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Abstract. In this paper a non-linear mathematical model for depletionof dissolved
oxygen in a lake due to submerged macrophytes is proposed andanalyzed. It is assumed
that nutrients are continuously coming to the lake with a constant rate through water
run off. In the modeling process five variables are considered, namely concentration of
nutrients, density of algal population, density of macrophytes, density of detritus and
concentration of dissolved oxygen. Equilibria of the modelhave been obtained and their
stability discussed. The numerical simulation is also performed to support the obtained
analytical results.
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1 Introduction

Modern agriculture depends on chemical fertilizers, pesticides, etc., to produce high-
quality crops for animal and human consumption. To maximizethe crop yield, farmers
spread nitrogen, phosphorus based fertilizers in their farming land. To improve produc-
tion, they also spread herbicides to kill weeds and insecticides to kill insects to croplands.
Some amount of these fertilizers, pesticides, herbicides and insecticides have been used by
the crops however the remaining part of these chemical reaches to the nearer lake through
water run off. These chemical contains a large amount of nutrients. Some amount of
nutrients also comes in the lake through domestic drainage.Due to the presence of these
nutrients into the lake, the algae and macrophytes grow veryfast causing eutrophication.
Eutrophication is a process by which a lake becomes enrichedin dissolved nutrients
(e.g. nitrogen, phosphates, etc.) that stimulate the growth of aquatic plant life and re-
sulting in the depletion of dissolved oxygen.

Algae and macrophytes grow very fast in a lake when it becomesrich of nutrients
by domestic drainage [1], water run off from agricultural fields, etc. [2]. Algae and
macrophytes die out and sink to the bottom of the lake formingdetritus. This detritus
is being converted into nutrients through biochemical processes occurring in the lake. In
these biochemical processes a huge amount of dissolved oxygen is utilized [3–6]. The
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level of dissolved oxygen in the lake increases due to the surface re-aeration as well as
by photosynthesis process of algae and submerged macrophytes. Since most of the algae
and macrophytes float on the water surface, they reduce the transfer of oxygen from air to
water through diffusion and the photosynthesis process [3,7–11].

Several investigators have studied algal bloom and eutrophication problems caused
by nutrients in the lakes, [6, 12–21]. Amemiyaa et al. [12] and Arnold and Voss [13]
studied the eutrophication in lakes by considering nonlinear interactions between the
variables used in their models, but they have done only simulation analysis. They have
neither considered the concentration of dissolved oxygen nor macrophytes involved in the
formation of nutrients from detritus. Voinov and Tonkikh [6] have presented a nonlinear
mathematical model for eutrophication in macrophyte lakes. In this model they have
assumed that the nutrient is supplied only by detritus of algae and macrophytes. They
have not considered the additional input of nutrients either from domestic drainage or
from water run off from agricultural fields. Dachs et al. [9] investigated the influence of
eutrophication on air - water exchange, vertical oxygen flux, etc. in the lake Ontario. The
nitrification in the water column and sediment of a lake and adjoining river system has also
been studied [20]. Jayaweera and Asaeda [17] investigated biomanipulation in shallow
eutrophic lakes by using a mathematical model involving phytoplankton, zooplankton,
detritus, bacteria and fish population but they did not consider the supply of nutrients from
outside. Some other ecological modeling studies involvingphytoplankton, zooplankton
and nutrients, relevant to our work, have also been conducted by Busenberg et al. [14]
and Hallam [22]. However they have not considered the density of dissolved oxygen in
the modeling process. Jorgenson [2] presented an eutrophication model for a lake using
ecological concepts. In most of the above mentioned models,the density of macrophytes
is not considered, however some studies have been conductedto study the depletion of
dissolved oxygen in lakes due to excessive growth of algae [23–26]. Misra [23,24] studied
the depletion of dissolved oxygen and survival of aquatic population in a lake due to
presence of algae and zooplankton. Shukla et al. [26] presented a nonlinear mathematical
model for the depletion of dissolved oxygen in a lake caused by algal bloom. In this
model, we have not considered the role of macrophytes on the depletion of dissolved
oxygen.

In view of the above, a nonlinear mathematical model for depletion of dissolved
oxygen in a lake is proposed and analyzed by assuming that nutrients are continuously
supplied to the lake from outside through water run off from agricultural fields, domestic
drainage, etc.

2 Mathematical model

In this paper, we consider a lake, where the eutrophication process is governed by nu-
trients, algae, macrophytes, detritus and concentration of dissolved oxygen. Letn be
the cumulative concentration of nutrients,a be the density of algae,m be the density of
macrophytes,S be the density of detritus andC be the concentration of dissolved oxygen.
We assume that the cumulative rate of discharge of nutrientsinto the lake isq, which is
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depleted with rateα0n. It is further assumed that the growth rate of nutrients by detritus is
πδS and the rate of depletion of nutrients by algae and macrophytes is proportional to the
density of algae as well as cumulative concentration of nutrients (i.e.na) and the density
of macrophytes and the cumulative concentration of nutrients (i.e.nm) respectively. Thus
the growth rate of algae is proportional tona and the growth rate of macrophytes is
proportional tonm as they are assumed to be wholly dependent on nutrients. The natural
depletion rate of algae is assumed to be proportional to its densitya and its depletion
rate due to crowding is proportional toa2. Also the natural depletion rate of macrophytes
is assumed to be proportional to its densitym and its depletion rate due to crowding
is proportional tom2. Since some part of natural deaths of algae and macrophytes are
converted into detritus, hence we assume that the growth rate of detritus is proportional to
a andm. Since biochemical processes, which converts detritus into nutrients occur inside
the lake, thus we assume that the natural depletion rate of detritus is proportional toS.
Let the rate of growth of dissolved oxygen by various sourcesis qc (assumed constant)
and its natural depletion rate is proportional to its concentrationC. It is assumed that the
rate of growth of dissolved oxygen by algae and macrophytes is proportional to density
of algaea and density of macrophytesm respectively. The depletion rate of dissolved
oxygen caused by conversion of detritus into nutrients is assumed to be proportional to
the density of detritusS.

In view of the above considerations, the system is governed by the following diffe-
rential equations:

dn

dt
= q + πδS − α0n − β1na − β2nm,

da

dt
= θ1β1na − α1a − β10a

2,

dm

dt
= θ2β2nm − α2m − β20m

2,

dS

dt
= π1α1a + π2α2m − δS,

dC

dt
= qc − α3C + λ11a + λ22m − δ1S,

(1)

wheren(0) ≥ 0, a(0) ≥ 0, m(0) ≥ 0, S(0) ≥ 0, C(0) ≥ 0.
Here, the coefficientsα0 andα3 represents the natural depletion rate of nutrients

and dissolved oxygen respectively and are positive. The constantsα1 andα2 represents
the natural death rate of algae and macrophytes respectively whereas constantδ represents
the depletion rate of detritus due to the biochemical processes occurring in the lake.
The coefficientsβ1, β2, θ1, θ2 are proportionality constants, which are also positive.
The constantsβ10 andβ20 are coefficient corresponding to crowding terms(flaking off
coefficients [4]) of algae and macrophytes with respect to the aquatic habitat.π, π1 and
π2 are positive proportionality constants and are less than 1.The coefficientsλ11 andλ22

represents the growth rate proportionality constants of dissolved oxygen due to algae and
macrophytes respectively whereasδ1 represents the depletion rate proportionality con-
stant of dissolved oxygen due to conversion of detritus intonutrients through biochemical
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processes.

3 Equilibrium analysis

System (1) has following four non-zero equilibria.

1. E1(
q

α0

, 0, 0, 0, qc

α3

) always exists.
This equilibrium states that algae and macrophytes both arenot present in the lake. As
detritus is formed due to the natural death of algae and macrophytes, which are absent
and so detritus is also absent. In this case the concentrations of nutrients and dissolved
oxygen reach their respective equilibrium values.

2. E2(n
∗

2, a
∗

2, 0, S∗

2 , C∗

2 ) exists, provided

θ1β1q − α0α1 > 0, (2)

qc + λ11a
∗

2 − δ1S
∗

2 > 0. (3)

This equilibrium states that only algae is present however macophytes are absent in the
lake. In this case detritus will be formed due to the natural death of algae only and the
concentration dissolved oxygen decreases due to the growthof algae.

3. E3(n
∗

3, 0, m∗

3, S
∗

3 , C∗

3 ) exists, provided

θ2β2q − α0α2 > 0, (4)

qc + λ22m
∗

3 − δ1S
∗

3 > 0. (5)

This equilibrium states that macrophytes are present and algae is absent in the lake. In
this case also detritus will be formed due to the natural death of macrophytes only and the
concentration of dissolved oxygen decreases due to the growth of macrophytes.

4. E4(n
∗, a∗, m∗, S∗, C∗) exists, provided

q − π

(

π1α1
2

β10

+
π2α2

2

β20

)

> 0, (6)

θ1β1n
∗ − α1 > 0, (7)

θ2β2n
∗ − α2 > 0, (8)

qc + λ11a
∗ + λ22m

∗ − δ1S
∗ > 0. (9)

This is the most interesting equilibrium in which all the system variables are present. In
this case the concentration of nutrients will be less in comparison to the equilibriumE2

andE3, since nutrients will be utilized for the growth of both algae and macrophytes. In
this case the concentration of dissolved oxygen will be lessin comparison to the above
cases. Here it may be also noted that for very small values of rate of input of nutrients
(i.e. q ≈ 0), condition (6) may be violated and we will not get the positive value ofn∗

and thus positive values ofa∗, m∗, S∗.
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The existence of equilibriaE1(
q

α0

, 0, 0, 0, qc

α3

) is obvious. In the following, we
show the existence of equilibriaE2(n

∗

2, a
∗

2, 0, S∗

2 , C∗

2 ), E3(n
∗

3, 0, m∗

3, S
∗

3 , C∗

3 ) and
E4(n

∗, a∗, m∗, S∗, C∗) in detail. In the equilibriumE2(n
∗

2, a
∗

2, 0, S∗

2 , C∗

2 ), the values
of n∗

2, a
∗

2, S
∗

2 andC∗

2 are obtained by solving the following algebraic equations:

q + πδS − α0n − β1na = 0, (10)

θ1β1n − α1 − β10a = 0, (11)

π1α1a − δS = 0, (12)

qc − α3C + λ11a − δ1S = 0. (13)

Solving (11) and (12) forn andS in terms ofa and substituting in equation (10), we get
the following quadratic equation ina,

β1β10a
2 + (β10α0 + β1α1 − ππ1θ1β1α1)a − (θ1β1q − α0α1) = 0. (14)

The above quadratic equation (14) will have a unique positive root if the condition (2) is
satisfied.

Let the condition (2) be satisfied anda∗

2 be the positive value ofa in equation (14).
Using this value ofa∗

2 in equations (11) and (12), we get positive values ofn andS, say
n∗

2 andS∗

2 respectively. Finally usinga∗

2 andS∗

2 in equation (13), we get positive value of
C, sayC∗

2 , provided condition (3) is satisfied.
Since existence of equilibriumE3 is similar asE2, hence omitted.
The values ofn∗, a∗, m∗, S∗ andC∗ in E4(n

∗, a∗, m∗, S∗, C∗) are obtained by
solving the following algebraic equations

q + πδS − α0n − β1na − β2nm = 0, (15)

θ1β1n − α1 − β10a = 0, (16)

θ2β2n − α2 − β20m = 0, (17)

π1α1a + π2α2m − δS = 0, (18)

qc − α3C + λ11a + λ22m − δ1S = 0. (19)

Using equations (16) and (17) in equation (18), we get

S =
1

δ

[(

π1θ1β1α1

β10

+
π2θ2β2α2

β20

)

n −

(

π1α1
2

β10

+
π2α2

2

β20

)]

. (20)

Substituting the values ofa, m andS from equations (16), (17) and (20) in equation (15),
we get the following quadratic equation inn:

(

θ1β1
2

β10

+
θ2β2

2

β20

)

n2−

[

π

(

π1θ1β1α1

β10

+
π2θ2β2α2

β20

)

+
β1α1

β10

+
β2α2

β20

−α0

]

n

−

[

q−π

(

π1α1
2

β10

+
π2α2

2

β20

)]

= 0. (21)
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This quadratic equation will have a unique positive root (say n∗), provided condition (6)
is satisfied.

Using this value ofn∗ in equations (16), (17) and (20) respectively, we get positive
values ofa∗, m∗ andS∗, provided conditions (7) and (8) are satisfied.

Further usinga∗, m∗ andS∗ in equation (19), we get positive value ofC, sayC∗,
provided condition (9) is satisfied.

Keeping in view the model (1) it is noted that growth rate of nutrients in absence of
macrophytes is greater than in its presence. Therefore using a comparison theorem, [27]
it can be easily concluded that the cumulative concentration of nutrients is greater in
absence of macrophytes than when macrophytes is present. Thusn∗

2 > n∗ . Similarly we
can also show thatn∗

3 > n∗.

Remark 1. From equation (21) it is easy to note thatdn∗

dq
> 0. Using this, from equations

(16), (17) and (18) we easily get thatda∗

dq
> 0, dm∗

dq
> 0 and dS∗

dq
> 0. This implies that

as the rate of input of nutrients through water run offq increases, the equilibrium levels
of density of algae, macrophytes and detritus increases. Now from equation (19), we get

dC∗

dq
=

1

α3

[

θ1β1α1

(

λ11 −
π1δ1α1

δ

)

+ θ2β2α2

(

λ22 −
π2δ1α2

δ

)]

dn∗

dq
. (22)

Since most of algae float on the surface of the water body and therefore the oxygen
formed by algae due to photosynthesis will go to the atmosphere and will have very little
chance to get dissolve into the water below the water surface, thereforeλ11 would be very
small. Similarly oxygen formed by emerging macrophytes dueto photosynthesis will go
to the atmosphere, thusλ22 will also be very small. Hence we note thatdC∗

dq
is negative.

Thus, the concentration of dissolved oxygen into the water body decreases as the rate of
introduction of nutrients by water run offq increases.

4 Stability analysis

In this section, we discuss the stability behaviors ofE1, E2, E3 andE4 in detail. The
general variational matrix of model system (1) is given as follows:

M =













−r11 −β1n −β2n πδ 0
θ1β1a r22 0 0 0
θ2β2m 0 r33 0 0

0 π1α1 π2α2 −δ 0
0 λ11 λ22 −δ1 −α3













wherer11 = α0+β1a+β2m, r22 = θ1β1n−α1−2β10a andr33 = θ2β2n−α2−2β20m.
Let Mi be the variational matrixM evaluated at equilibriumEi, (i = 1, 2, 3, 4).
From the matrixM1, it is easy to note that the eigenvalues ofM1 are −α0,

θ1β1q−α0α1

α0

, θ2β2q−α0α2

α0

, −δ and−α3.
Since three eigenvalues ofM1 are clearly negative, so stability ofE1 will depend

on the sign of(θ1β1q−α0α1) and(θ2β2q−α0α2). As we know that(θ1β1q−α0α1) > 0
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wheneverE2 exists (see condition (2)) and(θ2β2q − α0α2) > 0 wheneverE3 exists (see
condition (4)).

Thus if E2 or E3 exists, thenE1 is a saddle point with stable manifold locally in
then − S − C space and with unstable manifold locally in thea − m plane.

From the matrixM2, we may easily note that one of the eigenvalues ofM2 is
θ2β2n

∗

2 − α2.
But we have already noted thatn∗

2 > n∗. This implies thatθ2β2n
∗

2 − α2 >

θ2β2n
∗ − α2, which is definitely positive wheneverE4 exists (see condition (8)).
By using Routh–Hurwitz criterion it is easy to show that all the other four eigen-

values of matrixM2 will be either negative or with negative real part. Thus ifE4 exists,
thenE2 is a saddle point with stable manifold locally in then − a − S − C space and
with unstable manifold locally in them-direction.

Similarly from matrixM3, we may also note that one of the eigenvalues ofM3 is
θ1β1n

∗

3 − α1, which is definitely positive wheneverE4 exists (asn∗

3 > n∗ and condition
(7)).

Again by using Routh–Hurwitz criterion, we can easily show that the remaining
four eigenvalues of matrixM3 will be either negative or with negative real part. Thus if
E4 exists, thenE3 is a saddle point with stable manifold locally in then − m − S − C

space and with unstable manifold locally in thea-direction.
As we cannot say much about the stability behavior ofE4 from the corresponding

variational matrixM4, we study the stability behavior of this equilibria by usingLia-
punov’s method.

Theorem 1. The equilibriumE4(n
∗, a∗, m∗, S∗, C∗) is locally stable provided the fol-

lowing condition is satisfied

π2

α0 + β1a∗ + β2m∗
<

1

2
n∗ min

[

β10

θ1π
2
1α2

1

,
β20

θ2π
2
2α

2
2

]

. (23)

Proof. We linearize model (1) by using the following transformations:

n = n∗ + n1, a = a∗ + a1, m = m∗ + m1,

S = S∗ + s, C = C∗ + c,

wheren1, a1, m1, s andc are small perturbations around the equilibriaE4.
Now choosing the following positive definite function

V =
1

2

(

n2
1 + p1a

2
1 + p2m

2
1 + p3s

2 + p4c
2
)

, (24)

wherep1, p2, p3 andp4 are positive constants to be chosen suitably.
DifferentiatingV with respect tot along the solutions of linearized system of model

(1) and choosingp1 = n∗

θ1a∗
, p2 = n∗

θ2m∗
, we get

dV

dt
= − (α0 + β1a

∗ + β2m
∗)n2

1 −
β10n

∗

θ1

a2
1 −

β20n
∗

θ2

m2
1 − p3δs

2 − p4α3c
2

+ (πδ)n1s + (p3π1α1)a1s + (p3π2α2)m1s

+ (p4λ11)a1c + (p4λ22)m1c − (p4δ1)sc. (25)
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We note thatdV
dt

will be negative definite if the following inequalities are satisfied:

p3 >
π2δ

α0 + β1a∗ + β2m∗
, (26)

p3 <
β10δn

∗

2θ1π
2
1α

2
1

, (27)

p3 <
β20δn

∗

2θ2π
2
2α

2
2

, (28)

p4 <
2

3

β10α3n
∗

θ1λ
2
11

, (29)

p4 <
2

3

β20α3n
∗

θ2λ
2
22

, (30)

p4 <
1

3
p3

δα3

δ2
1

. (31)

From inequalities (26)–(28) we may choose a positivep3 = p (say) provided condi-
tion (23) is satisfied.

Now from inequalities (29)–(31) we may choose positivep4 as follows:

0 < p4 <
2

3
α3 min

[

β10n
∗

θ1λ
2
11

,
β20n

∗

θ2λ
2
22

,
pδ

2δ2
1

]

. (32)

In the following we show the nonlinear stability of equilibrium E4. For this we need the
following lemma, which is stated without proof, following [23,28].

Lemma 1. The set

Ω :=

{

(n, a, m, S, C) ∈ ℜ
+
5 : 0 ≤ n + a + m + S ≤

q

δm

, 0 ≤ C ≤ RC

}

(33)

is a region of attraction for all solutions initiating in theinterior of positive octant, where

δm = min
{

α0, (1 − π)δ, (1 − π1)α1, (1 − π2)α2

}

and RC =
qcδm + λ11q

δmα3

.

Theorem 2. The equilibriumE4(n
∗, a∗, m∗, S∗, C∗) is nonlinearly stable inside the

region of attractionΩ provided the following condition is satisfied

π2

α0

<
1

2
n∗min

[

β10

θ1π
2
1α2

1

,
β20

θ2π
2
2α

2
2

]

. (34)

Proof. To prove this theorem, we consider the following positive definite function

V =
1

2
(n − n∗)2 + k1

(

a − a∗ − a∗ ln
a

a∗

)

+ k2

(

m − m∗ − m∗ ln
m

m∗

)

+
1

2
k3(S − S∗)2 +

1

2
k4(C − C∗)2, (35)
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wherek1, k2, k3 andk4 are positive constants to be chosen suitably.
DifferentiatingV with respect tot along the solutions of model (1) and choosing

k1 = n∗

θ1

, k2 = n∗

θ2

, we get

dV

dt
= − (β1a + β2m)(n − n∗)2

−
1

2
g11(n − n∗)2 + g14(n − n∗)(S − S∗) −

1

2
g44(S − S∗)2

−
1

2
g22(a − a∗)2 + g24(a − a∗)(S − S∗) −

1

2
g44(S − S∗)2

−
1

2
g33(m − m∗)2 + g34(m − m∗)(S − S∗) −

1

2
g44(S − S∗)2

−
1

2
g22(a − a∗)2 + g25(a − a∗)(C − C∗) −

1

2
g55(C − C∗)2

−
1

2
g33(m − m∗)2 + g35(m − m∗)(C − C∗) −

1

2
g55(C − C∗)2

−
1

2
g44(S − S∗)2 + g45(S − S∗)(C − C∗) −

1

2
g55(C − C∗)2, (36)

whereg11 = 2α0, g22 = β10n∗

θ1

, g33 = β20n∗

θ2

, g44 = 1

2
k3δ, g55 = 2

3
k4α3, g14 = πδ,

g24 = k3π1α1, g34 = k3π2α2, g25 = k4λ11, g35 = k4λ22, g45 = k4δ1.
Now, the sufficient conditions fordV

dt
to be negative definite inside region of attractionΩ

areg2
ij < giigjj . This gives the following inequalities:

k3 >
π2δ

α0

, (37)

k3 <
β10δn

∗

2θ1π
2
1α2

1

, (38)

k3 <
β20δn

∗

2θ2π
2
2α2

2

, (39)

k4 <
2

3

β10α3n
∗

θ1λ
2
11

, (40)

k4 <
2

3

β20α3n
∗

θ2λ
2
22

, (41)

k4 <
1

3
k3

δα3

δ2
1

. (42)

From inequalities (37)–(39) we may easily choose a positivek3 = k (say) provided
condition (34) is satisfied.

After choosingk3 we may choose positivek4 from inequalities (40)–(42) as fol-
lows:

0 < k4 <
2

3
α3 min

[

β10n
∗

θ1λ
2
11

,
β20n

∗

θ2λ
2
22

,
kδ

2δ2
1

]

. (43)
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It is easy to note that the conditions (23) and (34) will be easily satisfied for small
values ofπ and large values ofα0, β10 andβ20. The above two theorems imply that
the rate of conversion of detritus into nutrients has destabilizing effect on the system.
However natural depletion rate of nutrients and rate of removal/ food utilization of algae
and macrophytes due to crowding have stabilizing effect on the system.

5 Numerical example

To check the feasibility of our analysis regarding the existence of interior equilibrium
E4 and corresponding stability conditions, we conduct some numerical computation by
choosing the following values of the parameters in model (1). Some of these parameter
values have been taken from Amemiyaa et al. [12] and its cross-references.

q=0.5 mg l−1day−1, α0 =0.005 day−1, β1 =0.4 l mg−1day−1, π=0.02,

β2 =0.6 l mg−1day−1, δ=0.04 day−1, θ1 =0.9, α1 =0.025 day−1,

β10 =0.002 l mg−1day−1, α2 =0.02 day−1, β20 =0.004 l mg−1day−1,

θ2 =0.9, π1 =0.9, π2 =0.9, qc =0.2 mg l−1day−1, α3 =0.01 day−1,

λ11 =0.02 day−1, λ22 =0.02 day−1, δ1 =0.06 day−1.

(44)

It is found that under the above set of parameters, conditions for the existence of interior
equilibriumE4(n

∗, a∗, m∗, S∗, C∗) are satisfied andE4 is given by

n∗ = 0.0892 mg l−1, a∗ = 3.5553 mg l−1, m∗ = 7.0415 mg l−1,

S∗ = 5.1685 mg l−1, C∗ = 10.1825 mg l−1.

The eigenvalues of the variational matrixM4 corresponding to this equilibriumE4 are
obtained as,−0.01, −0.016,−0.039,−0.083,−7.754, which are all negative. Hence the
equilibriumE4 of model system (1) is locally stable.

With the above values of parameters, we note that conditionsfor nonlinear stability
(23) and (34) are satisfied. Further, for the above set of parameters, the solution trajecto-
ries ofa versesC andm versesC for different initial starts have been drawn in Figs. 1, 2.
From Fig. 1, it is clear that all trajectories are attracted by (a∗, C∗), which indicates the
global stability behavior of positive equilibrium of the two dimensional model consisting
of algae and dissolved oxygen that can be obtained from the five-dimensional model (1)
in a − C plane. Similarly in Fig. 2, we can see that all trajectories are attracted by
(m∗, C∗), which indicates the global stability behavior of positiveequilibrium of the two
dimensional model consisting of macrophytes and dissolvedoxygen that can be obtained
from the five-dimensional model (1) inm − C plane. The effect of rate of inflow of
nutrientsq in the lake on variablesa, m, S andC is presented in the Figs. 3–6. Here, the
values of other parameters are as given in (44) exceptq. From these figures, it is clear that
as rate of input of nutrients through water run offq increases, the equilibrium levels of
densities of algae, macrophytes and detritus increase, whereas concentration of dissolved
oxygen decreases. From the Fig. 3, Fig. 4 and Fig. 5 we also seethat if the rate of input of
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nutrients in the lake is zero, i.e.q = 0, then the density of algae, macrophytes and detritus
tend to zero after a short period of time and in this case concentration of dissolved oxygen
tends to its maximum value, i.e.qc

α3

, which is shown in Fig. 6. In Fig. 6, we may observe
that initially the concentration of dissolved oxygen increases then starts to decrease for
q = 0.5 andq = 0.8. This is because of the fact that initially the density of detritus
is less and as density of detritus increases, the concentration of dissolved oxygen starts
to decrease. Fig. 7 depicts the effect of rate of conversion of detritus into nutrients on
concentration of dissolved oxygen. It is noted that as the conversion rate of detritus
into nutrients increases, concentration of dissolved oxygen decreases. It is therefore,
speculated that suitable control mechanism should be applied to reduce the conversion
rate of detritus into nutrients to maintain the level of dissolved oxygen.

Fig. 1. Nonlinear stability ina − C plane. Fig. 2. Nonlinear stability inm−C plane.

Fig. 3. Variation of algae with time for
different values ofq.

Fig. 4. Variation of macrophytes with time
for different values ofq.

195



A.K. Misra

Fig. 5. Variation of detritus with time for
different values ofq.

Fig. 6. Variation of dissolved oxygen with
time for different values ofq.

Fig. 7. Variation of dissolved oxygen with
time for different values ofπ.

6 Conclusion

In this paper, a nonlinear mathematical model for depletionof dissolved oxygen has
been proposed and analyzed. The model exhibits four nonzeroequilibria. It is shown
that conversion of detritus into nutrients has destabilizing effect on the system, however
natural depletion of nutrients and removal/food utilization of algae and macrophytes have
stabilizing effect on the system. It is also shown that as therate of input of nutrients
into the lake increases, the equilibrium levels of concentration of nutrients, density of
algae, macrophytes and detritus increase whereas the concentration of dissolved oxygen
decreases. These results have also been shown by numerical simulation. By numerical
simulation it is shown that as the conversion rate of detritus into nutrients increases, the
equilibrium level of dissolved oxygen in the lake decreases. It is also noted that if the rate
of input of nutrients into the lake (i.e.q) is 0, then the densities of algae, macrophytes
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and detritus are tending towards zero whereas the concentration of dissolved oxygen in
the lake tends towardsqc/α3. Thus if one wants to reduce the impact of eutrophication
on the lake, then some control mechanism should be applied toreduce the input load of
nutrients into the lake.
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