with Hartmann

number forΦ = 30
◦, γ = 45

◦.

Fig. 22. Variation of average Nusselt
number at the heated wall with Hartmann

number forΦ = 60
◦, γ = 45

◦.
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Fig. 23. Variation of average Nusselt
number at the heated wall with Hartmann

number forΦ = 90
◦, γ = 45

◦.

Fig. 24. Variation of average Nusselt
number at the heated wall with rotation

angle of the cavity.

6 Conclusion

Two dimensional, steady natural convection flow in a trapezoidal cavity, packed with
porous medium and subjected to isothermal boundary conditions at the horizontal walls
and adiabatic conditions at the inclined sidewalls, has been studied numerically for a
wide range of the modified Rayleigh number, the inclination angles of the sidewalls of
the cavity, the rotational angles of the cavity and the Hartmann numbers. A numbers of
conclusions can be drawn from the investigation:

At moderate value ofRam, when the inclination angles of the sidewalls of the
enclosure are small, a well-established thermal boundary layer is found near the heated
wall which indicates that the convective flow is profound there. With increasingγ,
the thermal boundary layer is broken and finally it disappears causing strong diffusive
currents. An optimization test has been performed by considering a physical problem of
the nuclear waste removal. It is notice worthy that the optimum thermal performance is
achieved atγ = 45◦.

At lower value ofRam, the thermal stratification inside the cavity indicates that
the convection is overwhelmed by the conduction mechanism whereas the convection-
dominated zone is established at higher values ofRam.

In the absence of the magnetic force, the convection-dominated zone is extended
resulting better convective heat transfer performance. Increasing Hartmann number re-
tards the fluid circulation causing the lower temperature gradients throughout the cavity.
Therefore, major portion of the heat is transferred mainly by conduction.

With an increase in the tilted position of the cavity up to60◦, the average Nusselt
number increases pointing towards the supremacy of the convective currents over the
diffusive flows. Further increase in the rotational angle ofcavity causes slight decrease in
average Nusselt number.
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