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Abstract. In this paper a non-linear mathematical model for depletibrissolved
oxygen in a lake due to submerged macrophytes is proposearahyzed. It is assumed
that nutrients are continuously coming to the lake with astamt rate through water
run off. In the modeling process five variables are consilenamely concentration of
nutrients, density of algal population, density of macrgph, density of detritus and
concentration of dissolved oxygen. Equilibria of the mduale been obtained and their
stability discussed. The numerical simulation is alsogrened to support the obtained
analytical results.
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1 Introduction

Modern agriculture depends on chemical fertilizers, pekts, etc., to produce high-
quality crops for animal and human consumption. To maxintizecrop yield, farmers
spread nitrogen, phosphorus based fertilizers in theinifsg land. To improve produc-
tion, they also spread herbicides to kill weeds and insigletscto Kill insects to croplands.
Some amount of these fertilizers, pesticides, herbiciddsresecticides have been used by
the crops however the remaining part of these chemical esdcithe nearer lake through
water run off. These chemical contains a large amount ofients. Some amount of
nutrients also comes in the lake through domestic drain@ge.to the presence of these
nutrients into the lake, the algae and macrophytes growfastycausing eutrophication.
Eutrophication is a process by which a lake becomes enrighelissolved nutrients
(e.g. nitrogen, phosphates, etc.) that stimulate the dgrofquatic plant life and re-
sulting in the depletion of dissolved oxygen.

Algae and macrophytes grow very fast in a lake when it becaimbof nutrients
by domestic drainage [1], water run off from agriculturaldg etc. [2]. Algae and
macrophytes die out and sink to the bottom of the lake forndegitus. This detritus
is being converted into nutrients through biochemical psses occurring in the lake. In
these biochemical processes a huge amount of dissolvecenxggitilized [3-6]. The
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level of dissolved oxygen in the lake increases due to thiaceire-aeration as well as
by photosynthesis process of algae and submerged macespl8ihce most of the algae
and macrophytes float on the water surface, they reduceghsfér of oxygen from air to
water through diffusion and the photosynthesis process{Bl1].

Several investigators have studied algal bloom and euitapbn problems caused
by nutrients in the lakes, [6,12-21]. Amemiyaa et al. [12§ s&rnold and Voss [13]
studied the eutrophication in lakes by considering noamlinateractions between the
variables used in their models, but they have done only sitioul analysis. They have
neither considered the concentration of dissolved oxygemacrophytes involved in the
formation of nutrients from detritus. Voinov and TonkikH [éave presented a nonlinear
mathematical model for eutrophication in macrophyte lakbs this model they have
assumed that the nutrient is supplied only by detritus ch@lgnd macrophytes. They
have not considered the additional input of nutrients eifhem domestic drainage or
from water run off from agricultural fields. Dachs et al. [@}estigated the influence of
eutrophication on air - water exchange, vertical oxygen #ig. in the lake Ontario. The
nitrification in the water column and sediment of a lake arjdiathg river system has also
been studied [20]. Jayaweera and Asaeda [17] investigadadamipulation in shallow
eutrophic lakes by using a mathematical model involvingtpplankton, zooplankton,
detritus, bacteria and fish population but they did not aersihe supply of nutrients from
outside. Some other ecological modeling studies involyihgtoplankton, zooplankton
and nutrients, relevant to our work, have also been condumteBusenberg et al. [14]
and Hallam [22]. However they have not considered the dgns$itlissolved oxygen in
the modeling process. Jorgenson [2] presented an eutaifmtianodel for a lake using
ecological concepts. In most of the above mentioned mottesijensity of macrophytes
is not considered, however some studies have been condocstady the depletion of
dissolved oxygenin lakes due to excessive growth of alg&el@]. Misra [23,24] studied
the depletion of dissolved oxygen and survival of aquatipytation in a lake due to
presence of algae and zooplankton. Shukla et al. [26] pred@mnonlinear mathematical
model for the depletion of dissolved oxygen in a lake causedlbal bloom. In this
model, we have not considered the role of macrophytes on epéetion of dissolved
oxygen.

In view of the above, a nonlinear mathematical model for elégh of dissolved
oxygen in a lake is proposed and analyzed by assuming thaemistare continuously
supplied to the lake from outside through water run off fragrieultural fields, domestic
drainage, etc.

2 Mathematical model

In this paper, we consider a lake, where the eutrophicationgss is governed by nu-
trients, algae, macrophytes, detritus and concentratiatissolved oxygen. Leh be
the cumulative concentration of nutriengsbe the density of algaen be the density of
macrophytes$ be the density of detritus arid be the concentration of dissolved oxygen.
We assume that the cumulative rate of discharge of nutrietdghe lake isg, which is
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depleted with rateygn. Itis further assumed that the growth rate of nutrients hyitde is
76,5 and the rate of depletion of nutrients by algae and macrastigtproportional to the
density of algae as well as cumulative concentration ofienits (i.e.na) and the density
of macrophytes and the cumulative concentration of nussiére. nm) respectively. Thus
the growth rate of algae is proportional t@ and the growth rate of macrophytes is
proportional tonm as they are assumed to be wholly dependent on nutrients. athieah
depletion rate of algae is assumed to be proportional todtssitly « and its depletion
rate due to crowding is proportional 3. Also the natural depletion rate of macrophytes
is assumed to be proportional to its densityand its depletion rate due to crowding
is proportional tom?2. Since some part of natural deaths of algae and macrophiges a
converted into detritus, hence we assume that the growgfofatetritus is proportional to
a andm. Since biochemical processes, which converts detritosiatrients occur inside
the lake, thus we assume that the natural depletion ratetofusdeis proportional toS.
Let the rate of growth of dissolved oxygen by various souises (assumed constant)
and its natural depletion rate is proportional to its con@ionC'. It is assumed that the
rate of growth of dissolved oxygen by algae and macrophgtesdportional to density
of algaea and density of macrophytes respectively. The depletion rate of dissolved
oxygen caused by conversion of detritus into nutrients $siieed to be proportional to
the density of detritus.

In view of the above considerations, the system is govergealdfollowing diffe-
rential equations:

d

d_? =q+ 1S — apn — fina — fanm,

da

Frie 0161na — aya — Broa®,

dm
U 02 Banm — agm — fByom?, (1)
ds

- Mo + maaom — 4.9,

dac

E ={qc— azC + A\j1a + Agam — 51S,

wheren(0) > 0, a(0) > 0, m(0) > 0, S(0) > 0, C(0) > 0.

Here, the coefficientay andas represents the natural depletion rate of nutrients
and dissolved oxygen respectively and are positive. Theteotsa; anda, represents
the natural death rate of algae and macrophytes respeguotihelreas constantrepresents
the depletion rate of detritus due to the biochemical preggeoccurring in the lake.
The coefficients3;, B2, 01, 0 are proportionality constants, which are also positive.
The constantss;, and 35 are coefficient corresponding to crowding terms(flaking off
coefficients [4]) of algae and macrophytes with respect ¢éoattjuatic habitatr, 7, and
o are positive proportionality constants and are less thamé.coefficients\;; and,
represents the growth rate proportionality constantssdfalved oxygen due to algae and
macrophytes respectively where@asrepresents the depletion rate proportionality con-
stant of dissolved oxygen due to conversion of detritusintivients through biochemical
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processes.

3 Equilibrium analysis

System (1) has following four non-zero equilibria.

1. E1(-L,0,0,0, g—;) always exists.

Oc()’

This equilibrium states that algae and macrophytes botmatr@resent in the lake. As
detritus is formed due to the natural death of algae and magtes, which are absent
and so detritus is also absent. In this case the concemtsationutrients and dissolved
oxygen reach their respective equilibrium values.

2. E3(nk,a3,0,55, C5) exists, provided

01819 — apar > 0, (2)
qc + )\na; — (5155 > 0. (3)

This equilibrium states that only algae is present howevacaphytes are absent in the
lake. In this case detritus will be formed due to the natueatd of algae only and the
concentration dissolved oxygen decreases due to the gafvatgae.

3. E3(n%,0,mj, S5, Cy) exists, provided

02829 — cporg > 0, (4)
qec + )\227’)’?,; — 515§ > 0. (5)

This equilibrium states that macrophytes are present agakdt absent in the lake. In
this case also detritus will be formed due to the naturalde&tacrophytes only and the
concentration of dissolved oxygen decreases due to thetlyawnacrophytes.

4. E4(n*,a*, m*, S*, C*) exists, provided

2 2
(T ) >0 0
0161n" —ay >0, (7
O2Bom™ — ag > 0, (8)
qe + A11a” + Aogm™ — 515" > 0. 9)

This is the most interesting equilibrium in which all the ®ya variables are present. In
this case the concentration of nutrients will be less in cargon to the equilibriunts;
and E3, since nutrients will be utilized for the growth of both aégand macrophytes. In
this case the concentration of dissolved oxygen will be iesomparison to the above
cases. Here it may be also noted that for very small valueatefaf input of nutrients
(i.e. ¢ = 0), condition (6) may be violated and we will not get the pesitvalue ofn*
and thus positive values af, m*, S*.
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The existence of equilibrid; (--,0,0,0, g—;) is obvious. In the following, we
show the existence of equilibriaﬂgfng,a’g,o,S;,CQ*), E3(n},0,m}%,S5,C5) and
E4(n*,a*,m*,S* C*) in detail. In the equilibriumEs(n3, a3, 0,55, Cs), the values
of n}, a3, S5 andCy are obtained by solving the following algebraic equations:

q+ mS — agn — Pina = 0, (20)
0161n — a1 — Proa =0, (11)
miara — 0S5 =0, (12)
qe — a3C + A1a — 615 = 0. (13)

Solving (11) and (12) for and.S in terms ofa and substituting in equation (10), we get
the following quadratic equation in

51510@2 + (510040 + Brog — 7T7T19151041)a - (9151(] - 040041) =0. (14)

The above quadratic equation (14) will have a unique pasitot if the condition (2) is
satisfied.

Let the condition (2) be satisfied and be the positive value aof in equation (14).
Using this value of:3 in equations (11) and (12), we get positive values @indS, say
nj andsS; respectively. Finally using; and.S5 in equation (13), we get positive value of
C, sayC;, provided condition (3) is satisfied.

Since existence of equilibriuth is similar asF, hence omitted.

The values ofn*, a*, m*, S* andC* in E,(n*,a*,m*, S*,C*) are obtained by
solving the following algebraic equations

q+ 7S — agn — Bina — Gonm = 0, (15)
0151m — a1 — Broa = 0, (16)
O22m — az — fPaogm = 0, (17)
maa + measm — 05 = 0, (18)
qe — a3C + A\1a + Agom — 015 = 0. (29)

Using equations (16) and (17) in equation (18), we get

_ 1 (mbifrar | mebafaaz mon? | mas?
S5{< Bio * B20 >n <510 * B20 )} (20)

Substituting the values af, m andS from equations (16), (17) and (20) in equation (15),
we get the following quadratic equationsin

91512 92522 2{ <W19151041 7T29252042) Bray 520427 }
< Bio * B20 >n " Bio * B20 * Bio * B20 aopn
’/T10412 ’/T20422 o
- {qw ( Bio N B20 )] =0 (1)
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This quadratic equation will have a unique positive rooy (88), provided condition (6)
is satisfied.

Using this value of:* in equations (16), (17) and (20) respectively, we get pasiti
values ofe*, m* and.S*, provided conditions (7) and (8) are satisfied.

Further using:*, m* and.S* in equation (19), we get positive value 6f sayC*,
provided condition (9) is satisfied.

Keeping in view the model (1) it is noted that growth rate ofrints in absence of
macrophytes is greater than in its presence. Thereforg astomparison theorem, [27]
it can be easily concluded that the cumulative concentradionutrients is greater in
absence of macrophytes than when macrophytes is presargnIh> n* . Similarly we
can also show that; > n*.

Remark 1. From equation (21) it is easy to note th@gﬁ > 0. Using this, from equations
(16), (17) and (18) we easily get thét- > 0, & > 0 and % > 0. This implies that
as the rate of input of nutrients through water rungihcreases, the equilibrium levels
of density of algae, macrophytes and detritus increasew. fidon equation (19), we get

dC* 1 0 ) dn*
= — (016101 | A1 — no + 028200 | Aga — T2 L- (22)
dg Qs 1) 1)

dg

Since most of algae float on the surface of the water body aeckfibre the oxygen
formed by algae due to photosynthesis will go to the atmaspéied will have very little
chance to get dissolve into the water below the water surfheeefore\;; would be very
small. Similarly oxygen formed by emerging macrophytes wughotosynthesis will go
to the atmosphere, thus, will also be very small. Hence we note th@q—* is negative.
Thus, the concentration of dissolved oxygen into the wabelylilecreases as the rate of
introduction of nutrients by water run affincreases.

4 Stability analysis

In this section, we discuss the stability behaviorstaf F>, F3 and E4 in detail. The
general variational matrix of model system (1) is given dieves:

—ri1 —pin —fn w6 0
91ﬁ1a T22 0 0 0
M = egﬁgm 0 733 0 0
0 T pies) -0 0
0 A1 Aoz =01 —a3

wherery; = ag+p1a+Pam, rag = 01 81n—oy —2[10a @andrsg = 0 0an— e —2F29m.
Let M; be the variational matrid/ evaluated at equilibriunk;, (i = 1,2, 3,4).
From the matrixM,, it is easy to note that the eigenvalues Mf; are —ay,
91,316107040041 , 92(’2(107040042 ,—6 and—as.
Since threeoeigenvalues 81, are clearly negative, so stability @, will depend
on the sign of 0, 31 ¢ — apa;) and(b2 829 — apaz). As we know thatb; 81q — apar) >0
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wheneverE; exists (see condition (2)) arfdz82q — apas) > 0 wheneverFs exists (see
condition (4)).

Thus if E» or F5 exists, thenZ; is a saddle point with stable manifold locally in
then — S — C space and with unstable manifold locally in the- m plane.

From the matrix)Ms,, we may easily note that one of the eigenvalues\ff is
9252%3 — (9.

But we have already noted that > n*. This implies thatdsGans — as >
0282m* — az, which is definitely positive whenevéf, exists (see condition (8)).

By using Routh—Hurwitz criterion it is easy to show that &k tother four eigen-
values of matrix)Ms will be either negative or with negative real part. Thuif exists,
then £ is a saddle point with stable manifold locally in the- « — S — C space and
with unstable manifold locally in the:-direction.

Similarly from matrix M3, we may also note that one of the eigenvaluedfis
01 01n5 — aq, which is definitely positive whenevé?, exists (as:; > n* and condition
(7))

Again by using Routh—Hurwitz criterion, we can easily shtwattthe remaining
four eigenvalues of matri®/s will be either negative or with negative real part. Thus if
E, exists, thenF; is a saddle point with stable manifold locally in the- m — S — C
space and with unstable manifold locally in thelirection.

As we cannot say much about the stability behavioEgffrom the corresponding
variational matrixAy, we study the stability behavior of this equilibria by usibig-
punov’s method.

Theorem 1. The equilibriumEy(n*,a*, m*, S*, C*) is locally stable provided the fol-
lowing condition is satisfied

w2 < ln* min B1o B20
ag + pra* + Bam* 2 01720t Gam3ad |’

Proof. We linearize model (1) by using the following transformaso

(23)

n=n"+ny, a=a" +a;, m=m"+m,
S=8"+s, C=C"+c,

whereny, a1, my, s andc are small perturbations around the equilibFia
Now choosing the following positive definite function

1
V =5 (n} +piaf +pam +pss” + pac?), (24)

wherepy, p2, p3 andp, are positive constants to be chosen suitably.
Differentiating}” with respect ta along the solutions of linearized system of model

(1) and choosing; = Foari b2 = 92’# we get
dVv N . n* n*
Fr (a0 + Bra* + Bom™*)nt — 616?1 af — 626?2 mi — p3ds® — phasc?
+ (mé)n1s + (psmin)ars + (p3mac)my s
+ (padi1)arc + (paraz)mac — (padr)sc. (25)
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We note tha%’ will be negative definite if the following inequalities aratisfied:

2
bs = oo + 517;*5+ Bom*’ (26)
ps % 27)
3 ﬁﬁgé (28)
R 29)
R (30)
pa < %m%- (31)

From inequalities (26)—(28) we may choose a posifiye= p (say) provided condi-
tion (23) is satisfied. O

Now from inequalities (29)—(31) we may choose posifives follows:

Bron® Bagn* p_5
0103, 0202,7 262 |

2
0<ps< g()ég min { (32)

In the following we show the nonlinear stability of equililom F,. For this we need the
following lemma, which is stated without proof, following3, 28].

Lemmal. The set

Q= {(n,a,m,S,C’) ERT:0<n+at+m+S5< 6i’ 0<C< Rc} (33)
m
is a region of attraction for all solutions initiating in thiaterior of positive octant, where
QCém + )\llq

6m = min{ao, (1 — m)4, (1 — m)ay, (1 — m)az} and Re = o
m&3

Theorem 2. The equilibriumE,(n*,a*, m*, S*,C*) is nonlinearly stable inside the
region of attractior(2 provided the following condition is satisfied

T 1, B1o B20
— < =-n'mn . 34
(7)) < 27’1 |:91’/T%Oé%, 92’/T%Oé2:| ( )
Proof. To prove this theorem, we consider the following positivérdes function

1
V= —(nn*)2+k1<aa* a*lni> +k2<mm* m*lnﬁ>

2 a* m*

1 *\2 1 *\2
+ k(S = 877 + Sha(C = C)?, (35)
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whereky, ko, ks andky are positive constants to be chosen suitably.
DifferentiatingV” with respect ta along the solutions of model (1) and choosing
k1= Z—l,kﬁg = Z—Q,We get

av )
o =~ (Brat Bam)(n —n")?
1 *\ 2 * * 1 *)2
—5911(71—” )* + g1a(n —n*)(S = 57) — 5944(5—5 )
1 1
— 5922(a - a*)® + gaa(a —a*)(S — §%) — 5944(5 — 5%)?
1 1
— igdd(m — m*)2 + 954(m — m*)(S — S*) — 5944(5 — S*)Q
1 1
— iggg(a — a*)2 + 925(11 — a*)(C’ — C*) — 55]55(0 — C*)2
1 1
— igdd(m — m*)2 + 955(m — m*)(C’ — C*) — 55]55(0 — C*)2
1 1
- 5944(5 — 5% + ga5(S — S*)(C — C*) — 5955(0 —C*)?, (36)

whereg,; = 2aq, g22 = '3151" ) 933 = ’82902” , gaa = $k3b, gs5 = 2kaa3, g1a = 76,

924 = k3miay, g4 = k3maqe, gos = kaAi1, 935 = kadaz, gas = k401,

Now, the sufficient conditions fo% to be negative definite inside region of attraction
aregfj < giigj;. This gives the following inequalities:

kg > ﬁ, (37)
ag

ks < 2@1(;?;;%, (38)

ks < 25922(;%”;%, (39)

ky < ;5 1;&%? (40)

hy < gﬁgggg*, (41)

ey < ék;i;ﬂ (42)

From inequalities (37)—(39) we may easily choose a posttye= k (say) provided
condition (34) is satisfied. O

After choosingks we may choose positivk, from inequalities (40)—(42) as fol-
lows:

2 * * ko
0 < k4 < —agmin Pron” Baon

, s = . 43
3 B3 0202, 257 (43)
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It is easy to note that the conditions (23) and (34) will beilgasatisfied for small
values ofr and large values odvy, 519 and G2y. The above two theorems imply that
the rate of conversion of detritus into nutrients has del&aly effect on the system.
However natural depletion rate of nutrients and rate of nafidood utilization of algae
and macrophytes due to crowding have stabilizing effechersystem.

5 Numerical example

To check the feasibility of our analysis regarding the exise of interior equilibrium
E,4 and corresponding stability conditions, we conduct sontaerical computation by
choosing the following values of the parameters in model 8gme of these parameter
values have been taken from Amemiyaa et al. [12] and its axfesences.

¢=0.5mgl 'day !, ap=0.005day !, 5 =0.4Img ‘day !, 7=0.02,
B2=0.6Img'day !, 6=0.04day !, 6,=0.9, a;=0.025day !,
(10=0.002Img 'day !, ay=0.02day ', ($0=0.004Img 'day!, (44)
0,=0.9, m=0.9, m=0.9, ¢.=0.2mgl 'day!, a3=0.01day’,
A1=0.02day !, A\pp=0.02day ', §;=0.06day *.

It is found that under the above set of parameters, condifionthe existence of interior
equilibriumEy(n*, a*, m*, S*, C*) are satisfied and, is given by

n* =0.0802mgl™!, «* =3.5553mgl~!, m* =7.0415mgl™*,
S* =5.1685mgl™t, C* =10.1825mgl™ !,

The eigenvalues of the variational matriX, corresponding to this equilibriurty are
obtained as-0.01, —0.016, —0.039, —0.083, —7.754, which are all negative. Hence the
equilibrium 4 of model system (1) is locally stable.

With the above values of parameters, we note that condif@n®sonlinear stability
(23) and (34) are satisfied. Further, for the above set ofnpaters, the solution trajecto-
ries ofa verse<” andm versed” for different initial starts have been drawn in Figs. 1, 2.
From Fig. 1, itis clear that all trajectories are attractgdd*, C*), which indicates the
global stability behavior of positive equilibrium of the &vdimensional model consisting
of algae and dissolved oxygen that can be obtained from teedfimensional model (1)
in a — C plane. Similarly in Fig. 2, we can see that all trajectories attracted by
(m*, C*), which indicates the global stability behavior of positéauilibrium of the two
dimensional model consisting of macrophytes and dissatxgden that can be obtained
from the five-dimensional model (1) im — C plane. The effect of rate of inflow of
nutrientsg in the lake on variables, m, S andC' is presented in the Figs. 3—-6. Here, the
values of other parameters are as given in (44) exgeptom these figures, it is clear that
as rate of input of nutrients through water run g@fincreases, the equilibrium levels of
densities of algae, macrophytes and detritus increasegabeoncentration of dissolved
oxygen decreases. From the Fig. 3, Fig. 4 and Fig. 5 we alsihatié the rate of input of
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nutrients in the lake is zero, i.e.= 0, then the density of algae, macrophytes and detritus
tend to zero after a short period of time and in this case aaraion of dissolved oxygen
tends to its maximum value, i. é— which is shown in Fig. 6. In Fig. 6, we may observe
that initially the concentration of dissolved oxygen ireses then starts to decrease for
g = 0.5 andg = 0.8. This is because of the fact that initially the density ofrifes

is less and as density of detritus increases, the conciemti@t dissolved oxygen starts
to decrease. Fig. 7 depicts the effect of rate of conversiatetsitus into nutrients on
concentration of dissolved oxygen. It is noted that as thevexsion rate of detritus
into nutrients increases, concentration of dissolved erydecreases. It is therefore,
speculated that suitable control mechanism should beexpfi reduce the conversion
rate of detritus into nutrients to maintain the level of dised oxygen.

(m", 0"

Concentration of DO (mg Aiter)
=]

Concentration of DO (mg Hiter)

45 B 65 7 75 6

35 i

25 3

Density of algae (mg Mifer) ——

Fig. 1. Nonlinear stability ire — C' plane.

g=08
B
2
4 g=05
& 37
S0
o
2 2]
ks
2
[ g=0
u 50100 150 200 250 300 3A0
time {in days)
Fig. 3. Variation of algae with time for

different values of;.

Density of macrophytes (mg fJiter) ——=

Fig. 2. Nonlinear stability inn — C' plane.

=
v

[mx}
|

Density of macrophytes (g fHider)

40 50 &0 100

time (in days)

u 20

Fig. 4. Variation of macrophytes with time
for different values of;.
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Density of detritus (g Aiter)

Concentration of DO (g Aiter)

g=0

o 50100 1a0 200 250 300 3&0 U700 200 300 400 00 EO0 700 enD
time {in days) = time (1n days) —=
Fig. 5. Variation of detritus with time for  Fig. 6. Variation of dissolved oxygen with

different values of;. time for different values of.

Concentration of DO (g Miter)

47 100 200 00 400 s00 GO0 U0 00
time {in days)

Fig. 7. Variation of dissolved oxygen with
time for different values oft.

6 Conclusion

In this paper, a nonlinear mathematical model for depletibrlissolved oxygen has
been proposed and analyzed. The model exhibits four noreggritibria. It is shown
that conversion of detritus into nutrients has destabitjzffect on the system, however
natural depletion of nutrients and removal/food utilinatdf algae and macrophytes have
stabilizing effect on the system. It is also shown that asréte of input of nutrients
into the lake increases, the equilibrium levels of conaitn of nutrients, density of
algae, macrophytes and detritus increase whereas thertoatéen of dissolved oxygen
decreases. These results have also been shown by numerioitoon. By numerical
simulation it is shown that as the conversion rate of detritiio nutrients increases, the
equilibrium level of dissolved oxygen in the lake decrea#tds also noted that if the rate
of input of nutrients into the lake (i.;) is 0, then the densities of algae, macrophytes
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and detritus are tending towards zero whereas the contientdd dissolved oxygen in
the lake tends towardg./«i3. Thus if one wants to reduce the impact of eutrophication
on the lake, then some control mechanism should be appliszgtitace the input load of
nutrients into the lake.
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