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donatas@ik.ku.lt; igorbaso@takas.lt; vilkramune@gmail.com

Received:2009-10-06 Revised:2010-04-26 Published online: 2010-06-01

Abstract. In this article the authors performed linear, nonlinear andnumerical analysis of
glycemic regulation mathematical model described by two differential equations with one
delay argument. The results obtained in the linear analysiswere used in numeric analysis
while constructing stable periodic solutions applying theRunge–Kuto IV successive
method in normal and diabetes cases. Impact of physical exercise on the dynamics
of glucose and insulin was modelled as well while introducing two external periodical
functions defining diet and physical exercise into the abovementioned model. We applied
the simulation modelling program “Model Maker” for modelling.
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1 Introduction

Physical exercise is an important factor in diabetes management. Physical exercise of
diverse forms gives diverse results of glycemia. Although physical activity may be some-
times a risky method to loose weight while being ill with type2 diabetes, regular exercises
are the basis in diabetes treatment.

Appropriately selected physical activity increases the sensibility of cells to insulin,
enhances the homeostasis of glucose and helps to reduce medicine doses. [1]. During
exercising the uptake of glucoses to muscles increases proportionally to the intensity and
duration of physical load. Exercises both stimulate glucose uptake independently from
insulin stimulation and neutralise cell immunity to insulin [2].

While evaluating the type, duration and intensity of physical exercises it is nec-
essary to consider the level of physical state of patients. Diabetics perform aerobical
and anaerobical exercises. Anaerobical exercises last less than 2 minutes, for example
short distance running, swimming or weight lifting. In thiscase namely cells receive
ATP energy from sebum and carbohydrates from glycogen that accumulates in muscles.
Aerobiocal exercises last over 2 minutes, for example, longdistance running and other
sporting fields.
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The consequence of frequent intervals between intensive activity, i.e. interval be-
tween rapid warm-up exercises and heavy training, is a prominent glycogen consumption
in muscles that highly increases insulin sensibility afteractive activity. During the period
of long lasting active activity glucoses in blood drops downsignificantly and the resources
of glycogen in muscles exhaust rather considerably. In casethe activity is not coordinated
with insulin doses the volume of glycogen in muscles during active activity is consumed
faster than its resources are accumulated, therefore hypoglycemia may develop. When
active activity lasts for a short period of time and is very intensive than the replenishing
of human body with carbohydrates is the only efficient way to maintain the normal level
of glycaemia. [3].

This theme are widely analyzed in the works of the world scientists see [4–18]
and this fact proves that this theme is very significant in thesphere of medicine as the
increasing number of patients become ill with diabetes mellitus annually.

We will analyse in this article mathematical model (1)–(2) and demonstrate that
introduction of diet and physical load into the mentioned model allows applying it suc-
cessfully to optimisation of glycaemia control and diabetes treatment.The investigated
model (1)–(2) comprises two differential equations with one delay [19].

İ(t) = rI

[

G(t)

KG

−
I(t − h)

KI

]

I(t), (1)

Ġ(t) = rG

[

1 + c

[

1 −
I(t)

KI

]

−
G(t)

KG

]

G(t). (2)

In this modelI(t) is the level of active insulin in blood at the time momentt, KI is
the average value of insulin in blood,h – the time necessary for the production of insulin
in pancreasβ-cells. G(t) is the level of glucose in blood (glycemia),KG is the average
value of glucose in the blood. Glycemic self-regulatory relations are interpreted as in
a “predator-victim” task, where the insulin is a “predator”and sugar is a “victim”.rI ,
rG are positive values characterizing the linear rate of production of insulin and sugar
concentration in blood-line growth, and c is a parameter, that regulates the feedback of
glycemia inŠvitra [19].

In order to reach diabetes treatment efficiency it is very important to apply an
appropriate treatment strategy. Application of physical load is an important factor both for
treatment of diabetics and for keeping of good condition of healthy people. This treatment
strategy is widely applied in clinical treatment of patients ill with diabetes.

In this article we will numerical method modeled the dynamics of glycemia in case
of normal and diabetic cases introducing in model (1)–(2) two external periodic functions
defining the nutritionalg(t) = g(t + 24) [20] and exercisef(t) = f(t + 24).

Heref(t) – is a linear function describing the intensity of physical load in normal
case and in case of diabetes andg(t) is a linear function describing the nutritional regime
[20]. We suggest to apply the above mentioned functions for modelling the dynamics
of glycaemia and insulin in general diagram submitted in Fig. 1. This scheme allows to
model the dynamics of glycemia and insulin in the period of 3-days in case of normal and
diabetes, where it is possible to introduceg(t) = 1, . . . , 6 times a day and exercise are
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introducedf(t) = 1, . . . , 2 times a day.

Fig. 1. The overall modeling scheme of glycemic regulation mathematical model (1)–(2)
in normal and diabetic cases.

Before starting modeling exercise influence glycemic and insulin dynamics we
will investigate in a qualitative way a model following the Bifurcation Theory [19] to
determine model parameters.

2 Mathematical analysis

2.1 Linear analysis

We identified three positive equilibrium states of equations set (1)–(2):

I(t) ≡ G(t) ≡ 0, (3)

I(t) ≡ 0, G(t) ≡ (1 + c)KG, (4)

I(t) ≡ KI , G(t) ≡ KG. (5)

The result demonstrated that (3) and (4) the equilibrium states are unstable. We
will investigate the stability of equilibrium state (5) after the following such changes of
the variables:

I(t) = KI

[

1 + x(t)
]

and G(t) = KG

[

1 + y(t)
]

. (6)

Then we replace equations system (1)–(2) by the following system of equations:

ẋ(t) = −rI

[

x(t − h) − y(t)
][

1 + x(t)
]

, (7)

ẏ(t) = −rG

[

cx(t) + y(t)
][

1 + y(t)
]

. (8)

The characteristic quasipolinomial of the linear part of equation system (7)–(8)
will be

P (λ) =
(

λ + rIe
−λh

)

(λ + rG) + crGrI = 0. (9)
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Theorem 1. The solution of differential equations to be asymptotically stable, it is ne-
cessary and sufficient that all the roots of its characteristic equation should satisfy the
inequality:

Re λ < 0.

This condition must be valid for allP (λ) roots. Since it is rather difficult to calcu-
late all quasipolinomial roots diverse negative characteristics of real parts of quasipolino-
mial roots of are of great importance.D-segmentation method is applied very often for
investigation of quasipolinomial roots [19].

D-segmentation method

We will analyse the location of roots of characteristic quasipolinomial (9) in the plane of
parametersrI andC applyingD-fragmentation method.

In this case our quasipolinomial (9) depends on three parameters

P (λ, rI , c) = 0. (10)

When equation (9) has a zero rootλ = 0, then we get the linesc = −1 andrI = 0.
When equation (9) has a purely imaginary rootsλ = iσ, σ > 0, we receive the

following curves (11)–(12) in parametric form, which we will draw in rIc plane

c =
σ2 − rI(sin(σh) + rG cos(σh))

rIrG

, (11)

rI =
σrG

rG sin(σh) − σ cos(σh)
, (12)

whereσ → 0 then from the system of equations (11)–(12) we receive the following
coordinates of reversible point

lim
σ→0

c = −1, lim
σ→0

rI

1

h −
1

rG

. (13)

Then we will draw the above received parametric curves inD-segmentation plane
and mark the return point coordinates in normal and diabeticcases.

While optimizing the values of parametersrI and c both in a case of a healthy
person and in the case of diabetics only positive values of these parameters have the
meaning in glycemic modelling.

Applying “Maple” we chartedD-segmentation curves in normal case with the
following values of parametersh = 6, KI = 8, KG = 100, rG = 12; in case of
diabetes when the values of parameters are as followsh = 5.8, KI = 7, KG = 125,
rG = 21.6 [19].

In Fig. 2 and Fig. 3 we showed the asymptotic stability fieldsD0 andD2. We found
that all real parts of equation roots in the fieldD0 are negative. We also determined that
during the transition from the fieldD0 to the fieldD2 we receive two roots, the real parts
of which are positive. We determined that stable periodic solutions of the equation (1)–(2)
in the fieldD2.
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Fig. 2. D-segmentation curves in normal
case.

Fig. 3. D-segmentation curves in case of
diabetes.

2.2 Nonlinear analysis

In this section we will construct the periodic solution of differential equation
system (1)–(2) applying the theory of bifurcation providedby Švitra [19].

The system of equations (1)–(2) has been examined in the state of internal equi-
librium I(t) = KI and inG(t) = KG environment. In this system of equations after
the substitution of variablesI(t) = KI [I + x(t)], G(t) = KG[I + y(t)] the following
differential equations system was received:

ẋ(t) = −rI

[

x(t − h) − y(t)
][

1 + x(t)
]

, (14)

ẏ(t) = −rG

[

cx(t) + y(t)
][

1 + y(t)
]

. (15)

The properties of Hutchinson equation suggest that in case of sufficiently small
ε = rI − π

2h
the equation (14) has a stable periodic solution

x(τ) = ξx1(τ) + ξ2x2(τ) + · · · , (16)

where

x1(τ) = cos(σ0τ), x2(τ) =
1

10

(

sin(2σ0τ) + cos(2σ0τ)
)

, (17)

ε, τ in equations (16) and (17) are the following:

ξ =

√

η′

0
ε

d0

, τ =
t

1 − (
c0η′

0

d0

+
ω′

0

σ0

)ε
, (18)

whereσ0, c0, d0 are expressed in formulas [19]:

σ0 =
π

2h
, c0 =

π + 6

10(π2 + 4)
, d0 =

σ0(3π − 2)

10(π2 + 4)
, (19)
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whenτ ′

0, σ′

0, η′

0, ω′

0 were expressed as

τ ′

0 =
2π

π2 + 4
, σ′

0 =
4

π2 + 4
, (20)

η′

0 =

[

1 −
α0r

2

G

σ2

0
+ r2

G

]

τ ′

0 −
α0rGσ0

σ2

0
+ r2

G

σ′

0, (21)

ω′

0
=

α0rGσ0

σ2

0
+ r2

G

τ ′

0
+

[

1 −
α0r

2

G

σ2

0
+ r2

G

]

σ′

0
. (22)

Differential equation (15) also has a single stable periodic solution

y(τ) = ξy1(τ) + ξ2y2(τ) + · · · . (23)

After the appropriate standardization of time ratios of line (23) can be sought ap-
plying the method of uncertain coefficients. Then we get

ẏ1(τ) + rGy1(τ) = −rGcx1(τ), (24)

ẏ2(τ) + rGy2(τ) = −rGcx2(τ) + ẏ1(τ)y1(τ). (25)

We get thaty1(τ) in the equation (24) are as follows:

y1(τ) = −
rGc(σ0 sin(σ0τ) + rG cos(σ0τ))

σ2

0
+ r2

G

(26)

From equation (25) we get, that

y2(τ) = A sin(2σ0τ) + B cos(2σ0τ), (27)

where

A =
1

4σ2

0
+ r2

G

[W1rG − 2W2σ0], (28)

B =
1

4σ2
0

+ r2

G

[W2rG − 2W1σ0]. (29)

And thatW1, W2will be the following:

W1 = −
rGc

10
+

σ0c
2r2

G

2(σ2

0
+ r2

G)

[

σ2

0 − r2

G

]

, (30)

W2 = −
rGc

5
+

σ2
0c2r3

G

σ2

0
+ r2

G

. (31)

Consequently the differential equations (14)–(15) will have stable periodic solu-
tions.
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Theorem 2. When0 < rI −
π
2h

= ε ≪ 1, rIc = α0ε and η′

0 > 0, the differential
equation system(14)–(15) in the environment of a sufficiently small the equilibrium state
of I(t) ≡ KI andG(t) ≡ KG have the only stable environment periodic solutions that at
any time intervalε−1 are expressed in formulas.

I(t) = KI

[

1 + ξ cos(σ0τ) + ξ2x2(τ) + O
(

ξ3
)]

, (32)

G(t) = KG

[

1 + ξy1(τ) + ξ2y2(τ) + O
(

ξ3
)]

, (33)

where functionsx2(τ), y1(τ), y2(τ) are respectively expressed in formulas(17), (26),
(27), andξ, τ , σ0, are defined by formulas(18)–(19).

Applying formulas (14)–(33) we will construct approximateformulas of solution
(32)–(33) in normal and diabetes cases. In normal cases approximate formulas will be:

I(t) ≈ 8

[

1 + 1, 53473 cos(0, 3438t)

+ 2, 3554

(

1

10
sin(0, 6875t) +

1

5
cos(0, 6875t)

)]

, (34)

G(t) ≈ 100
[

1 + 1, 53473
(

0, 0031 sin(0, 3438t) + 0, 1399 cos(0, 3438t)
)

− 2, 3554
(

0, 0435 sin(0, 6875t) + 0, 0247 cos(0, 6875t)
)]

, (35)

when rI = 0.39; rG = 12.00; c = 0.14; h = 6.00; ξ = 1.5347; τ = 1.3131t;
σ0 = 0.2618.

In diabetic cases approximate formulas will be:

I(t) ≈ 7

[

1 + 1, 4158 cos(0, 3394t)

+ 2, 0043

(

1

10
sin(0, 6788t) +

1

5
cos(0, 6788t)

)]

, (36)

G(t) ≈ 125
[

1 − 1, 4158
(

0, 0018 sin(0, 3394t) + 0, 1399 cos(0, 3394t)
)

− 2, 0043
(

0, 0719 sin(0, 6788t) + 0, 0248 cos(0, 6788t)
)]

, (37)

when rI = 0.39; rG = 21.60; c = 0.14; h = 5.8; ξ = 1.4158; τ = 1.2538t;
σ0 = 0.2708.

2.3 Mathematical modelling of the impact of diet and physical exercise on the
dynamics of glucoses and insulin

After execution of a qualitative analysis mathematical model (1)–(2) of glycemic regula-
tion we will apply values optimized parameters while executing a numerical analysis.

We will try to find differential equation with the delay solutions describing glycemic
and insulin dynamics using the Runge–Kuto IV sequence method.

We will chart the comparison of glucoses and insulin numerical solutions of diffe-
rential equation system (1)–(2) in normal and diabetes cases with the experimental points,
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respectively Fig. 4 and Fig. 5. Experimental points in normal case are taken from [21],
and diabetes case are taken from [22]. In normal case we use the following values of
parameters:h = 6.00; KI = 8.00; KG = 100.00; rG = 12.00; rI = 0.39; c = 0.14.
While searching for a stable periodic numerical solution incase of diabetes we used the
following parameters values:h = 5.80; KI = 7.00; KG = 125.00; rG = 21.60;
rI = 0.39; c = 0.14.

In Figs. 6–7 we will show the GL numerical solutions of differential equation (1)–(2)
system solutions received with the help of formula (1) and GLA solutions (dotted line)
received with the help of periodical approximate formulas (35) and (37) in normal and
diabetes cases respectively.

In Figs. 8–9 we will show the IN numerical solutions of differential equation (1)–(2)
system solutions received with the help of formula (2) and LNA solutions (dotted line)
received with the help of periodical approximate formulas (34) and (36) in normal and
diabetes cases respectively.

Fig. 4. Numerical solution of model (1)–(2) in normal case.

Fig. 5. Numerical solution of model (1)–(2) in diabetic case.
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Fig. 6. Comparison of glucoses numerical solution and solution received according to
formula (35) in normal cases.

Fig. 7. Comparison of glucoses numerical solution and solution received according to
formula (37) in diabetic cases.

Fig. 8. Comparison of insulin numerical solution and solution received according to
formula (34) in normal cases.
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Fig. 9. Comparison of insulin numerical solution and solution received according to
formula (36) in diabetic cases.

Further we will introduce diet and physical load functions (1)–(2) into model and on
selecting optimalα, γ parameters we will demonstrate graphically variations of glucoses
and insulin in normal and diabetes cases, when meals are taken three, four and six times a
day and exercises are performed twice a day both in a case of a healthy person and person
ill with diabetes.

Values of the parametersh, KI , KG, rG, rI , c will be taken from the linear analysis.
Model (1)–(2) with introduced diet and exercises function is the following:

İ(t) = rI

[

G(t)

KG

−
I(t − h)

KI

]

I(t), (38)

Ġ(t) = rG

[

1 + g(t) − f(t) + c

[

1 −
I(t)

KI

]

−
G(t)

KG

]

G(t). (39)

Equations (38)–(39) explain the dynamics of physiologicalsystem “insulin-sugar” in
normal and diabetes cases and allow to describe the dependence of glucose fluctuations
from insulin amount. In the model (38)–(39)i(t) andf(t) are takes from̌Svitra [19]:

g(t) = g(t + 24) =

k
∑

i=1

gi(t), f(t) = f(t + 24) =

n
∑

j=1

fj(t), (40)

gi(t) = gi(t + 24) = αi sin

[

π

Ti

(t − ti1)

]

, ti1 ≤ t ≤ ti2, (41)

fj(t) = fj(t + 24) = γj sin

[

π

Tj

(t − tj1)

]

, tj1 ≤ t ≤ tj2, (42)

k – the number of meals, on – the number of exercises.ti1, tj1 – the beginning of the
effect.ti2, tj2 – the end of the effect.Ti, Tj – duration of the effect,αi, γj – parameters.

On introducing diet and physical exercise functions (1)–(2) into model we modelled
numerically the impact of these functions to glucoses and physical exercise variations
applying scheme showed in Fig. 1 in normal and diabetes cases. For this purpose we
applied the simulation modeling program “Model Maker” (seeFigs. 10– 21).
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Fig. 10. The glycemic and insulin dynamics of a healthy person taking meal 3 times a day.

Fig. 11. The glycemic and insulin dynamics of a diabetic taking meal 3 times a day.

Fig. 12. The glycemic and insulin variation of a healthy person taking meal 4 times a day.
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Fig. 13. The glycemic and insulin variation of a diabetic taking meal 4 times a day.

Fig. 14. The glycemic and insulin fluctuations of a healthy person taking meal 6 times
a day.

Fig. 15. The glycemic and insulin fluctuations of a diabetic taking meal 6 times a day.
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Fig. 16. A healthy person taking meals 3 times a day and exercising 2 times a day.

Fig. 17. A diabetic taking meals 3 times a day and exercising 2times a day.

Fig. 18. Glycemic and insulin dynamics of a healthy person taking meals 4 times a day and
exercising 2 times a day.
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Fig. 19. Glycemic and insulin dynamics of a diabetic taking meals 4 times a day and
exercising 2 times a day.

Fig. 20. Numerical solutions (38)–(39) of model when a healthy person takes meals 6 times
day and exercises 2 times a day.

Fig. 21. Numerical solutions (38)–(39) of model when a diabetic takes meals 6 times day
and exercises 2 times a day.

226



Modelling of glycaemia dynamics: impact of physical exercises

Fig. 10 demonstrate the glucose and insulin fluctuations observed in three-day
period in normal case when one external force – the diet regime makes impactk = 3,
Ti = 3. In the case of healthy person diet parameters are defined (43).

t11 = 8, t12 = 11, α1 = 0.30 (breakfast),

t21 = 13, t22 = 16, α2 = 0.35 (dinner), (43)

t31 = 18, t32 = 21, α3 = 0.35 (supper).

Fig. 11 shows the glucose and insulin fluctuations observed in three-day period in
diabetes case when one external force. i.e. the diet regime makes impactk = 3, Ti = 3.
In case of diabetes the diet parameters are defined (44).

t11 = 8, t12 = 11, α1 = 0.30 (breakfast),

t21 = 13, t22 = 16, α2 = 0.35 (dinner), (44)

t31 = 18, t32 = 21, α3 = 0.35 (supper).

Fig. 12 shows glucose and insulin fluctuations observed in the three-day period in
normal case when one external force, i.e the diet regime makes impactk = 4, Ti = 4. In
case of healthy person the diet parameters are defined (45).

t11 = 7, t12 = 11, α1 = 0.20 (breakfast),

t21 = 11, t22 = 15, α2 = 0.30 (dinner),
(45)

t31 = 15, t32 = 19, α3 = 0.30 (afternoon),

t41 = 19, t42 = 23, α4 = 0.20 (supper).

Fig. 13 demonstrate glucose and insulin fluctuations observed in three-day period
in diabetes case when one external force – the diet regime makes impactk = 4, Ti = 4.
In case of diabetes the diet parameters are defined (46).

t11 = 8, t12 = 12, α1 = 0.15 (breakfast),

t21 = 14, t22 = 18, α2 = 0.25 (dinner),
(46)

t31 = 20, t32 = 24, α3 = 0.20 (supper),

t41 = 26, t42 = 30, α4 = 0.40 (night’s lunch).

Fig. 14 shows glucose and insulin fluctuations observed in three-day period in
normal case when one external force – the diet regime makes impact.k = 6, Ti = 3. In
case of healthy person the diet parameters are defined (47).

t11 = 7, t12 = 10, α1 = 0.10 (breakfast),

t21 = 10, t22 = 13, α2 = 0.15 (lunch),

t31 = 13, t32 = 16, α3 = 0.30 (dinner),
(47)

t41 = 16, t42 = 19, α4 = 0.20 (afternoon),

t51 = 19, t52 = 22, α5 = 0.15 (supper),

t61 = 22, t62 = 25, α6 = 0.10 (night’s lunch).
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Fig. 15 shows glucose and insulin fluctuations observed in three-day period in
diabetes case when one external force – diet regime makes impact. k = 6, Ti = 3.
In diabetes case the diet parameters are defined (48).

t11 = 8, t12 = 11, α1 = 0.10 (breakfast),

t21 = 11, t22 = 14, α2 = 0.15 (lunch),

t31 = 14, t32 = 17, α3 = 0.20 (dinner),
(48)

t41 = 17, t42 = 20, α4 = 0.20 (afternoon),

t51 = 20, t52 = 23, α5 = 0.10 (supper),

t61 = 23, t62 = 26, α6 = 0.25 (night’s lunch).

Appropriately tailored physical activity helps diabeticsto maintain glycaemia close
to normal. Diverse algorithms of physical exercise and dietinteraction may be applied
while describing diverse diabetes treatment strategies.

Fig. 16 shows glucoses and insulin variations that were observed in the period of
three days and nights in normal case when two external forces– diet regime and physical
loadk = 3, Ti = 3 make impact andn = 2, Tj = 1. In this case optimised diet and
physical load parameters are defined (49).

t11 = 8, t12 = 11, α1 = 0.35 (breakfast),

t21 = 13, t22 = 16, α2 = 0.35 (dinner),

t31 = 18, t32 = 21, α3 = 0.30 (supper), (49)

t11 = 9, t12 = 10, γ1 = 0.55,

t21 = 15, t22 = 16, γ2 = 0.45.

Fig. 17 present glucoses and insulin variations that were observed in the period of
three days and nights in diabetes case when two external forces – diet regime and physical
exercisek = 3, Ti = 3 make impact andn = 2, Tj = 1. In this case optimised diet and
physical exercise parameters are defined (50).

t11 = 8, t12 = 11, α1 = 0.35 (breakfast),

t21 = 13, t22 = 16, α2 = 0.40 (dinner),

t31 = 18, t32 = 21, α3 = 0.25 (supper), (50)

t11 = 9, t12 = 10, γ1 = 0.50,

t21 = 15, t22 = 16, γ2 = 0.40.

Fig. 18 offer glucoses and insulin variations that were observed in the period of
three days and nights in normal case when two external forces– diet regime and physical
loadk = 4, Ti = 4 make impact andn = 2, Tj = 1. In this case optimised diet and
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physical load parameters are defined (51).

t11 = 7, t12 = 11, α1 = 0.30 (breakfast),

t21 = 11, t22 = 15, α2 = 0.25 (dinner),

t31 = 15, t32 = 19, α3 = 0.25 (afternoon),
(51)

t41 = 19, t42 = 23, α4 = 0.20 (supper),

t11 = 9, t12 = 10, γ1 = 0.5,

t21 = 15, t22 = 16, γ2 = 0.5.

Fig. 19 present glucoses and insulin variations that were observed in the period of
three days and nights in diabetes case when two external forces – diet regime and physical
exercisek = 3, Ti = 4 make impact andn = 2, Tj = 1. In this case optimised diet and
physical exercise parameters are defined (52).

t11 = 8, t12 = 12, α1 = 0.20 (breakfast),

t21 = 14, t22 = 18, α2 = 0.20 (dinner),

t31 = 20, t32 = 24, α3 = 0.10 (supper),
(52)

t41 = 26, t42 = 30, α4 = 0.50 (night’s lunch),

t11 = 9, t12 = 10, γ1 = 0.55,

t21 = 15, t22 = 16, γ2 = 0.45.

Fig. 20 offer glucoses and insulin variations that were observed in the period of
three days and nights in normal case when two external forces– diet regime and physical
loadk = 6, Ti = 3 make impact andn = 2, Tj = 1. In this case optimised diet and
physical load parameters are defined (53).

t11 = 7, t12 = 10, α1 = 0.15 (breakfast),

t21 = 10, t22 = 13, α2 = 0.15 (lunch),

t31 = 13, t32 = 16, α3 = 0.20 (dinner),

t41 = 16, t42 = 19, α4 = 0.15 (afternoon),
(53)

t51 = 19, t52 = 22, α5 = 0.15 (supper),

t61 = 22, t62 = 25, α6 = 0.20 (night’s lunch),

t11 = 9, t12 = 10, γ1 = 0.55,

t21 = 15, t22 = 16, γ2 = 0.45.

Fig. 21 show glucoses and insulin variations that were observed in the period of
three days and nights in diabetes case when two external forces – diet regime and physical
exercisek = 6, Ti = 3 make impact andn = 2, Tj = 1. In this case optimised diet and
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D. Švitra, I. Basov, R. Vilkytė

physical exercise parameters are defined (54).

t11 = 8, t12 = 11, α1 = 0.15 (breakfast),

t21 = 11, t22 = 14, α2 = 0.15 (lunch),

t31 = 14, t32 = 17, α3 = 0.15 (dinner),

t41 = 17, t42 = 20, α4 = 0.15 (afternoon),
(54)

t51 = 20, t52 = 23, α5 = 0.15 (supper),

t61 = 23, t62 = 26, α6 = 0.25 (night’s lunch),

t11 = 9, t12 = 10, γ1 = 0.44,

t21 = 15, t22 = 16, γ2 = 0.56.

In this section we demonstrated how the model (1)–(2) could be applicable simu-
lated of glycemic and insulin dynamics introduced functions of nutritional and physical
exercise in order to work out optimal of diabetes control.

3 Conclusions

A linear and nonlinear analysis of model (1)–(2) was performed following qualitative
methods of bifurcation theory. On selecting parameter values implying a certain biolog-
ical meaning in internal equilibrium state environment theexistence of stable periodic
solutions obtained applying the simulation modeling program “Model Maker” in a nu-
merical way was demonstrated.

Applying D-decomposition method a stability sphere of asymptotic stability D2 =
(π/12; 5π/12) where a single one frequency approximate stable periodicalsolution of
model (1)–(2) exists and its analytical notation is constructed, was defined.

A constructed approximate stable periodical solution of the model coincides with
numerical solution well enough.

On introducing two external forces specifying diet and physical exercise functions
in normal and diabetes cases the received results of numerical analyses showed that this
model reflects glycaemia and insulin dynamics of a healthy person and person ill with
diabetes rather exactly.

On comparing received numerical solutions of these models with experimental data
a fairly good coincidence of the models and the data was received and this fact allows to
apply the investigated model in monitoring complex systems.
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20. I. Basov,Č. Meil̄unas, D.̌Svitra, Glycemia monitoring: the problem of exogenous insulin input,
Math. Model. Anal., 4, pp. 18–25, 1999.
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